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The Jones pupil is a full description of imaging properties of projection lenses in optical lithography. The decompo-
sition of the Jones pupil into components with clear physical meanings was studied previously; however, the decom-
position method has not been studied systematically. To generalize the existing decomposition method, this work is
aimed at finding all the decomposition methods and analyzing the lithographic imaging impacts. In this work, six
decomposition methods are proposed, and the lithographic imaging impacts of the Jones components are studied
and compared for all the decomposition methods. The results demonstrate that, although the decomposition meth-
ods are different, their lithographic impacts are identical. To be specific, apodization has a dominant impact on the
critical dimension with a magnitude of 1.3 nm, and the impact of diattenuation is 0.3 nm. In contrast, the impacts
of the other Jones components of aberration, birefringence, rotator, and ellipticity are negligible. This work gives a
complete understanding of the imaging impacts of the Jones pupil. ©2021Optical Society of America

https://doi.org/10.1364/AO.414144

1. INTRODUCTION

With the evolution of immersion lithography, the numerical
aperture (NA) of the projection lens keeps growing and reaches
up to 1.35 nowadays. For the hyper-NA (NA> 1) lithographic
process, vectorial imaging needs to be considered for accurate
modeling by including the polarization effects [1,2]. For scalar
imaging, the imaging properties of the projection lens are char-
acterized by a transmission map and a phase map, while for
vectorial imaging, these two maps should be replaced by the
Jones pupil, which assigns a 2× 2 complex Jones matrix at each
pupil location. Due to a lack of direct physical meanings, the
Jones pupil decomposition into components that represent
a clear physical interpretation and are realizable by optical
elements has been discussed and well understood in previous
literatures. Lu and Chipman extracted the diattenuation and
retardation properties from inhomogeneous polarization ele-
ments by the method of singular-value decomposition (SVD)
[3]. McIntyre, Levinson, and Neureuther gave a comparison of
the Mueller pupil, the Jones pupil, and the Pauli pupil, where
the Jones pupil is decomposed as a sum of Pauli spin matrices
[4]. But the Pauli decomposition still lacks physical mean-
ings, as the total Jones matrix of sequencing of various optical

elements is mathematically described by multiplication, not
summation as in Pauli decomposition. Barakat provided several
basic theorems of decomposition of the Jones matrix [5], which
stated that a Jones matrix could be expressed as the product
of two rotators, two retarders, and one partial polarizer. Geh
et al . gave the most appropriate decomposition method for the
lithographic lens and studied the imaging impact of the decom-
posed components [6], which showed that the Jones matrix
could be expressed as the product of three elementary Jones
matrices, a rotated partial polarizer, a rotator, and a retarder,
together with a scalar transmission and a phase factor, and that
apodization and diattenuation were the main contributors to
lithographic imaging variation in all the Jones components.
As a generalization of the scalar Zernike polynomials, Ruoff
and Totzeck introduced orientation Zernike polynomials to
describe diattenuation and retardation [7,8], based on which
Zhou et al . studied the birefringence caused by calcium fluoride
[9], and Shang et al . established the method of lens clocking
optimization [10]. Now two natural questions come up: are
there any other decomposition methods of the Jones pupil, and
are the imaging impacts of Jones components the same for these
different decomposition methods? Based on Ref. [6], our goal is
to generalize the existing decomposition method and to find all
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possible decomposition methods that consist of basic physical
quantities such as apodization, diattenuation, scalar aberrations,
rotator, and retardation, and to study the lithographic imag-
ing impacts for these decomposition methods. Apodization
accounts for the average transmittivity of the two orthogonal
field components, which is usually caused by bulk absorption
of the lens material and coatings. Diattenuation means the
transmittivity split for the two orthogonal field components,
which can be realized by a partial polarizer. Scalar aberrations
are caused by residual aberrations in lens design, refractive index
fluctuations of lens material, and surface figure deviations of the
lens elements. It is usually expanded in Zernike polynomials in
imaging calculation. The rotator rotates the linear polarization
state in counterclockwise direction for a certain angle, and retar-
dation (or birefringence) is realized by a retarder, which assigns
different phase changes to the orthogonal field components.

