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Abstract: Phase retrieval is an attractive optical testing method with a simple experimental
arrangement. The sampling grids wave propagation computation based on the FFT operations
is usually involved in each iterative process for the classical phase retrieval model. In this
paper, a novel non-propagation optimization phase retrieval technique with the FFT-based basis
function is proposed to accelerate wavefront measurement. The sampling grids wave diffraction
propagation computation is converted to matrix-vector products that have small dimensions to
reduce the computational burden. The diffraction basis function based on generalized numerical
orthogonal polynomial and two-step Fresnel propagation is deduced, which is suitable for the
generally shaped pupil. This paper provides a universal non-propagation framework to accelerate
phase retrieval which is applicable to the arbitrarily shaped wavefront measurement.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Phase retrieval (PR), which retrieves the unknown phase of the desired pupil from measured
intensities, is an image-based wavefront-sensing technique. Phase retrieval is an attractive method
suitable for in situ wavefront measurement due to its relatively simple and flexible experimental
arrangement [1]. For the most mainstream Gerchberg-Saxton-Fienup algorithms [2,3] applied
in wavefront measurement, a pair of propagation operations typically involving fast Fourier
Transforms (FFTs) is always involved. Phase diverse phase retrieval (PDPR) [4—6], which has an
iterative calculation process among different measured planes based on FFT operations, has higher
measurement robustness and accuracy. In addition, the nonlinear optimization theory combined
with the iterative phase retrieval method to estimate the desired complex field offers more
flexibility. The nonlinear optimization phase retrieval method has several advantages [7]: firstly,
the phase retrieval process can be implemented based on a more modern nonconvex optimization
algorithm, which is beneficial for eliminating the local minimum stagnation; secondly, the
convergence speed and robustness of the PR algorithm would be improved by using adaptive
step-size [8]; thirdly, the weight function, which is applied to discard the poor signal-to-noise
ratio (SNR) pixels for the measured intensity, is added into the error metric to improve the
robustness of the PR algorithm.

Generally, the nonlinear optimization phase retrieval algorithm [7] includes the point-by-point
optimization algorithm and the basis-function optimization algorithm. The basis-function
optimization algorithm is also called the parametric PDPR algorithm [9]. For classical parametric
PDPR algorithm, the phase of desired plane is modeled by using the Zernike polynomials,
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respectively, then some dozens of Zernike coefficients are optimized. Compared with point-
by-point optimization, where there may be more than 10° or 10 parameters over which we
are optimizing, the parametric PDPR algorithm has less computationally demanding. The
parametric PDPR algorithm has excellent performance for measuring large-scale aberration [9].
The previous nonlinear parametric optimization phase retrieval algorithms have higher accuracy
for wavefront measurement, which is suitable for the circular pupil with Zernike polynomials
[10-13].

However, while the PDPR measurement method has a simple experimental arrangement,
it would demand many computational resources [14]. The essential FFT operations, which
need adequate intensity sampling and match testing system through zero-padding, would cost
much time and memory. The large computational burden would seriously slow down wavefront
measurement efficiency [15]. The parametric PDPR algorithm, which still needs to calculate
polynomial basis functions, would further improve the requirements of computer performance.

Besides, in practical engineering applications, many optical elements with irregular apertures
are widely applied in various large optical systems. For example, the large aperture telescope
such as the James Webb space telescope (JWST) [16] is made up of several hexagonal mirrors;
high-energy laser systems such as inertial confinement fusion (ICF) [17] contain many square
optical elements. The conventional parametric PDPR cannot be applied to measure irregularly
shaped wavefront. To propose a new parametric PDPR method, which has the characteristics of
high speed and low computational complexity, it is essential to achieve wavefront measurement
for the arbitrarily shaped pupil.

