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A B S T R A C T   

Efficient and accurate extraction and restoration of star targets in infrared star images with small number of 
frames is a growing need for optical adaptive image processing. Among the various noise in star images, mixed 
Poisson-Gaussian noise is difficult to be accurately suppressed due to its complicated distribution function. 
Aiming at obtaining the true value of star targets’ signal intensity in infrared images, a novel star target 
extraction and denoising model called regions with deep reinforcement learning (RDRL) is designed and 
developed in this study. This fully-automatic model contains two modules: (1) star region extraction module 
(SREM) that generates star regions within the image through an iterative algorithm based on geometric centroid 
method (GCM); (2) denoising module that performs an iterative denoising process on the star regions based on 
deep reinforcement learning. The denoising algorithm is tested on infrared star images, and the experiment 
results indicate that the proposed RDRL denoising model is able to achieve more accurate restoration with a 
smaller number of calculations than existing star image denoising methods.   

1. Introduction 

Efficient and accurate extraction and restoration of star targets in 
astronomic images with small number of frames is a growing need for 
optical adaptive image processing [1,2]. Among the various noise in 
infrared star images (e.g., salt-and-pepper noise, strip noise, speckle 
noise, defective pixels, etc.) [3–7], mixed Poisson-Gaussian noise is 
intrinsically introduced by the optical responses of star sensor, and 
difficult to be accurately suppressed due to its complicated distribution 
function. Based on the fact that star sensors’ measurements for all pixels 
are independent, Chouzenoux et al. developed a likelihood function for 
N frames of infrared star images with M × M pixels as Eq. (1) [8]: 
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where p is the probability of receiving the N observations, zq is the 
noise image, bq is the ground truth, σ is the variance of Gaussian dis-
tribution, subscript i is an index of pixels, q is an index of observations, 
and j is an index of the possible observations of the gray value in each 
pixel. 

With the noise distribution function, the denoising problem could be 

solved through maximum likelihood estimation (MLE) method, which 
solves for the image that is most likely to produce the given observa-
tions. In this case, MLE method is intended to find a restore image b0 that 
returns the highest value of the likelihood function as shown in Eq. (1). 
MLE method has been widely applied in astronomic image restoration 
[9–12]. Li et al. developed a multi-frame adaptive optical image 
denoising algorithm based on the distribution function of Poisson noise 
[12]. However, mixed Poisson-Gaussian noise has a much more 
complicated distribution function (Eq. (1)) and is difficult to be directly 
suppressed using MLE method. In order to solve this problem, Marnissi 
et al. further optimized the mixed Poisson-Gaussian likelihood function 
as Eq. (2) using generalized Anscombe transformation (GAT) approxi-
mation [13]: 
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As indicated in Eq. (2), GAT method transforms the mixed Poisson- 
Gaussian function as a simplified Gaussian-like function, which can be 
solved using MLE method much more easily. However, GAT method 
inevitably introduces errors during the approximation [14]. Thus, 
restoration results from GAT method still have the potential to be further 
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improved. 
The fast development of machine learning algorithm in the last 

decade opens up a new path for image processing [15]. Researchers has 
developed various models based on convolutional neural network 
(CNN) for image denoising [16–19] and deblurring [20–22]. Among the 
various advanced machine learning method, reinforcement learning 
(RL) is a classical algorithm that also received fast development. RL 
algorithms iteratively train an agent through its actions and evaluate 
how these actions change the environment. A reward function is usually 
defined in an RL model. The agent receives “rewards” or “punishments” 
based on the reward function, and aims to achieve higher rewards 
through continuous trials [23,24]. Built on this theoretical basis, Yu 
et al. developed a toolbox of image processing, and designed an RL- 
based image restoration algorithm by using the denoising tools in the 
toolbox [25]. In the field of star image denoising, Xie et al. developed a 
multi-frame star image denoising algorithm based on reinforcement 
learn (RL) and achieves more accurate restoration than traditional 
methods [26]. However, this algorithm involves a large amount of cal-
culations, and could be time-consuming. 

Considering the limitations in the previous studies on star image 
denoising, a regions with deep reinforcement learning (RDRL) algorithm 
that aims at the extraction of the true value of star targets’ signal in-
tensity in infrared image is designed and developed in this study. 
Infrared star images are collected and used for model training and 
testing. By applying RL-based denoising algorithm in extracted regions 
of star target, the proposed algorithm is expected to accurately and 
efficiently suppress the mixed Poisson-Gaussian noise in infrared star 
images. 