This work is organized as follows: Section 2 introduces the
mathematical description of Jones pupil decomposition. Based
on SVD, different decomposition methods are discussed and
compared. In Section 3, the decomposition methods are applied
to a typical Jones pupil of a lithographic projection lens. The
imaging impacts of decomposed components are simulated
and compared for all decomposition methods. We conclude the
results in Section 4 with a summary.

2. JONES PUPIL DECOMPOSITION

The Jones matrix is a 2× 2 complex matrix with eight
independent parameters and defined by(

Eout,x

Eout,y

)
=

(
Jxx Jxy

J yx J yy

)(
E in,x

E in,y

)
. (1)

It contains full information about the polarization properties
of the optical element. The three basic optical elements are the
partial polarizer, which attenuates or completely blocks one
polarization component; the retarder, which induces a phase
shift between two orthogonal field components; and the rotator,
which rotates a linear polarization state counterclockwise by a
certain angle.

For the partial polarizer, retarder, and rotator, the Jones matri-
ces are given by

Jpol(t, d)= t Jpol(d)= t
(

1+ d 0
0 1− d

)
, (2)

J ret(8, φ)= e i8 J ret(φ)= e i8

(
e−iφ 0

0 e iφ

)
, (3)

J rot(θ)=

(
cosθ −sinθ
sinθ cosθ

)
. (4)

With these definitions, for the partial polarizer, t and 2d are
the mean amplitude transmission and the relative transmission
difference of the amplitude, and they represent apodization and
diattenuation, respectively. They are related to the more com-
monly used intensity-based transmission T and diattenuation
D through

T = t2(1+ d2), (5)

D=
2d

1+ d2
. (6)

The retarder is characterized by a global phase 8 and a
retardation 2φ with the fast axis, which represent the scalar
aberration and birefringence. The scalar aberration represents
the mean phase of the two orthogonal field components, and the
birefringence means the phase difference of the two orthogonal
field components. The rotator rotates the linear polarization
state in counterclockwise direction for a positive angle θ . Since
the mean transmission t in Eq. (2) and phase 8 in Eq. (3) are
separable scalar quantities, we will omit them in the Jones matri-
ces in the following discussion. The Jones matrices of a rotated
partial polarizer and rotated retarder are obtained by taking the
similarity transform, and given by

Jpol(d , θ)= J rot(θ)

(
1+ d 0

0 1− d

)
J rot(−θ)

=

(
1+ dcos2θ d sin2θ

d sin2θ 1− dcos2θ

)
, (7)

J ret(φ, θ)= J rot(θ)

(
e−iφ 0

0 e iφ

)
J rot(−θ)

=

(
cosφ − i sinφcos2θ −i sinφsin2θ
−i sinφsin2θ cosφ + i sinφcos2θ

)
. (8)

By taking the SVD, the Jones matrix can be decomposed as

J =U SV †
= (U SU †)(U V †)= JH1 JU,

= (U V †)
(
V SV †)

= JU JH2, (9)

where U and V are unitary matrices, S is the diagonal matrix
containing the positive real singular values, JH1 =U SU † and
JH2 = V SV † are positive definite Hermitian matrices, and
JU =U V † is a unitary matrix. Equation (9) is polar decompo-
sition, by which an eight-parameter Jones matrix is expressed
as the product of a four-parameter Hermitian matrix and a
four-parameter unitary matrix. Note that the unitary matrix JU

is the same in Eq. (9), whether being at first or second place in
the decomposition.

Let us first consider the four-parameter decomposition of
the Hermitian matrix JH1, which is derived in Appendix A and
given by

JH1(t, d , θ1, δ1)= t J ret

(
δ1

2

)
Jpol(d , θ1)J ret

(
−
δ1

2

)

= t
(

1+ d cos 2θ1 e−iδ1 d sin 2θ1

e iδ1 d sin 2θ1 1− d cos 2θ1

)
, (10)

where θ1 is the rotation angle of partial polarizer, and δ1 is the
ellipticity parameter. Similarly, the decomposition of JH2 is
given by

JH2(t, d , θ2, δ2)= t J ret

(
δ2

2

)
Jpol (d , θ2) J ret

(
−
δ2

2

)

