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A B S T R A C T

The multiple-input multiple-output (MIMO) technique for free-space optical (FSO) system was initially designed
for combating fading events in the diversity mode. However, as people demand for higher throughput, extra
freedom can be obtained from the multiple apertures in the spatial multiplexing mode, where the system
transmits independent parallel data streams over multiple apertures to increase data rate. In this paper, we
study a MIMO FSO system in the multiplexing mode. By maximizing long-term benefits on the average capacity
within limited time slots, we propose a power allocation algorithm based on the reinforcement learning
(RL) method. Our RL algorithm utilizes an actor–critic structure, where both action space and state space
are continuous. We also add the constraints on the peak power and total power. A novel reward function
is designed with a punishment item for remaining power. The proposed RL algorithm can achieve a better
performance than the existing benchmarks.
. Introduction

Recently, free-space optical (FSO) communications have attracted
reat attention as a promising solution for the ‘‘last mile" problem [1–
]. Scintillation is the major impairment, which is caused by variations
f the index of refraction due to inhomogeneities in temperature and
ressure changes [4]. Besides, the system performance also suffers from
he loss brought by pointing errors [5]. To fight against the fading
henomena, multiple-input multiple-output (MIMO) techniques have
een studied, which were initially proposed for the in the context of
F (radio frequency) communications. Both diversity gain and coding
ain can be achieved by transmitting diverse replicas of information
ymbols to the receivers with the help of multiple transceivers [6,7].
owever, the diversity scheme sacrifices the freedom gain of multiple
pertures. With the increasing demand for data rates, the multiplexing
cheme can be considered as an alternative.

Different from the diversity scheme, parallel data streams are sent
t different transmitters in the spatial multiplexing scheme, which
nhances the system throughput. In Ref. [8], an adaptive MIMO FSO
ystem with dynamic adaptation between spatial modes of operation
as proposed, where the optional modes consisted of diversity mode,
ultiplexing mode and hybrid mode. The performance of multiplexing
IMO FSO links was analyzed in Ref. [9], where both the trans-
itters and receivers were placed symmetrically on a ring with a

pecified radius. In addition to the multiplexing mode in the MIMO
ystem, several other techniques have also been proposed to increase

∗ Corresponding author.
E-mail address: yt_li@ciomp.ac.cn (Y. Li).

the data rate, such as transmitting multiple independent data channels
simultaneously by using wavelength division multiplexing [10], and
orbital angular momentum multiplexing [11] and polarization multi-
plexing [12]. According to the literature above [8–12], there are several
parallel channels in the multiplexing mode, whose number is equal to
the degrees of freedom.

In the system with multiple transmitters, power allocation (PA) is
a hot topic worth studying. According to Ref. [13], the conventional
allocation method in RF channels cannot be applied directly to the
optical channels. Due to the quasi-static nature of FSO channels, the
available channel state information (CSI) becomes problematic. In this
sequel, they can be used to design adaptive transmission schemes for
significant performance improvements. To the best of the authors’
knowledge, the purposes of PA can be summarized into the following
three main categories. The first goal is to maximize the capacity or sum
rate. Ref. [14] considered the clipping noise of the photon-level detec-
tor in the direct current-biased optical orthogonal frequency division
multiplexing (DCO-OFDM) system and asymmetrically clipped optical
OFDM (ACO-OFDM) system. In Ref. [12], a joint load balancing (LB)
and power allocation scheme has been discussed for a hybrid visible
light communication (VLC) and RF system consisting of one RF access
point and multiple VLC access points. In Ref. [15], optimal power
allocation was studied in the beam domain for a MIMO FSO system
through a transmit lens. The second aim is to improve transmission reli-
ability. Ref. [16] tried to minimize a tight upper-bound on the bit error
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rate (BER) by an optimal power allocation strategy in the cooperative
FSO system. Minimizing outage probability was the common task for
both Ref. [17] and Ref. [18]. In Ref. [19], the spatial repetition code
(RC) with a diversity-optimized power allocation achieved the greatest
diversity gain. The third target is to save power consumption. Ref. [20]
formulated the adaptive algorithms as optimization problems of spec-
tral efficiency and average power consumption at a targeted value
of outage probability under peak power constraints, while Ref. [18]
considered a multiuser mixed RF/FSO relay networks. In addition to
these three main purposes for PA, there are other investigated issues,
including but not limited to fairness [21,22], security [18].