In this paper, a new non-propagation nonlinear optimization phase diverse phase retrieval
method suitable for the generally shaped pupil (GSP) wavefront measurement is proposed to
reduce the computational complexity and costing time. Instead of using sampling grid, the
complex field of the GSP is modeled via numerical orthogonal polynomials [ 18] and the diffraction
integral is also modeled using the FFT-based basis function. Because the desired field and
diffractive field are both modeled via the basis function and the complex coefficients of the basis
functions are estimated, the proposed parametric PDPR algorithm is called modal-based PDPR
algorithm (mPDPR). The proposed method, which is suitable for the arbitrarily shaped pupil’s
reconstruction, is far faster than existing methods. To reduce the computational complexity
and costing time, these steps for accelerating the mPDPR method are implemented: firstly, for
each diffraction basis matrix, only a small dimensions grid that contains valuable information
is extracted to estimate the gradient matrix, which is under-sampled for the classical iterative
phase retrieval method; secondly, the gradient calculation kernel matrices are constant without
repeating calculation for all iterations; in addition, the analytic gradient in the measured plane is
derived by only matrix operation.

This paper is organized as follows. Section 2 introduces the FFT-based diffraction basis
function calculation model based on numerical orthonormal polynomials. Section 3 describes the
proposed non-propagation phase retrieval algorithm. Section 4 verifies the accuracy and stability
of the method through numerical simulations. Section 5 presents some verified experiments.
Section 6 concludes the paper.

2. FFT-based diffraction basis function calculation

For the classical phase retrieval algorithm, the two-dimensional Fourier transform, which is
implemented by using the FFT algorithm, is very commonly used to model the numerical
diffractive propagations. For the proposed mPDPR method, the FFT-based basis function, which
does not repeat the calculation for every iteration, instead of the sampling grids is applied to
represent the wave propagation computation. Here we introduce two-step diffraction theory
combining with polynomials to construct the FFT-based basis function. This model has more
flexibility in selecting the grids both in the pupil and the intensity plane.
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2.1. Diffraction calculation model

The FFT operator imposes a fixed relationship between the sample spacing in its input and
output domains based on the integer transform length. Generally, the array length and sampling
relationship can be controlled coarsely through zero-padding. For the optical propagation
modeled by using the FFT algorithm, there is a fixed sampled relationship, which is determined
using a calculated sampling parameter, Q, given by

AF [#
d,

Q= ey
where A is the wavelength of illumination, F-number is F/# = L/D, L is the propagation distance
from the desired plane to the detector plane, D is the testing aperture, and d,, is the detector pixel
pitch. O > 2 is the measure that the intensity pattern is adequately sampled. In our previous
work [12], the under-sampled problem is discussed.

However, for the optical testing system with large Q, this would suffer from several disadvantages:
firstly, the zero-padding for FFT would waste a lot of computing resources; secondly, the aliasing
of discrete circular apertures would undermine the accuracy for calculating diffraction from
geometrical shapes [19]; thirdly, for optical propagation represented by FFT operator, Q is not a
continuous quantity which could undermine the matching accuracy between the numerical model
and the real testing system [20].

In our model, the two-step Fresnel operator [21], which achieves the precise matching between
the numerical propagation model and the real measurement system by establishing an intermediate
plane, is applied to diffraction calculation. The addition of defocus [22] can improve performance
of the phase retrieval method, so the intensity is collected at a properly defocus position. For
the wavefront measurement system, the desired field P(x, y) is numerically propagated to the k™
measured plane Uy (u, v)

2n 1 —
Ur(u,v) = exp [—i—ﬂ—m(u2 +17)| x
A mzg
s und 2 2 (2)
| exp [lm(Ddl)z(x +y9)

i
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where 2 = -1, F and ! represent FFT and inverse FFT, f is focal length, d; and d> are the
pixel pitch of desired pupil and detector, respectively, m = d,/d;. For convenience, Eq. (2) is
abbreviated as

Ui(u,v) = 2F{P(x,y), 2k} (3)