= t
(

1+ d cos 2θ2 e−iδ2 d sin 2θ2

e−iδ2 d sin 2θ2 1− d cos 2θ2

)
. (11)

JH1 and JH2 share the same t and d , but different θ and δ. The
difference of JH1 and JH2 is given by

J 2
H1 − J 2

H2 = J J †
− J † J . (12)



Research Article Vol. 60, No. 5 / 10 February 2021 / Applied Optics 1359

Only when the Jones matrix is a normal matrix, i.e., J J †
=

J † J , does JH1 = JH2. Since J is very close to the identity matrix
I , it can be written as

J = I +1, (13)

where1 is a complex matrix with small elements. Equation (12)
can be processed into

J 2
H1 − J 2

H2 =11
†
−1†1= O(12), (14)

which means that with smaller1, JH1 is closer to JH2.
Now consider the four-parameter decomposition of the

unitary matrix JU. Three decomposition methods for a unitary
matrix are derived in Appendix A, and given by

JU1(8, τ, φ, γ )= e i8 J ret

(τ
2

)
J ret(φ, γ )J ret

(
−
τ

2

)
= e−i8

(
cos φ − i sin φ cos 2γ −ie−iτ sin φ sin 2γ
−ie iτ sin φ sin 2γ cos φ + i sin φ cos 2γ

)
,

(15)

JU2(8, α, ϕ, β)= e i8 J rot(α)J ret(ϕ, β)

= e i8

(
cos ϕ cos α − i sin ϕ cos(α + 2β) − cos ϕ sin α − i sin ϕ sin(α + 2β)
cos ϕ sin α − i sin ϕ sin(α + 2β) cos ϕ cos α + i sin ϕ cos(α + 2β)

)
, (16)

and

JU3(8, ρ, ϑ, σ )= e i8 J ret(ρ)J rot (ϑ) J ret(σ )

= e i8

(
e−i(ρ+σ) cos ϑ −e−i(ρ−σ) sin ϑ
e i(ρ−σ) sin ϑ e i(ρ+σ) cos ϑ

)
.

(17)

As mentioned in Eq. (9), the unitary matrix JU is uniquely
determined in polar decomposition. It is worth noting that we
just use the three notations JU1, JU2, and JU3 in Eqs. (15)–(17)
to represent the three different decomposition methods for the
same JU. Besides the global phase term, Eq. (15) consists of
three retarders. Equation (16) consists of a rotator and a retarder,
which was first derived by Poincaré [11] and called Poincaré
decomposition [6], and Eq. (17) is a retarder–rotator–retarder
(called Euler parameterization) mode known in group theory
[12]. Then the six decomposition methods are given by

J = JH1 JU1 = JH1 JU2 = JH1 JU3 = JU1 JH2 = JU2 JH2 = JU3 JH2.
(18)

It should be noted that apodization t , diattenuation d , and
global phase 8 are independent of decomposition methods in
Eq. (18).

In Ref. [6], the decomposition method J = JH1 JU2 is
discussed and used to perform the lithographic simulation.
As a generalization of Ref. [6], in this paper, the differences
between JH1 and JH2 are compared and discussed, and more
importantly, three different decomposition methods for JU

are proposed and discussed. The lithographic simulations are
performed for all six decomposition methods to draw a more
general conclusion.

3. DECOMPOSITION RESULTS AND IMPACT ON
LITHOGRAPHY IMAGING

A. Decomposition and Reconstruction of Jones Pupil

The decomposition methods are applied to a typical Jones pupil
of a lithographic projection lens, which is illustrated in Fig. 1.

The Jones pupil in Fig. 1 is from a real design of a lithographic
projection lens based on Ref. [13]. CODE V optical design soft-
ware is used to extract the Jones pupil. The Jones pupil, which
assigns a 2× 2 complex Jones matrix at each pupil location, can
be written as

J (px , p y )=

(
J x x

(
px , p y

)
J x y (px , p y )

J y x (px , p y ) J y y (px , p y )

)
, (19)

where px and p y are the normalized pupil locations with respect
to NA. For each complex matrix element, the real part and
imaginary part are plotted as a function of normalized pupil
coordinates (px , p y ), so we get eight maps in Fig. 1. In the fol-
lowing, all the decomposed parameters are plotted as a function
of (px , p y ) implicitly.