In terms of the solutions, the PA problems can be viewed as multiple
objective optimization problems (MOOPs), which are mainly presented
by the issues of programming. There are also inequality constraints
in these optimization problems. Typical constraints are average power
constraints [14–19,21,23,24], peak power constraints [15,20,25,26],
and quality-of service (QoS) constraints [12,26]. To solve these opti-
mization problems with kinds of constraints, one popular solution is the
Lagrangian multiplier with Karush–Kuhn–Tucker (KKT) conditions [12,
13,15,16,22,27]. In Ref. [21], the PA problem was classified as integer
linear programming (ILP), which was further solved by the exhaustive
search (ES) method. Ref. [17] obtained the PA solution with the help
of geometric programming (GP) method, which treated the PA problem
as a polynomial optimization problem. Another popular way considers
the PA problem as a mixed integer non-linear programming (MINLP).
The main solutions of MINLP are Heuristic solution [23], Lagrangian
dual decomposition and minimum weight matching techniques [26],
genetic algorithm (GA) [14], particle swarm optimization (PSO) [28],
and cross-entropy optimization (CEO) [24].

Recently, machine learning approaches in communication systems
are popular issues [29–31]. Among them, reinforcement learning
(RL) [32] has been advocated as a powerful tool to deal with the
dynamic resource allocation problems. In RL algorithms, the agent
chooses the best action according to the corresponding state. Q-learning
is a mature tool to deal with the discrete states and actions, since
it relies on the look-up table approach to maximize action value
function [33]. In order to handle the cases of particularly large state
spaces, the Deep Q-learning network (DQN) was born by adopting a
eep neural network to approximate the rewards [34]. To confront
ith the challenge of continuous action space, the deep deterministic
olicy gradient (DDPG) approaches were further proposed, which used
n actor–critic-like architecture that had the advantage of handling
igh-dimensional and continuous action spaces [35–37]. In this paper,
t is assumed that there are several independent channels between
he transmitters and the receivers in an FSO system (i.e. MIMO with
ultiplexing mode). Each state contains the channel status, slot number

nd remaining energy. The action space represents the power allocated
or each available channel. That is to say, either the state space or the
ction space is continuous. Our purpose is to maximize the capacity in
imited time slots, where there are constraints on both average power
nd the peak power. These constraints may be reasonable assumptions,
or example in the satellite to ground link, where total transmitted
nergy is restricted by the received solar power. For the constraint on
he average power with fixed time slots (i.e. total energy is determined),
higher sum rate through these slots (i.e. long rewards) may be gotten

f we allocate more power on the slots with better channel conditions.
t is a pity that we cannot predict the future channel status. Different
rom the optimization solutions above, the optimization target of RL
lgorithms are long-term rewards instead of current rewards, which is
mportant for the time-varying systems. In other words, the traditional
ptimization methods only focus on the instantaneous maximum rate,
hich ignores the sum rate in the whole slots. Therefore, this paper
tilizes the DDPG algorithm to solve the optimization problem with
onstraints, whose main contributions of this paper are illustrated as
ollows.

■ We propose a DDPG-based algorithm to cope with the PA prob-

em in the MIMO FSO system with multiplexing mode. This proposed

2

Fig. 1. The system structure of a MIMO FSO system with multiplexing mode.

algorithm can well adapt the power for each channel in every time
slot in the sense of the average capacity maximum, where the average
power and peak power are restricted with limited time slots.

■ We consider the greater long-term rewards rather than a greater
nstantaneous reward. In this sequel, more power will be allocated, if
he agent thinks it has a good channel gain. Besides, the power will be
tored until the better channels are detected.

■ A novel reward function is designed, which has a punishment
tem on unused power. It avoids the extreme situation that the power
s not fully utilized when the agent is not pleased with the channels in
ll time slots.

The structure of this paper is as follows. We introduce the system
odel in Section 2, as well as the formulating the problem of power

llocation. In Section 3, we describe the structure of DDPG, our novel
eward function, and parameter learning process in Section 3.1, Sec-
ion 3.2 and Section 3.3, respectively. The simulation results are given
n Section 4. In the end, conclusions are drawn in Section 5.