2. Methodology 

2.1. Equipment details and data acquisition 

Infrared star images are collected and used to train and test RDRL 
model. The star sensor used in this study is a mercury cadmium telluride 
(MCT) camera of infrared focal plane array integrated with rotary Stir-
ling cryocooler. The angular resolution for single pixel of the MCT 
camera is 4.7′′, and the imaging spectral range of the camera is from 3.7 
μm ~ 4.8 μm. The diameter of the telescope of the camera is 680 mm, the 
f-number is 2, and the field of view is 0.5◦. The size of target surface is 
320 × 256 and that of sensing unit is 30 μm × 30 μm. The outputs of the 
camera are 16-bits grayscale images, of which the gray values indicate 
the signal intensity. 

The data acquisition experiment is conducted in northeast China on 
the ground under cloudless weather condition. The star target observed 
in the experiment is Alpha Tau (star number: HD29139), of which the 
apparent magnitude is 0.85. The camera is placed statically on the 
ground, and 2000 images are collected for the star target. 

2.2. Data processing 

The output infrared images from MCT camera need to be pre- 
processed in order to calibrate the optical responses between different 
sensing unit. Based on the two-point correlation method of black body 
and sky background, the calibration function of sensing units can be 
given as Eq. (3): 

yij = Gijxij+Qij (3) 

where Gij and Qij are the weight and bias factors of calibration; x and 
y are the outputs in each sensing unit before and after the calibration; i 
and j indicate the index of pixels in output images. 

The weight factor of calibration Gij is: 

Fig. 1. Workflow of the proposed regions with deep reinforcement learning (RDRL) infrared star image denoising model.  
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Gij =
V2 − V1

xij(T2) − xij(T1)
(4) 

where T1 and T2 are the lowest and highest temperature of the black 
body for calibration; xij(T1) and xij(T2) are the outputs of sensing unit 
under temperature T1 and T2; V1 and V2 are the average outputs of all 
sensing units under temperature T1 and T2. Specifically, V1 and V2 are: 
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(5)  
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where M and N are the number of sensing units in each column and 
row. 

The bias factor of calibration Qij is: 

Qij = V3 − Gijxij(Tatmosphere) (7) 

where Tatmosphere is the temperature of sky background, xji(Tatmosphere) 
is the output of sensing unit under Tatmosphere; V3 is the average output of 
all sensing units under temperature Tatmosphere. Specifically, V3 is: 

V3 =

∑M

i=1

∑N

j=1
xij(Tatmosphere)

MN
(8)  

2.3. Regions with deep reinforcement learning (RDRL) algorithm 

Different from general image denoising problem that aims at visually 
restoring the image, the goal of star image denoising is to find the signal 
intensity (indicated by gray value in the image) of star target as close to 
the ground truth as possible. Therefore, the denoising process in the 
background area with no star target, which usually occupies most of the 
area in a star image, is actually meaningless. Considering this charac-
teristic of star image denoising problem, a two-steps star target extrac-
tion and denoising algorithm is designed in this study. Small square 
regions with star targets are extracted in the first module with an iter-
ative region extraction algorithm, and then a denoising module is 
applied to the extracted star regions based on deep reinforcement 
learning. The overall workflow of proposed RDRL algorithm is shown as 
Fig. 1. The detailed steps in each of the two modules are discussed as 

follow. 

2.3.1. Star region extraction module (SREM) 
A star region extraction module (SREM) is designed to automatically 

detect and extract the regions with star targets in infrared star images. 
Since star targets usually spread into several pixels within the star im-
ages, the extracted regions are square regions of which the location and 
size are determined based on two parameters: region centre C (the 
central pixel of the square region) and half width d (number of pixels 
from the central pixel to the boundary pixel of the square region, 
excluding the central pixel). Thus, the extracted regions are squares that 
centre at Cxy and have side length of 2d + 1. These two parameters are 
determined through an iterative calculation. In each step of the itera-
tion, the region centres with a given half width is calculated though an 
internal-iteration based on geometric centroid method (GCM) [27]. 
GCM has been applied to locate and track star targets captured by star 
sensors [28–30]. The mathematic representation of GCM can be given 
as: 

Cx, i+ 1 =

∑Cx,i+d

x=Cx,i− d
x⋅DNx, y

∑Cx,i+d

x=Cx,i− d
DNx, y

(9)  

Cy, i+ 1 =

∑Cy,i+d

x=Cy,i− d
y⋅DNx, y

∑Cy,i+d

y=Cy,i− d
DNx, y

(10) 

where × and y are the coordinates of pixels; DNxy indicates the signal 
intensity of corresponding pixel; Cx and Cy are the coordinates of the 
region centre in each iteration; d is the half width of star region; i in-
dicates the number of iterations. The initial position is set at the pixel 
with maximum gray value (signal intensity) in the star image. When the 
changes in region centre coordinates are smaller than 0.5 after numbers 
of iterations, GCM is considered to be converged, and the centre is 
determined as the coordinates in the last iteration. 