Fig. 1. Typical Jones pupil of a lithographic projection lens with eight independent maps. The ideal maps are the identity matrix with only
Re(J xx)= 1 and Re(J yy)= 1. Due to non-perfection, the real maps have small deviations.
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Fig. 2. Left: apodization map. Right: diattenuation map.

First the Hermitian matrix decomposition is discussed. The
apodization map and diattenuation map are the same between
JH1 and JH2, and shown in Fig. 2.

The apodization map has an average value of 0.884, which
seems a big deviation from the ideal value of one (since the
ideal Jones matrix is just the identity matrix). Since this average
value of apodization blocks the energy uniformly, we can always
get the same lithographic imaging by increasing the energy.
Compared with the average transmission, the apodization
uniformity affects the lithographic imaging more. As shown
in Fig. 2, the apodization uniformity has a peak-to-valley (PV)
value of 0.025, and the diattenuation map has an average value
of 0.004. Later we will see that apodization and diattenuation
are the two main contributors to the lithographic imaging.

The other two parameters (δ, θ) are shown and compared in
Fig. 3.

As can be seen in Fig. 3, the rotation angle θ of the partial
polarizer has approximately central symmetry in the pupil. The
θ maps of JH1 and JH2 are almost the same, and the difference
map of θ1 − θ2 are small, with a magnitude of less than 1.5◦. For
the ellipticity parameters δ, the values are small for most pupil
areas but large for some small areas, where θ is near 0◦ and 90◦

JU1 = e i8 J ret

(τ
2

)
J ret (φ, γ ) J ret

(
−
τ

2

)
= e i8

(
cos φ − i sin φ cos 2γ − sin φ sin 2γ (sin τ + i cos τ)

sin φ sin 2γ (sin τ − i cos τ) cos φ + i sin φ cos 2γ

)
(20)

in the θ map. In Eq. (10) or Eq. (11), the ellipticity param-
eter δ is extracted from the term e iδd sin 2θ . The diattenuation
parameter d is small and less than 0.008 in Fig. 2. When θ→ 0◦

or θ→ 90◦, d sin2θ→ 0. Under these cases, the δ extraction
is meaningless. In other words, although the value of δ is large
in these areas, it has no impact on the accuracy of the decom-
position. Later we will show that ellipticity has little impact on
lithographic imaging.

Now consider the unitary matrix decomposition. According
to Appendix A, the unitary matrix can be decomposed as
the product of a phase term and a special unitary matrix,
given by JU = e i8Ũ . The phase term is independent of the
decomposition methods and shown in Fig. 4.

As expected, the scalar aberration is very small with a mag-
nitude of several milli-wavelength. Here one milli-wavelength
means 0.1% of wavelength, which is 0.193 nm for modern deep
ultraviolet (DUV) scanners withλ= 193 nm.

The special unitary part Ũ is very close to the identity matrix.
The difference of them is shown in Fig. 5.

In Fig. 5, it can be seen that the difference between Ũ and the
identity matrix is of order 10−2. The other three parameters,
(τ, φ, γ ) of JU1, (α, ϕ, β) of JU2, and (ϑ, ρ, σ ) of JU3, can be
extracted in the three different decomposition methods, shown
in Fig. 6.

As shown in Fig. 6, for JU1(8, τ, φ, γ ), the τ map is similar
to the δ map of JH, whose value is relatively large for the areas
where γ → 0◦ and γ → 90◦ due to the term e iτ sin φ sin 2γ
in Eq. (15). The retardation map of φ is small and less than 4◦.
The φ and γ maps have approximately central symmetry. For
JU2(8, α, ϕ, β), the rotation angle α of the rotator is small and
less than 1.4◦. The ϕ and β maps of JU2 are similar to the φ and
γ maps of JU1, respectively. Recall the detailed decompositions
of JU1 and JU2, which are given by

Fig. 3. Left column: δ1 and θ1 map of JH1. Middle column: δ2 and θ2 map of JH2. Right column: difference maps of δ1 and δ2, θ1 and θ2. All
parameters are in unit of degree.
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Fig. 4. Scalar phase aberrations in unit of wavelength; as can be
seen, the aberration is several milli-wavelength.

and

JU2 = e i8 J rot(α)J ret(ϕ, β)

= e i8

(
cos ϕ cos α − i sin ϕ cos(α + 2β) − cos ϕ sin α − i sin ϕ sin(α + 2β)
cos ϕ sin α − i sin ϕ sin(α + 2β) cos ϕ cos α + i sin ϕ cos(α + 2β)

)
. (21)

As previously mentioned, JU1 and JU2 are just two different
decompositions for the same JU, so JU1 = JU2 = JU. For small
α,φ, andϕ, the relationsϕ ' φ andβ ' γ are satisfied.