. System model and problem formulation

In this paper, we consider a MIMO FSO system, as shown in Fig. 1.
t is assumed that there are 𝑀 transmitters and 𝑁 receivers. According
o Ref. [8], the maximum number of degrees of freedom is defined by
in [𝑀,𝑁]. Without loss of generality, we assume that 𝑀 is smaller
r equal to 𝑁 , (i.e. 𝑀 ≤ 𝑁). In the spatial multiplexing mode, the
ystem transmits independent parallel data streams over 𝑀 apertures
o increase data rate. That is to say, the channel matrix 𝐇 ∈ R𝑁×𝑀

eturns to 𝐇 = diag
{

ℎ1, ℎ2,… , ℎ𝑀
}

. Note that any arbitrary ℎ𝑗 denotes
he channel gain on the amplitude, while the square item |ℎ𝑗 |

2 is the
channel power gain depicting the optical irradiance. Considering both
the turbulence and pointing errors, the distribution of the channel
power gain ℎ2 has the form of Meijer’ G function [5].

𝑓ℎ2
(

ℎ2
)

=
𝛼𝛽𝜌2

𝐴0𝛤 (𝛼)𝛤 (𝛽)

⋅𝐆3,0
1,3

(

𝛼𝛽ℎ2

𝐴0
∣ 𝜌2

𝜌2 − 1, 𝛼 − 1, 𝛽 − 1

) (1)

where 𝛼 and 𝛽 represent the effective number of large and small scale
turbulent eddies, respectively. 𝛤 (∙) is the Gamma function. 𝐴0 denotes
he maximum fraction of the collected power in the receiving lens.
= 𝑤𝑧𝑒𝑞∕2𝜎𝑠 represents the ratio between the equivalent beam radius
𝑧𝑒𝑞 and standard deviation 𝜎𝑠 of the pointing errors.

Besides the channel fluctuation, the path loss 𝐿 should also be
onsidered, which can be construed as a constant loss on the receiving
ignal-to-noise ratio (SNR). The path loss 𝐿 with distance 𝑑, which can
e calculated in Eq. (2) [38].

=
𝐷2

𝑟𝑥
(

𝜃𝑡𝑥𝑑
)2

𝑒−𝜏𝑑 (2)

where 𝐷𝑟𝑥 and 𝜃𝑡𝑥 stand for the receiving lens diameter and the beam
divergence angle. 𝜏 represents the atmospheric attenuation coefficient
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given by 𝜏 = (3.91∕)(𝜆∕550)−𝑞 , where  denotes the visibility. 𝑞 is a
parameter related to the visibility expressed as [8].

𝑞 =
{

0.5851∕3  < 6 km
1.3 6 km <  < 50 km

(3)

For any arbitrary 𝑘th time slot, the transmitted symbol can be
illustrated as 𝐱𝑘 =

[

𝑥𝑘1 , 𝑥
𝑘
2 ,… , 𝑥𝑘𝑀

]

, where the subscript denotes the
corresponding parallel channels. For ease of description, all vectors in
this paper are column vectors. We may define corresponding power
allocation vector 𝐩𝑘 =

[

𝑃 𝑘
1 , 𝑃

𝑘
2 ,… , 𝑃 𝑘

𝑀
]

. That is to say, the 𝑖th (1 ≤ 𝑗 ≤
𝑀) symbol 𝑥𝑘𝑗 has the power allocated 𝑃 𝑘

𝑗 .
Therefore, the channel capacity can be calculated as Eq. (4) [39].

𝑘(𝐇𝑘) = log

[

|

|

|

|

|

𝐈𝑁 +
𝛾0𝜂𝐿
𝑁0𝑀2

𝐇𝑘𝑅𝑥𝑥𝐇
𝐓
𝑘

|

|

|

|

|

]

=
𝑀
∑

𝑗=1
log

(

1 + 𝛾𝑘𝑗
)

=
𝑀
∑

𝑗=1
log

[

1 +
𝜂𝐿𝑃 𝑘

𝑗 ⋅ (ℎ𝑘𝑗 )
2

𝑁0

] (4)

where 𝑅𝑥𝑥 denotes the covariance matrix of 𝐏𝑘. 𝛾𝑘𝑗 represents the SNR
of the equivalent electrical signal of the 𝑗th parallel channel at the 𝑘th
slot. 1𝜂 denotes the electro-optical conversion constant. 𝑁0 [W/Hz] is
the value of the double-sided power spectral density of the additive
white Gaussian noise (AWGN). Besides, 𝐇𝑘 is the equivalent channel
gains at the 𝑘th time slot, whose element ℎ𝑘𝑗 stands for channel gain
for the 𝑗th parallel channel at the 𝑘th slot. ∙𝐓 stands for the transpose
operation.