In order to automatically find the appropriate half width of the star 
regions, SREM iterates from 1 to a maximum half width (MHW). In each 
step of this general iteration, Signal-to-Noise Ratio (SNR) of the 
extracted star region is calculated using Eq. (11). 

Fig. 2. Signal-to-Noise ratio (SNR) of star regions extracted using different half width.  
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SNR =

∑x=Cx+d,y=Cy+d

x=Cx− d,y=Cy− d
DNx, y − DNbg⋅(2d + 1)

σ (11) 

where σ is the variance of sky background, which is calculated using 
the boundary pixels of the star image. Because these pixels are far away 
from the star target, the Poisson noise (which positively correlates with 
signal intensity) within these pixels is ignorable and variance is expected 
to be contributed by Gaussian noise only. The SNR calculated under 
different half width is shown as Fig. 2. 

As shown in Fig. 2, SNR has a positive correlation with half width in a 
limited range. Therefore, when SNR increases less than ten percent than 
that in the previous step, SREM is considered to be converged, and the 
final output region is determined by the combination of half width and 
region centre in the last iteration. The working flow of SREM is sum-
marized in Algorithm 1.  

Algorithm 1. Star Region Extraction Module (SREM) 

Step 1: Determine the pixel with the largest gray value as the initial value: Cx,0,Cy,0; 
Calculation σ using the boundary pixels. 

Step 2: while d < MHW and (SNRd-SNRd-1)/SNRd-1 > 0.1 
while |Cx,i+1- Cx,0| > 0.5 or|Cy,i+1- Cy,0| > 0.5Process Cx,i,Cy,i using geometrical 

centroid method (GCM, refer to Eq. (9) and (10) for details) and obtain Cx,i+1,Cy,i+1. 
end while 

Calculate the Signal-to-Noise Ratio (SNR, refer to Eq. (11) for details) under each 
combination of center pixel (Cx,i,Cy,i) and half width d.end while 

Step 3: Generate the star region based on (Cx,i,Cy,i) and d.  

2.3.2. Denoising module for the extracted star regions 
After the star regions are located in the infrared star images, 

denoising module is applied to the extracted star regions based on deep 
reinforcement learning. By applying the noise model as the reward 
function, the denoising agent would search for the restored image that 
returns highest rewarding, which equates to the image with highest 
possibility when using MLE method. 

Deep Q-learning [31] is adopted to construct this RL model. Specif-
ically speaking, this model consists of 4 parts: 

(1) State part consists of a noise image, which is the output image in 
the previous iteration, and the historical action that is fed to a long short- 
term memory (LSTM) module in the next part. State part receives the 
star regions extracted by SREM, and uses the arithmetic mean of the star 
regions as the initial image. Combining with a zero vector, they form the 
initial state. 

(2) Decision-making part takes a sequence of actions on the star 
image based on the state and reward function. Since infrared star images 
are grayscale images that illustrate signal intensity obtained by star 
sensor from a star, the choices of actions for any given pixel are either 
increasing/decreasing the gray value by w (which is a searching radius 
that gradually decreases to 1 as the iteration goes on), or stay at the same 
value. LSTM model is also included in the decision-making part to 
process the historical actions. LSTM is a special type of recurrent neural 
network (RNN) that includes an additional hidden state that decides to 
“remember” or “forget” previous input based on a gating function [32]. 
LSTM solves the problems of gradient vanishing or explosion in regular 
RNN by “forget” unnecessary inputs [33]. In the RDRL model proposed 
in this paper, the iterative actions performed by the decision-making 
part form a sequence dataset that can be effectively processed through 
LSTM. Therefore, LSTM provides additional information for current 
action selection, and enable the model to learn from previous actions. 