For JU3(8, ρ, ϑ, σ ), the rotation angle of the rotator ϑ is
small, with a magnitude of 3.8◦, and theϑ map is approximately
central antisymmetric. The detailed decompositions of JU3 is
given by

JU3 = e i8 J ret(ρ)J rot(ϑ)J ret(σ )

= e i8

(
cos ϑ cos(ρ + σ)− i cos ϑ sin(ρ + σ) − sin ϑ cos(ρ − σ)+ i sin ϑ sin(ρ − σ)
sin ϑ cos(ρ − σ)+ i sin ϑ sin(ρ − σ) cos ϑ cos(ρ + σ)+ i cos ϑ sin(ρ + σ)

)
. (22)

It can be seen that parametersρ andσ are involved in Eq. (22)
by the combination of ρ + σ or ρ − σ . In Fig. 5, we see that
Re(Jxx)= cosϑcos(ρ + σ) is very close to one, which requires
that ϑ ≈ 0 and ρ + σ ≈ 0. That is why the ρ map and σ map
have opposite values. In Fig. 6, ρ is near+45◦ or−45◦, and σ is
near−45◦ or+45◦ accordingly.

In addition, the six decomposition methods are validated
by comparing the reconstructed Jones pupil and the original
Jones pupil. In Fig. 1, it can be seen the Jones pupil is close to

the identity matrix with a magnitude of one. The differences
between the reconstructed Jones pupil and the original Jones
pupil are about 10−7, which is a negligible value with respect
to a magnitude of one, and this proves that the decomposition
methods are valid.

B. Lithographic Imaging Impacts of Jones Pupil
Components

The schematic diagram of the lithographic process is shown in
Fig. 7.

The light from the illumination, with predefined wavelength,
intensity, direction, and polarization, illuminates at the mask
located at the object plane, and then is diffracted. The diffracted
light is collected by the projection lens, whose imaging prop-
erty includes the NA and the Jones pupil. The mask makes its

image at the wafer located on the image plane. In real cases, the
light illuminates at the mask from many different directions.
The lights from different directions are incoherent. To get the
final mask image on the wafer, the image for each direction is
calculated coherently, and then the images for all the directions
are summed up incoherently. The critical dimension (CD) is
calculated based on the final image, shown in Fig. 8.

Table 1 provides the simulation conditions.
The optical proximity effect (OPE) curve is the CD plot of

the through pitch patterns (usually the tightest CD; here it is
L= 45 nm), which is an important curve in lithography to see
the OPE. By judging the CD differences of the OPE curve, we
can see how largely a factor affects the lithographic process. For
the 28 nm technology node and below, if the CD differences of

Fig. 5. Difference map of special unitary matrix Ũ and the identity matrix.
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Fig. 6. Different decomposition methods of the unitary matrix: JU1(τ, φ, γ ), JU2(α, ϕ, β), and JU3(ϑ, ρ, σ ). All parameters are in unit of
degree.

Fig. 7. Schematic diagram of lithographic imaging.

the OPE curve caused by one factor are a magnitude of 1 nm,
this factor should be considered for accurate lithographic mod-
eling. To study the impact of apodization, the Jones pupil is
reconstructed without the apodization parameter only. The
OPE curves are simulated with the reconstructed Jones pupil
and the full Jones pupil, and the CD differences of the OPE
curves are obtained by comparing the two. The bigger the CD
differences are, the more impacts the apodization contrib-
utes. The CD differences of the OPE curve for apodization,
aberration, and diattenuation are shown in Fig. 11.