2.2. FFT-based diffraction basis function calculation for phase retrieval

Here, the diffraction basis function computation method to replace the sampling grid is proposed,
which is not only suitable for various shaped pupils but also can be applicable to representing the
complex field (including phase and amplitude) based on numerical orthonormal polynomials and
the two-step Fresnel propagation model. The orthogonal property of polynomial implies that
no redundant information overlapped between the coefficients of the polynomial, which would
reduce the amount of the polynomials for retrieving the wavefront [23]. Therefore, in this paper,
the numerical orthogonal polynomials are selected to represent the complex field of the desired
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plane. The under-tested wavefront P(x, y) can be modeled via polynomials {Z/(x, y)}

P(x,y) = Pr(x,y) + iPi(x,y)

j=J
= Z (arfe + i(r;)Zf(x, y)
=1 4)

j=J ..
= > BZ ),
j=1

where Pg(x,y) and Pj(x,y) represent the real part and imaginary part of the under-tested
wavefront, respectively. a';e and a'; represent the real part and imaginary part of fitted coefficients,

respectively. Finally, #/ = o}, + ¢} is a complex value.

In the numerical experiments, when the complex field is represented by polynomials, the fitting
accuracy of amplitude is far lower than that of phase, as shown in Fig. 1. The representation error
of amplitude directly deduces the inaccurate amplitude reconstruction for phase retrieval. The
reason for the representation error is analyzed at first. For the desired wavefront, the amplitude
|P(x,y)| and phase 8(x, y) are calculated with

IP(x,y)| = \/(Pr)> + (P)?, )

6(x,y) = arctan(P;/Pg).

From Eq. (5), we can know that the amplitude is the root of the sum of squares of real and
imaginary parts for the complex field, while the phase is the arctan value of the ratio of the
real and imaginary parts for the complex field. For a complex value grid, the polynomials
have equal representation ability for the real part Pr(x,y) and the imagery part P;(x,y) of the
complex wavefront. When the imaginary part and the real part are not fitted properly, it has
the greatest influence on the amplitude, but almost no influence on the phase. For example,
if the weight factor which represents the fitting accuracy is 0.99, phase is calculated with 6 =

arctan(0.99P;/0.99P) = arctan(P;/Pg), while the amplitude is |P| = \/(0.99PR)2 +(0.99P;)% =

0.994/(Pr)* + (P;)*. It is equivalent to multiplying by a weight factor on the imaginary part
and the real part, which is canceled when the phase is calculated. Therefore, the representation
accuracy of the phase would hardly be affected. The numerical simulation is shown in Fig. 1.
Fortunately, the surface of the optical element is only related to the phase but not to the amplitude,
so the fitting error would hardly affect the surface measurement accuracy.

Here, Zernike polynomials {Z'} [24] are utilized to determine orthonormal polynomials
{7/} suitable for the generally shaped pupil. It is worth noting that other polynomials such as
Q-polynomials [25], Legendre polynomials and Chebyshev polynomials [26] can also be used to
calculate the orthonormal polynomials. The wavefront P(x,y) can be modeled via numerical
orthonormal polynomials as

J
P(x,y) = Y BZ(x.), (©)
j=1

where J is the number of polynomials, {f/} are the complex value coefficients. According to
Fourier optics theory [27], the complex amplitudes can be linearly superimposed in coherent
optical systems. Therefore, the diffraction integral {1/} of {Z'} superposed with weight {8} is
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Fig. 1. The fitting results for complex value via polynomials. (al) and (a2) are fitted phase
and amplitude, respectively; (bl) and (b2) are truth phase and amplitude, respectively. The
residual RMSE is 0.0081 A for phase, while that is 0.0817 for amplitude.

identical to the diffraction integral Ui(u, v) of P(x,y). The Uy(u, v) can be expressed as