In this sequel, the average capacity of 𝐿𝑇 slots can be obtained by
Eq. (5).

̄ = 1
𝐿𝑇

𝐿𝑇
∑

𝑘=1
𝐶𝑘(𝐇𝑘) (5)

The ergodic capacity limits the upper bound of the achievable trans-
mission rate. In this paper, we are interested in the total throughput
within a given period of 𝐿𝑇 time slots, where a unit time slot is equal
to 𝑇𝑠. In other words, we are interested in maximizing the average
capacity of 𝐿𝑇 items with each item having the expression in Eq. (5),
furnished in Eq. (6).

max 1
𝐿𝑇

𝐿𝑇
∑

𝑘=1

𝑀
∑

𝑗=1
log

[

1 +
𝜂𝐿
𝑁0

𝑃 𝑘
𝑗 ⋅

(

ℎ𝑘𝑗
)2

]

(6)

subject to

0 ≤ 𝑃 𝑘
𝑗 ≤ 𝑃𝑚𝑎𝑥 (7a)

𝐿𝑇
∑

𝑘=1

𝑀
∑

𝑗=1
𝑃 𝑘
𝑗 ≤ 𝑃𝑡𝑜𝑡𝑎𝑙 (7b)

According to Eq. (7a) and (7b), this paper considers peak power
constraints and total power constraints on {𝑃 𝑘

𝑗 } in the 𝑗th channel at
the 𝑘th time slot. The peak power constraint is mainly caused by either
the limit of the optical amplifier or the eye safety concern. The total
power constraints may be a significant condition for the systems with
limited energy input, such as the situation that satellites’ energies are
restricted by the collection of solar.

Let us see the optimization problem in Eq. (6) and (7). In order to
achieve better average capacity, larger power must be allocated when
the channels are determined to be pleasant. And less or even none
power should be adopted when the channels are unfriendly. Although
the quasi-static channel makes it possible that the transmitter can
estimate all the channel gains. It is a pity that we cannot predict the
future potential channel gains (i.e. the future channel gains {ℎ𝑘𝑗 } remain

1 On the basis of Ref. [38] (page 192), the SNR has the linear term of the
ower in the coherent modulation/heterodyne detection system, while the SNR
as the square term of the power in the intensity modulation/direct detection
IM/DD) system. This paper focuses on the former case.
3

unknown). In this sequel, the suitable algorithm for PA may satisfy
these two features. On one hand, the algorithm may have the ability
to justify whether one or more channels are satisfying at the present
time slot, and allocate power to the corresponding good channels. If the
channels are not acceptable, the algorithm should save power for the
future fine channels to have a potential opportunity to get larger long-
term average capacity. On the other hand, the algorithm should avoid
extreme situations that the whole channels in all these time slots are
considered to be not large enough, and there is still remaining power
till the last time slot (i.e. the remaining power is wasted.). Thanks to
the investigation of RL, we can take actions to have a better long-term
reward in each time slot.

3. Power allocation based on RL algorithm

3.1. Architecture of the DDPG algorithm

RL can be viewed as a way for a continuous learning. An agent must
be able to sense the state of the environment to some extent and must
be able to take actions that affect the state. Fig. 2 shows the structure
of our proposed DDPG algorithm as well as the details. In the light of
Fig. 2, our algorithm plays the role of an agent with an actor–critic
architecture. After learning from its own experience, the agent has the
ability of choosing the optimal action (i.e. optimal power allocation).

The state 𝐬𝑘 of an arbitrary 𝑘th time slot includes current channel
tatus, the slot number, and the energy that remains. The slot number
an be normalized into a decimal between 0 and 1 by dividing 𝐿𝑇 .

Therefore, the state 𝐬𝑘 can be expressed as 𝐬𝑘 =
[

ℎ𝑘1 , ℎ
𝑘
2 ,… , ℎ𝑘𝑀 ,

𝑘∕𝐿𝑇 , 𝑃𝑡𝑜𝑡𝑎𝑙 −
∑𝑘−1

𝑙=1
∑

𝑗 𝑃
𝑘
𝑗

]

.2

Recall that our goal is maximizing the capacity (Eq. (6)) with the
onstraints in Eq. (7a) and (7b). The action denoting the allocated
ower 𝐚𝑘 for current 𝑀 parallel channels can be expressed in the
ector form of 𝐚𝑘 =

[

𝑃 𝑘
1 , 𝑃

𝑘
2 ,… , 𝑃 𝑘

𝑀
]

. Then the environment changes
accordingly, and returns the current reward 𝑟𝑘, which will be depicted
in Section 3.2.