Similarly, the impacts of other parameters are analyzed with
the same method. We define the maximum CD difference as
the PV value of the CD differences of the OPE curve, e.g., the
CD differences of the apodization in Fig. 11 range from −0.1

Fig. 8. CD is defined as the distance between the two points satis-
fying the equation I (x )= I0, where I0 is the threshold determined by
a predefined mask pattern L45P90, whose CD is exactly 45 nm at I0.
Then the CDs of other patterns can be calculated at I0.

to 1.2 nm, then the maximum CD difference of apodization is
1.3 nm. The maximum CD differences contributed by the Jones
components are summarized in Table 2.

As discussed in Section 2, apodization t , diattenuation d , and
scalar aberration8 are independent of decomposition methods.

In Table 2, although the decomposition methods are differ-
ent, the CD impacts of ellipticity, birefringence, and rotator
are almost the same, which are about 0.0 nm, 0.1 nm, and
0.0 nm, respectively. The maximum CD differences of the Jones
components are summarized in Fig. 12.

From the studied case, apodization has a dominant impact
on CD with a value of 1.3 nm. The impact of diattenuation on
CD is 0.3 nm. In contrast, the impacts of the scalar aberration,
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Table 1. Lithography Simulation Conditions

Name Value/Description

Wavelength (nm) 193. Wavelength of illuminated light.
Numerical
aperture

1.35. NA of the projection lens.

Illumination
type

Freeform illumination with intensity map shown in
Fig. 9. The intensity map is plotted as function of the
pupil coordinates.

Polarization XY. The polarization type is XY, which is a widely
used polarization mode in modern lithography.

Mask 6% attenuated phase shifting mask (attPSM), dark
field. The mask has 100% transmission and no phase
change for the pattern areas, and has 6%
transmission and phase change of 180◦ for the other
areas (called background or field areas).

Patterns Through pitch patterns with line L= 45 nm, pitch
P= 90− 400 nm. The patterns are corrected with
OPC (optical proximity correction) to print size to
target. The pattern is shown in Fig. 10. Due to
diffraction, the shape of mask image is usually far
different from that of mask. OPC is a technique to
optimize the mask pattern’s shape to get good image
quality and the desired pattern shape.

Resist model Pure optical model with threshold at which the
pattern L45P90 is printed to 45 nm at wafer. The
resist information is not taken into account. CDs
calculated by this kind of model are called optical
CDs.

Jones pupil Original Jones pupil and 17 reconstructed ones.

Fig. 9. Intensity map of freeform illumination as a function of the
pupil coordinates.

birefringence, rotator, and ellipticity are negligible with less
than 0.1 nm. These results are independent of decomposition
methods and demonstrate that the imaging properties of the
lithographic projection lens are almost fully characterized by
apodization and diattenuation. The results also reveal that the
imaging impacts of other Jones components are negligible.

4. SUMMARY

In this work, we generalized the Jones pupil decomposition
method in Ref. [6] and got six different decomposition meth-
ods. With polar decomposition, the Jones matrix with eight
parameters is expressed as the product of the Hermitian
matrix and the unitary matrix, each with four parameters.
The Hermitian matrix has two different forms, depending on

Fig. 10. Mask pattern of line pitch type. The line width is L, and
the pitch is P. Many patterns of this type are simulated. For the same
L= 45 nm, P ranges from 90 to 400 nm. The group of these patterns is
called through pitch patterns.

Fig. 11. CD differences of the OPE curve caused by apodization,
aberration, and diattenuation.

Table 2. Imaging Impacts of Jones Components

Components Max. CD Difference [nm]

(Apodization) 1.32
d (diattenuation) 0.32
8 (aberration) 0.08
δ1 of JH1 (ellipticity) 0.00
δ2 of JH2 (ellipticity) 0.00
τ in J = JH1 JU1 (ellipticity) 0.01
τ in J = JU1 JH2 (ellipticity) 0.01
J ret(φ, γ ) in J = JH1 JU1 (birefringence) 0.07
J ret(φ, γ ) in J = JU1 JH2 (birefringence) 0.07
J ret(ϕ, β) in J = JH1 JU2 (birefringence) 0.08
J ret(ϕ, β) in J = JU2 JH2 (birefringence) 0.08
J rot(α) in J = JH1 JU2 (rotator) 0.01
J rot(α) in J = JU2 JH2 (rotator) 0.01
J rot(ϑ) in J = JH1 JU3 (rotator) 0.04
J rot(ϑ) in J = JU3 JH2 (rotator) 0.04
J ret(ρ) and J ret(σ ) in J = JH1 JU3