(3) Rewarding part examines the input state and the action taken in 
the previous iteration, and then evaluates the action taken in the current 
iteration using a reward function. According to the mixed Poisson- 
Gaussian noise model in star image, the reward function applied in 
this study is defined as Eq. (12): 
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Noting that there is an infinite term in the reward function. This term 
indicates the probability of receiving a given value in certain pixel. It 
decreases as the restored value gets further from the true value (it is not 
likely that the observed value is too far away from the true value). In 
practice, this term is dropped when it is smaller than 10-8 and has small 
influence on the rewards. 

(4) Stopping part automatically stops the iteration when the number 
of iterations reaches the maximum number of iteration (MNI), or the 
decision-making part continuously chooses to stay at the same value 
(when the restored value reaches the ground truth, either increasing or 
decreasing the value would end up in a negative rewards). 

The workflow of the denoising algorithm in the extracted star regions 
is summarized in Algorithm 2. There are several hyperparameters that 
need to be adjusted according to the quality of the noise images: (1) 
Initial searching radius (ISR) w0, which is the searching radius w in the 
first iteration; (2) Stopping index (SI), which is defined as the number of 
times that decision-making part continuously chooses to stay at the same 
value; (3) MNI, which is also served as a threshold to stop the iteration 
together with SI.  

Algorithm 2. Denoising module in the extracted star region 

Step 1: Import extracted star regions from SREM. Obtain image size M × M, and 
variance of Gaussian noise; Create initial input image as the arithmetic mean of N 
frames of noise image; define initial action vector v0 as a zero vector; initialize 
stopping counter cs =

Step 2: Define action table (a1 = + w, a2 = - w, a3 = no action); initialize action-value 
function Q with random weight θ 

Step 3: for each of the M × M pixels in extracted star region: initialize sequence of 
state { bi } 

while i < MNI and cs < SI: 
Process vi-1 through LSTM and obtain v’

i-1 
With probability ε select vi = argmax Q(bi-1; v’

i-1; θ) 
Otherwise select a random action vi from action table 
Execute action vi, and then update environment bi = bi-1 + vi, and observed reward ri 
Update action-value function Q with the observed (bi; vi; ri) 
After every 10 iterations w ← rounding up (w/2) 
if a3 is chosen in this loop then: cs ← cs + 1 
else: cs ← 0 
end if 
end while  

Compared with the RL-based denoising algorithm proposed by the Xie 
et al. in Ref. [26], there are two major improvements in the proposed 
algorithm: (1) the RL-based denoising module is only applied on the star 
regions extracted by SREM, thus the number of calculations and running 
time are expected to be significantly reduced; (2) the star regions and 
background regions are produced through SREM, which makes the 
overall denoising process fully-automatic. 

2.4. Implementation details 

Hyperparameters affect the accuracy of restoration results and the 
number of iterations (running time) in different way. Increasing SI could 
improve the accuracy of restored image in a limited extend, but is likely 
to cause more calculations. Larger ISR could reduce number of calcu-
lations, but may be unnecessary when the noise is rather small (espe-
cially when the noise is even smaller than ISR). Thus, these 
hyperparameters need to be calibrated through test running before 
denoising process. Since the star images used in this experiment are 16- 
bit grayscale images with relatively low noise, ISR is set at 10 and 
decrease by one half (rounding up) after every 10 iterations, SI is set at 4, 
and MNI is set at 500. 

The proposed RDRL denoising model is built using Tensorflow 
backend [34] in Python 3.6 environment. The model is trained and 
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tested using 2.5 GHz Intel i5-7300HQ CPU with 8.0 GB of RAM running 
on a 64-bit Windows 10 operating system. For the denoising experi-
ments in this study, the ε-greedy of Deep Q-learning [31] is set at 0.95. 
Adam [35] is used as the optimizer of the model, and hyperbolic tangent 
function is used as the gating function of LSTM. 

3. Results 

3.1. Star regions extraction results 

As shown in Fig. 3, the star images collected by the star sensor are 16- 
bits grayscale images with the resolution at 320 × 256. The variance of 
Gaussian noise in the background of the star images is about 5.07, The 
extracted star regions are also shown in Fig. 3. The final half width of 
extracted star region is 4. Thus, the generated star regions are 9 × 9 
squares. The star target visually locates in the centre of the star region as 
shown in Fig. 3. These results conform with the calculations using GCM 
by Tough [27]. 

3.2. Denoising results 

The traditional method suppresses the noise in star image by taking 
arithmetic mean of multiple images. This method is tested and utilized 
as a scale to evaluate the performance of denoising algorithms. For the 

star target observed in this study, the average images of 10, 20, 50, 100, 
500 frames of star target are shown as Fig. 4. 