The approaches of RL can be divided into three categories, which
are policy-based, the value-based, and the actor–critic methods. In
many practical cases, the number of states and actions is very large
or continuous. Using table is not applicable. In order to solve these
problems and improve the performance of RL algorithms, deep neural
networks can be used to enable agents to perceive more complex
environmental states and build more complex strategies.

Our DDPG algorithm has two main networks: (a) the critic net and
(b) the actor net, both of which can be found from the middle orange
module in Fig. 2. The former outputs the estimated value functions
while the latter directly outputs the actions. Both the critic net and
the actor net contain two sub-nets: (a) a online net and (b) a target
net, whose architectures are the same. These four neural networks are
composed of various layers, and all layers contain their corresponding
parameters. For convenience, the parameters in the actor and critic
networks are defined as 𝜽𝑎 and 𝜽𝑐 , respectively, while the parameters in
the either corresponding target network are denoted with a superscript
∙𝑡𝑎𝑟 (i.e. 𝜽𝑡𝑎𝑟𝑎 and 𝜽𝑡𝑎𝑟𝑐 ).

The actor net is trained for generating a deterministic policy instead
of the policy gradient which chooses a random action from a deter-
mined distribution, whose input and output are the state {𝐬} and action
{𝐚}, respectively. The critic net is trained to simulate the real 𝑄-table
using neural networks without the curse of dimensionality. The input
of the critic network is made up of the state 𝐬 and the corresponding
action 𝐚, while the output denotes the estimation value 𝑄𝜃 (𝐬, 𝐚) of the
true action-value function.

2 The original expression of remaining energy is 𝑇𝑠⋅𝑃𝑡𝑜𝑡𝑎𝑙 −
∑𝑘−1

𝑙=1
∑

𝑗 𝑃
𝑘
𝑗 ⋅ 𝑇𝑠.

The common coefficient 𝑇 can be omitted for brief description.
𝑠
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Fig. 2. The structure of our proposed DDPG algorithm.
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3.2. Design for the reward function

As illustrated above, the reward function is supposed to be the
expression that we want to maximize. Seeing the formulation in Eq. (6),
there is no punishment on the unused energy. Recalling that the re-
maining power is 𝑃𝑡𝑜𝑡𝑎𝑙 −

∑𝑘−1
𝑙=1

∑

𝑗 𝑃
𝑘
𝑗 , the expectation of the potential

loss E
[

𝐶𝑙𝑜𝑠𝑠
]

on the throughput is given in Eq. (8).

E
[

𝐶𝑙𝑜𝑠𝑠
]

≈ log

[

1 +
𝜂𝐿
𝑁0

(

𝑃𝑡𝑜𝑡𝑎𝑙 −
𝐿𝑇
∑

𝑘=1

∑

𝑗
𝑃 𝑘
𝑗

)

E
(

ℎ2
)

]

(8)

However, our task turns to divided the total loss in the process
(Eq. (8)) into 𝐿𝑇 rewards, each of which is corresponding to its action.
In this light, we define the reward of the 𝑘th step in Eq. (9).

𝑟𝑘 =
𝑀
∑

𝑗=1
log

[

1 +
𝜂𝐿
𝑁0

𝑃 𝑘
𝑗 ⋅

(

ℎ𝑘𝑗
)2

]

− log

[

1 +
𝜂𝐿𝜀
𝑁0

(

𝑃𝑡𝑜𝑡𝑎𝑙
𝐿𝑇

−
∑

𝑗
𝑃 𝑘
𝑗

)

E
(

ℎ2
)

] (9)

The first item of Eq. (9) denotes the reward for the instantaneous
apacity with the power allocated, while the second item represents
he punishment item on the unused energy. Note that there is a little
ifference (i.e. the positive coefficient 𝜀) between the punishment
lement of Eq. (8) and (9), which ensures the second term inside
he punishment element’s the logarithm operation to be smaller than

(i.e. 𝜂𝐿𝜀∕𝑁0

(

𝑃𝑡𝑜𝑡𝑎𝑙∕𝐿𝑇 −
∑

𝑗 𝑃
𝑘
𝑗

)

𝐸
(

ℎ2
)

<< 1). We define 𝛺𝑘 =

𝐿𝜀∕𝑁0

(

𝑃𝑡𝑜𝑡𝑎𝑙∕𝐿𝑇 −
∑

𝑗 𝑃
𝑘
𝑗

)

E
(

ℎ2
)

for math simplicity (i.e. 𝛺𝑘 << 1).
For any arbitrary 𝑘th time slot, the total reward 𝑅𝑘 without discount

is defined as 𝑅𝑘 =
∑𝐿𝑇

𝑙=𝑘 𝑟𝑙. If we add up all the 𝐿𝑇 rewards, we can
obtain that the sum (i.e. 𝑅1) has the form in Eq. (10).