(birefringence)
0.07

J ret(ρ) and J ret(σ ) in J = JU3 JH2

(birefringence)
0.07

the position of the matrix product in the polar decomposition.
The unitary matrix is uniquely determined in the polar decom-
position, and has three decomposition methods. The first one
consists of three retarders, the second one is a rotator–retarder
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Fig. 12. Maximum CD differences contributed by the Jones
components.

mode called Poincaré decomposition, and the third one is a
retarder–rotator–retarder mode called Euler parameterization.
The decomposition methods are validated by comparing the
reconstructed Jones pupil and the original Jones pupil, and their
differences are 10−7, a negligible magnitude with respect to one.
Furthermore, the lithographic imaging impacts are studied and
compared for all the decomposition methods. The simulation
results demonstrate that, for different decomposition methods,
the imaging impacts of Jones components are identical. In
the studied case, apodization and diattenuation are the main
contributors to CD differences with magnitudes of 1.3 nm
and 0.3 nm, respectively. However, the scalar aberration and
birefringence bring negligible 0.1 nm CD differences, and the
ellipticity and rotation contribute almost zero CD differences.
The imaging properties of the lithographic projection lens
are dominated by apodization and diattenuation. This work
provides a deep and complete understanding of the Jones pupil
impacts on lithographic imaging.

APPENDIX A: PARAMETERIZATION OF
HERMITIAN MATRIX AND UNITARY MATRIX

A 2× 2 complex matrix has four complex numbers, i.e., eight
independent real parameters. For unitary matrices with the
requirement

UU †
=U †U = I , (A1)

the number of independent real conditions is four; thus, only
8−4= 4 independent parameters survive. The determinant of
unitary matrices is derived from Eq. (A1) as

det(U)= e i28. (A2)

Here 28 is used for convenience of matrix decomposition in
which the global phase term is e i8.

Unitary matrices with the requirement

det(U)= 1 (A3)

are called special unitary matrices and have three independent
parameters. Any 2× 2 unitary matrix can be decomposed as
the product of a phase term and a special unitary matrix, and is
given by

U = e i8Ũ , (A4)

where the special unitary matrix Ũ can be parameterized with
three parameters [6], and is given by

Ũ =
(

cos θe iµ
− sin θe iv

sin θe−iv cos θe−iµ

)
. (A5)

Equation (A5) can be rewritten as

Ũ =
(

cos θ − sin θe−iδ

sin θe iδ cos θ

)(
e iµ 0
0 e−iµ

)

=

(
cos θe−iδ

− sin θ
sin θ cos θe iδ

)(
e−iv 0

0 e iv

)
, (A6)

where the ellipticity parameter is given by δ =−(µ+ ν). The
advantage of Eq. (A6) can be seen in the unitary similarity
transform with the form

M =U DU †, (A7)

where D is a diagonal matrix diag(c 1, c 2)with c 1 and c 2 as com-
plex numbers. By application of Eq. (A6), Eq. (A7) is processed
into

M =U DU †
= Ũ DŨ−†

=

(
cos θ − sin θe−iδ

sin θe iδ cos θ

)(
c 1 0
0 c 2

)(
cos θ sin θe−iδ

− sin θe iδ cos θ

)

=

(
cos θe−iδ

− sin θ
sin θ cos θe iδ

)(
c 1 0
0 c 2

)(
cos θe iδ sin θ
− sin θ cos θe−iδ .