Ur=1 [PQFZxy).z)] (B=1 [Pw)" B -

= CiB,

where Uy is the one-dimensional vector of Ux(u, v), B is the set of {#/}, P() denotes extracted
valuable basis function grid, [| denotes transformation to a one-dimensional vector and Cy

represents the set of diffraction basis functions.

cco 1

mo\l'\ng

Fig. 2. Experimental configuration for wavefront measurement. The collimated beam
emitted from a ZYGO interferometer illuminates the plate (sample). After focusing the
beam, the diffraction intensities are collected at different defocus positions. The intensity
image in the blue box denotes the extracted valuable grid. Every diffraction basis function is
also extracted valuable grid, correspondingly.
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3. Non-propagation phase diverse phase retrieval algorithm

After calculating the FFT-based basis function, the mPDPR, which is the nonlinear optimization
phase diverse phase retrieval without wave propagation iteration, is performed. The optical
testing system is shown in Fig. 2. The nonlinear optimization process can be expressed for
optimizing error metric Ej by estimating 8

1/2
ﬁnd,BeminZ(Ek : (Zsk ‘[’;(_lc’v;Blr) )’ (8)
k

where Sy is the weighting function used to discard the effect of bad or saturated detector pixels
and the pixels with the poor signal-to-noise ratio (SNR) for the k™" measured intensity.

For classical gradient-search model-based optimization algorithm, a pair of propagation
operators are used to calculate gradient [3,7]. The basic gradient optimization method is
used to test the proposed algorithm, the performance of the algorithm would be further
improved via the advanced gradient optimization method [28]. The forward propagation
can be represented via Eq. (7), while the inverse forward propagation is not expressed. The
coefficient gradient is supposed as dE;/dB, according to Eq. (3) and Eq. (31) in Ref. 7,

0E/0B*C) = (|Ckﬂ| - \/Ijk) arg(CyB) (“ = ” denotes forking product), the gradient is calculated

as
‘Z—‘;" =T, (@E - \/Iik) arg(Cip). )

Considering that C; may not be a square matrix, here, the pseudo-inverse matrix T of Cy, is

calculated with
T = (CLCY)™'C} (10

As shown in Eq. (9), for every gradient solution, T and Cj are constant at the distance zx
without repeating calculation. Therefore, there is only a matrix formulation without a pair of
propagation operations. The computational complexity is sharply decreased.

The proposed mPDPR algorithm is summarized in Fig. 3. Before the mPDPR is executed to
measure wavefront error, the preparatory work needs to be done:

(1) According to the shape of the pupil, numerical orthonormal polynomials {Z'} are calculated;

(2) Diffraction integral {1}, is estimated for each polynomial {Z#/}. The valuable matrix
256 x 256 is extracted from the diffraction integral with 512 x 512 dimensions.

(3) After transforming uﬁ( into a one-dimensional vector, the basis function matrix Cj and
gradient kernel matrix T}, are calculated via the diffraction integral {1 };.

The box on the right of Fig. 3 lists the specific calculation process for mPDPR, and the n"
iteration can be carried out as follows:

(1) Calculate corresponding gradient function D,, for k" error metric Ej using Eq. (9).
(2) Update estimated coefficients with
By =By + huDy, (11)
where h, is the step size.

(3) The new estimated wavefront in the k”* plane is specified by

Upi1k = CiB,,. (12)
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Fig. 3. Flow chart of the reconstruction process. The numerical orthogonal polynomials
suitable for the irregular pupil is calculated at first. Then the FFT-based basis function
is calculated via two-step Fresnel diffraction. The valuable dimensions diffraction basis
function grid is extracted, and the Cy and T}, is calculated. Using Eq. (9), we can calculate
the gradient of polynomial coefficient. For the mPDPR method, the iterative sequence
is unordered (such as plane: 1 - 3 - 2 - 1 — 2 — 3...) to improve the speed
of convergence. Finally, the wavefront is fitted by using estimated coefficients g with
polynomials {Z/}.