Because the true value is unknown for real star images, the accuracy 
is quantitatively evaluated through SNR, which is defined as Eq. (11). 
SNR of the averaged images using different number of frames are 
included in Table 1, According to the trend shown in Fig. 5, SNR in-
creases as more frames of star images are used for averaging. This result 

Fig. 3. An example of star image collected in the experiment. The extracted star region is shown in the red frame on the right.  

Fig. 4. Arithmetic mean of: (a) 10 frames; (b) 20 frames; (c) 50 frames; (d) 100 frames; (e) 500 frames of infrared star images.  

Table 1 
Signal-to-Noise Ratio (SNR) of the averaged images using 10, 20, 50, 100, 500 
frames.  

Number of frames 10 20 50 100 500 

SNR (dB) 38.10 45.40 47.03 48.68 51.29  

Fig. 5. SNR of the averaged images using different number of frames.  
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validates the star image denoising method by averaging a large number 
of images. 

The denoising experiments for the star target are conducted using 10 
frames of star images and three different algorithms: RDRL proposed in 
this study, generalized Anscombe transformation approximation Fourier 
ptychographic (GATFP) method proposed by Zhang et al. [36] and RL- 
based method proposed by Xie et al. [26]. The performances of these 
algorithm are compared and evaluated with the scale of averaged star 
images. The denoising results within the extracted regions for the star 
images are shown in Fig. 6. 

As shown in Fig. 6, it is difficult to recognize the differences between 
the restoration results using these three methods directly through 
human eyes. Therefore, the restoration results are quantitatively eval-
uated using SNR (Table 2). Compared with the SNR using arithmetic 
mean of multiple frames of star images (as shown in Table 1 and Fig. 5), 
the restoration results using 10 frames of noise images with the proposed 
method and the RL-based method [26] are close to the arithmetic mean 
of about 100 frames of noise images; while that with the GATFP method 
[36] is close to the arithmetic mean of about 50 frames of noise images. 

The number of calculations is also recorded in Table 3. As we ex-
pected, the number of calculations using RDRL method proposed in this 
study is significantly smaller than that using the RL-based method pro-
posed by Xie et al. [26]. 

4. Discussion 

RDRL algorithm proposed in this study is able to extract the star 
region and suppress mixed Poisson-Gaussian noise fully-automatically. 
This model is compared with GATFP [36] and RL-based [26] method 
in terms of both accuracy and computational complexity. The denoising 
results of the two existing methods generally conformed with those 
presented in the previous studies. As indicated in Table 2, all the three 
methods are able to suppress the mixed Poisson-Gaussian noise better 
than taking the arithmetic mean of same number of noise images. There 
is no significant difference between the proposed method and the RL- 
based method [26] in term of restoration accuracy, and these two 

machine learning methods provides more accurate restoration than 
GATFP method [36]. This is probably because that the error introduced 
by the approximation of GAT is reduced by directly applying the dis-
tribution function of the noise as the reward function of the denoising 
algorithms. RDRL algorithm performs denoising results of similar ac-
curacy as that using RL-based method because they share a similar 
rewarding mechanism in the rewarding part. 

Furthermore, by comparing the computational complexity of RDRL 
and RL-based method [26], the number of calculations using RDRL 
method is significantly smaller than that using RL-based method. By 
adding SREM, a large number of calculations on the background area 
that is not meaningful to the extraction on the true value of star target 
are avoided in RDRL model. Therefore, the proposed method is able to 
achieve accurate restoration results with small number of calculations 
than the existing methods. 

5. Conclusions and future studies 

A fully-automatic and novel approach for infrared star image 
denoising is presented in this study. The proposed RDRL model consists 
of an SREM that automatically search for star regions, and a denoising 
module based on deep reinforcement learning. According to the exper-
iments on infrared star images, the proposed RDRL model is able to 
achieve more accurate restoration than GATFP method, and using a 
smaller number of calculations than regular RL-based method. 

The limitation of the proposed RDRL model is that SREM can only 
search for single star target that has highest signal intensity within one 
star image. Thus, this algorithm may not work properly when multiple 
star targets are needed to be extracted from a single image, or the target 
of interest is not the star that has the highest signal intensity within the 
star image. Another approach to further improve the performance of the 
model is to replace the pixel-by-pixel denoising procedure with CNN. By 
utilizing CNN’s ability of recognizing spatial patterns, we envision a 
convolutional-RDRL denoising algorithm that can preserve the relations 
between pixels within star images, and thus further improve the resto-
ration result. 
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