)
(A8)

It can be seen that for a unitary matrix with four inde-
pendent parameters U(8, θ, µ, ν), only two parameters
(θ, δ =−(µ+ ν)) survive in the combination U DU †. In the
unitary similarity transform of Eq. (A8), U can be simplified
with two parameters and is written as

U =
(

cos θ − sin θe−iδ

sin θe iδ cos θ

)
(A9)

or

U =
(

cos θe−iδ
− sin θ

sin θ cos θe iδ

)
. (A10)

It is convenient to rewrite Eq. (A9) as

U =

(
e−i δ2 0

0 e i δ2

)(
cos θ − sin θ
sin θ cos θ

)(
e i δ2 0
0 e−i δ2

)

= J ret

(
δ

2

)
J rot(θ)J ret

(
−
δ

2

)
(A11)

and rewrite Eq. (A10) as

U =

(
e−i δ2 0

0 e i δ2

)(
cos θ − sin θ
sin θ cos θ

)(
e−i δ2 0

0 e i δ2

)

= J ret

(
δ

2

)
J rot (θ)J ret

(
δ

2

)
. (A12)

Now consider the parameterization of the Hermitian matrix.
Any Hermitian matrix JH can always be diagonalized with a uni-
tary matrix U , which is given by

JH =U
(

r1 0
0 r2

)
U †, (A13)
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where r1 and r2 are two real eigenvalues of JH. Since Eq. (A13) is
a similarity transform, U has only two independent parameters.
By application of Eq. (A11) or Eq. (A12), Eq. (A13) can be
rewritten as

JH = J ret

(
δ

2

)
J rot(θ)

(
r1 0
0 r2

)
J rot(−θ)J ret

(
−
δ

2

)
= t J ret

(
δ

2

)
Jpol (d , θ)J ret

(
−
δ

2

)
. (A14)

In the last step, the relations r1 = t(1+ d), r2 = t(1− d) and
the definition of the rotated partial polarizer of Eq. (7) are used.

Now consider the parameterization of the unitary matrix.
The first decomposition method is that any unitary matrix JU

can always be diagonalized with a unitary matrix U , which is
given by

JU =U
(

e iφ1 0
0 e iφ2

)
U †. (A15)

Similarly, by application of Eq. (A11) or Eq. (A12), Eq. (A15)
can be rewritten as

JU1(8, φ, δ, θ)=U
(

e iφ1 0
0 e iφ2

)
U †

= e i8 J ret

(
δ

2

)
J ret(φ, θ)J ret

(
−
δ

2

)
.

(A16)

In the last step, we use the relations 8= (φ1 + φ2)/2,
φ = (φ2 − φ1)/2 and the definition of the rotated retarder
of Eq. (8). The first decomposition consists of three retarders
besides the global phase term.

The second decomposition method is from a known theorem
in group theory [14] that states that a 2× 2 special unitary
matrix can always be decomposed as

Ũ(ϕ, θ1, θ2)= Jmt(θ1)J ret(ϕ)J rot(θ2). (A17)

The special unitary matrix can be represented by a retarder
sandwiched between two rotators. Without loss of generality, we
rewrite θ1 and θ2 as

θ1 = α + β, θ2 =−β, (A18)

and Eq. (A17) is processed into

Ũ(ϕ, α, β)= J rot(α + β)J ret(ϕ)J rot(−β)

= J rot(α)J rot(β)J ret(ϕ)J rot(−β)

= J rot(α)J ret(ϕ, β). (A19)

Taking into account the global phase term, the second
decomposition method of the unitary matrix is given by

JU2(8, ϕ, α, β)= e i8 J rot(α)J ret(ϕ, β), (A20)

which was first derived by Poincaré [11], and Eq. (A20) is called
Poincaré decomposition in Ref. [6].

The third decomposition method is from a group theory
[12] that states that a 2× 2 special unitary matrix can always be
decomposed as

Ũ(θ1, θ2, θ3)= e iσzθ1e iσy θ2e iσzθ3

=

(
e iθ1 0
0 e−iθ1

)(
cos θ2 − sin θ2

sin θ2 cos θ2

)(
e iθ3 0
0 e−iθ3

)
= J ret (−θ1) J rot (θ2) J ret (−θ3) ,

(A21)

whereσy andσz are the Pauli matrices, given by

σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (A22)

Equation (A21) is called Euler parameterization, in which the
special unitary matrix is represented by a rotator sandwiched
between two retarders. Without loss of generality, we define
ρ =−θ1, ϑ = θ2, σ =−θ3, and taking into account the global
phase term, the unitary matrix is decomposed as

JU3(8, ρ, ϑ, σ )= e i8 J ret(ρ)J rot(ϑ)J ret(σ ). (A23)
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