During the whole iterative process, the applied sequence of the intensity plane is unordered to
provide better nonredundant information for intensity distributions. The convergence speed of
the algorithm is improved via the ordered iterative phase retrieval methods. The procedure is
iteratively repeated until the “stopping criterion” is satisfied.

4. Simulations
4.1.  Applicability of mPDPR method for various shaped pupils

First, the numerical simulations for various shaped wavefront reconstructions are done to prove
the applicability of the mPDPR method. The first 36 terms Q-polynomials with weighted
coefficients are composed to construct wavefront with differently shaped mask. The first 400
numerical orthogonal polynomials for mPDPR are used to retrieve the complex wavefront. The
relationship between the retrieved residual RMSE and the number of polynomials is analyzed.
The retrieved results are shown in Fig. 4.

As shown in Fig. 4, the proposed mPDPR algorithm is suitable for various shaped wavefront
reconstructions. Besides, the phase, which is directly related to the optical surface error, is in
good agreement with the ground truth, while the accuracy of reconstructed amplitude is lower
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Fig. 4. The retrieved wavefront results (including phase and amplitude) with differently
shaped pupils. (al) ~ (d1) are the wavefront with hexagon mask; (a2) ~ (d2) are the
wavefront with square mask; (a3) ~ (d3) are the wavefront with square aperture mask. The
number in the lower right corner of every subfigure is the residual RMSE value.

than that of the phase. It is also proved that the inaccuracy of amplitude fitting would hardly
affect the accuracy of phase (surface error) measurement. Next, the number of orthogonal
polynomials that is actually necessary for the wavefront reconstruction is analyzed by establishing
the relationship between the residual RMSE and the number of polynomials. The SNRs for all
diffraction intensities are 40dB. The RMSE of the reconstructed wavefront is not equal to the
difference between it and the real value due to the influence of noise. As shown in Fig. 5, the
RMSE curve has fluctuated when the number of used polynomials is fewer. The RMSE is tended
to stabilize when the number of orthogonal polynomials is about 400.

4.2. Comparisons of mPDPR and conventional algorithms

To demonstrate its convergence speed, the proposed mPDPR method is numerically tested for
the hexagon wavefront. The aberrations represented by the first 36 terms Q-type polynomials
of optical elements is the ground truth. All experimental data and code are implemented on
MATLAB 2017b using a desktop PC with an NVIDIA GeForce GTX 1060. The first 160 Zernike
polynomials which are orthogonalized are applied to calculate the diffraction basis functions.
The SNRs for all diffraction intensities are 30dB. The retrieved surface (relating to the phase)
results via mPDPR and modified multiple-image Gerchberg-Saxton (Multi-GS) algorithms [29]
are shown in Fig. 6. The mPDPR algorithm can retrieve the phase precisely, which well agrees
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Fig. 5. The composite plot of RMSE for different numbers of polynomials. (a) is the RMSE
curve for hexagon wavefront reconstruction with different numbers of polynomials; (b) is
the RMSE curve for square wavefront reconstruction with different numbers of polynomials;
(c) is the RMSE curve for square aperture wavefront reconstruction with different numbers

of polynomials.

with the truth values. Considering that the surface of the under-tested object is directly related to
the phase of the wavefront rather than the amplitude, there is only a comparison between the
retrieved values and truth values as shown in Fig. 7.

Multi-GS mPDPR Ground Truth

1
-1
Fig. 6. Numerical demonstration wavefront measurement using mPDPR and Multi-GS

algorithm.

Convergence speed comparison for different method
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Fig. 7. The composite plot of phase RMSE for different algorithms. We can see that the
mPDPR has a far faster convergence speed and the accuracy of mPDPR for 300 iterations
(RMSE 0.0098 1) is higher than Multi-GS for 1000 iterations (0.0123 X).

As shown in Fig. 7, we can know that the far faster convergence speed for the wavefront
reconstruction is realized by using the mPDPR method. The costing time of 500 times iteration for
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the mPDPR is only 1.78s, while Multi-GS needs 25.37s. Besides, when the unordered iteration
is introduced, the reconstruction speed is far faster than the traditional Multi-GS algorithm. The
RMSE for mPDPR is 0.0098 A when the iterative number is 300 times, while the Multi-GS is
0.0123 A when the iterative number is 1000 times. Monte Carlo simulations are further performed
to validate the effectiveness of the proposed method. Two different noise levels (25dB and
35dB) are considered, respectively. The residual RMSE and costing time for 500 iterations
are compared with Multi-GS by using box-plot in Fig. 8. The compared results show that the
proposed algorithm has comparable measurement accuracy with Multi-GS while the costing time
is sharply decreased.

Accuracy comparison Costing time comparison
0.04 35
@, 7 (b)
1
0.03 ! | 8 —
2 T T z 21
£0.02 : ' £
E E T ! 14
0.01 | Q H
I 7
1
+ 0
mPDPR  Multi-GS mPDPR  Multi-GS mPDPR Multi-GS

-25 -25 -35 -35

Fig. 8. Summary of 50 numerical experiments for wavefront reconstruction via different
algorithms using box-plot. (a) shows RMSEs versus different algorithms. Suffix ‘-25°
represents that the SNR of diffraction intensity is 25 dB; suffix ‘=35’ represents that the
SNR of diffraction intensity is 35 dB. (b) shows the costing times for different algorithms.

5. Experiments

We further perform two real experiments to demonstrate the effectiveness of the proposed method.
In these experiments, the wavelength A = 632.8nm, pixel size 4.4 X 4.4um, and the focal length
of convergence lens 1079.41mm. The first sample is testing wavefront with aperture diameter
D = 22.9mm (the sampling parameter, Q, is 6.78). For intensity sampling 512 X 512, the
effective pupil sampling is 75 x 75 for FFT-based propagation. In other words, if the effective
pupil sampling is 512 x 512, the dimensions of the grid which is applied to numerical propagation
are 3471 x 3471, which leads to a significant computational burden for the classical Multi-GS
algorithm. The first 300 terms orthogonal Zernike polynomials are applied to calculate the
diffraction basis functions, correspondingly. The Multi-GS and model-based phase retrieval with
Zernike polynomials (Zernike-PR) [10] algorithms are introduced based on the two-step Fresnel
propagation. The retrieved results are fitted with modeled using a superposition of 300 standard
Zernike polynomials. The desired plane sampling is 512 X 512 for mPDPR and Zernike-PR
algorithms. Figure 9 shows the reconstruction results with different methods.

The summary of RMSE and costing time for different algorithms are shown in Table 1. The
accuracy of the proposed mPDPR algorithm is close to that of other algorithms. For costing
time, the mPDPR, which only needs 2.71s, has an enormous advantage compared with other
algorithms. If the Multi-GS with FFT operator rather than two-step Fresnel operator, its costing
time is 18.37s. Then the number of orthogonal polynomials that is actually necessary for the
circle wavefront reconstruction is analyzed by establishing the relationship between the residual
RMSE and the number of polynomials. The residual RMSE for different numbers of polynomials
is plotted in Fig. 10. When the number of polynomials is more than 280, the residual RMSE is
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Fig. 9. Experimental results for different phase retrieval algorithms. (al) ~ (c1) are retrieved
phases via Multi-GS, Zernike-PR and mPDPR algorithms, respectively; (a2) ~ (c2) are
residual errors for (al) ~ (cl), correspondingly; (d) is the ZYGO testing result.

hardly reduced. The convergence tendency of the RMSE is similar to the numerical experiment
shown in Fig. 5.

0.06

RMSE

0.03

100 200 300 400
The number of polynomials

Fig. 10. The curve of RMSE vs different the number of polynomials for circle wavefront.
When the number of polynomials is more than 280, it is sufficient for wavefront reconstruction.

Table 1. Summary of RMSE and costing time for different algorithms

Multi-GS Zernike-PR mPDPR
RMSE(L) 0.0251 0.0241 0.0247
Times(s) 27.28 74.04 2.71

For the second experiment, the wavefront of the light emitted from the ZYGO interferometer
is measured. A square mask with aperture diameter D = 70mm is placed near the interferometer.
The retrieved wavefronts via Multi-GS and mPDPR algorithms are shown in Figs. 11(a) and
11(b). The first 200 terms of Zernike polynomials are orthogonalized to calculate diffraction
basis functions. The first 36 estimated coefficients of numerical orthogonalized polynomials are
compared in Fig. 11(c). This experiment shows the effectiveness of the mPDPR algorithm for
irregular pupil wavefront reconstruction. The costing time for 500 times iteration for Multi-GS
is 24.21s, while the mPDPR only needs 1.84s. Then the number of orthogonal polynomials
that is actually necessary for the square wavefront reconstruction is analyzed by establishing the
relationship between the residual RMSE and the number of polynomials. The residual RMSE for
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different numbers of polynomials is plotted in Fig. 12. When the number of polynomials is about
200, the residual RMSE is tended to stabilize.

Multi-GS mPDPR

HE

Retrieved coefficient for different method

-Multi-GS
0.05 ~mPDPR

Coefficient value

5 10 15 20 25 30 35 40
Coefficient index

Fig. 11. Experimental results for different phase retrieval algorithms. (a) is retrieved phase
via Multi-GS algorithm. (b) is retrieved phase via mPDPR. (c) The composite plot of the
coeflicient value of wavefront for different algorithms.

0.04

< RMSE

0.02 . :
100 200 300
The number of polynomials

Fig. 12. The curve of RMS errors vs different the number of polynomials for square
wavefront. When the number of polynomials is about 200, it is sufficient for wavefront
reconstruction.

6. Discussion and conclusion

In summary, this paper establishes a framework to greatly improve the efficiency of phase retrieval
wavefront measurement by converting FFT-based diffraction propagation to matrix operation.
The main novelty of the proposed method is summarized as follows: firstly, the proposed method
can be applied to reconstruct the arbitrarily shaped pupils; secondly, the proposed method is
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far faster than existing methods. We realize the speed-up of the proposed algorithm through
two aspects: firstly, with constant kernel matrix without repeating calculation for each iteration,
using matrix operation instead of repeating a pair of wave propagations for every iteration
greatly improve the measurement speed; secondly, small dimensions grid for gradient calculation
matrix and diffraction intensity is achieved via solving the coefficients of polynomial instead
of point-by-point recovery. Two-step Fresnel propagation offers a more flexible sampling for
the desired pupil. The measured accuracy of the proposed method is comparable to that of the
traditional method, while the time costing and memory costing have been greatly reduced. It is
worth mentioning that the proposed method is completely suitable for wavefront detection. To
improve the robustness and accuracy of the algorithm, three intensity patterns are used to realize
wavefront measurement. This method is adaptive to arbitrary pupil wavefront retrieval based on
numerical orthogonal polynomials and especially suitable for irregular shape optical element
wavefront and freeform surface measurement.

Besides, we proposed a new PDPR method to measure wavefront, there are still some
interesting issues to think further. In this paper, the fixed polynomial terms are chosen to
represent the wavefront errors for aberrations measurement. We discuss the influence of the
number of polynomials on the measurement accuracy for all experimental data in this paper.
For the measurement of low-frequency aberrations, the proposed method with those number of
diffraction basis functions is sufficient. When the proposed algorithm is further applied to the
mid- and high- spatial frequency wavefront error measurement, the relationship between the
number of diffraction basis functions and the spatial frequency band of wavefront needs to be
further explored. In the future, the compressed sensing [30] approaches would be explored to
improve the flexibility of the algorithm for choosing the number of polynomial basis elements.
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