𝑅1 =
𝐿𝑇
∑

𝑙=1
𝑟𝑙 =

𝐿𝑇
∑

𝑘=1

𝑀
∑

𝑗=1
log

[

1 +
𝜂𝐿
𝑁0

𝑃 𝑘
𝑗 ⋅

(

ℎ𝑘𝑗
)2

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑅𝑐𝑎 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

−
𝐿𝑇
∑

𝑘=1
log

[

1 +
𝜂𝐿𝜀
𝑁0

(

𝑃𝑡𝑜𝑡𝑎𝑙
𝐿𝑇

−
∑

𝑗
𝑃 𝑘
𝑗

)

E
(

ℎ2
)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑅𝑝𝑢 𝑝𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡 𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑛𝑒𝑟𝑔𝑦

(10)

Thanks to the second item in Eq. (9), the second term of Eq. (10) can
be approximated in to zero. In other words, the second item in Eq. (9)
guarantees the whole power can be fully utilized, which prevents the
potential loss.

Lemma 1. ∑𝐿𝑇
𝑘=1 log

(

1 +𝛺𝑘
)

can be approximated by log
(

1 +
∑𝐿𝑇

𝑘=1 𝛺𝑘

)

.

Proof. The proof process is based on the mathematical induction (MI).
The first thing is to prove that the case of 𝐿 = 2. The expression of
𝑇

4

𝑅𝑝𝑢 can be expressed as

𝑅𝑝𝑢 = log
[

1 +𝛺1 +𝛺2+𝛺1 ⋅𝛺2
] (𝑖)
≈ log

[

1 +𝛺1 +𝛺2
]

. (11)

In (𝑖), the higher order item is omitted, which is the product of two
values much less than 1 (i.e. 𝛺1 ⋅𝛺2 ≪ 𝛺1, 𝛺2).

In the second step, we may suppose that inequality is true with 𝐿𝑇=𝑡
and 𝑡 is an arbitrary integer greater than or equal to 2 (i.e. ∑𝐿𝑇 =𝑡

𝑘=1 log
(

1 +𝛺𝑘
)

= log
(

1 +
∑𝐿𝑇 =𝑡

𝑘=1 𝛺𝑘

)

).
Then, when 𝐿𝑇 = 𝑡+1, we can have this approximate expression in

Eq. (12).

𝑅𝑝𝑢=
∑𝑡+1

𝑘=1 log
(

1 +𝛺𝑘
)

≈ log
[(

1 +
∑𝑡

𝑘=1 𝛺𝑘
) (

1 +𝛺𝑡+1
)]

= log
(

1 +
∑𝑡

𝑘=1 𝛺𝑘 +𝛺𝑡+1 +𝛺𝑡+1 ⋅
∑𝑡+1

𝑘=1 𝛺𝑘

)

(𝑖𝑖)
≈ log

(

1 +
∑𝑡+1

𝑘=1 𝛺𝑘

)

(12)

Similar as (i), the higher order item 𝛺𝑡+1 ⋅
∑𝑡+1

𝑘=1 𝛺𝑘 can be omitted
in (ii). Therefore, approximation is true when 𝐿𝑇 = 𝑡+ 1. According to
mathematical induction, Lemma 1 is thus proved. ■

With the help of Lemma 1, we can get the simplification.

𝑅𝑝𝑢 =
𝐿𝑇
∑

𝑘=1
log

[

1 +𝛺𝑘
]

≈ log

[

1 +
𝐿𝑇
∑

𝑘=1
𝛺𝑘

]

= log

(

1+
E
(

ℎ2
)

𝜂𝐿𝜀
𝑁0

×

(

𝑃𝑡𝑜𝑡𝑎𝑙 −
𝐿𝑇
∑

𝑙=1

∑

𝑗
𝑃 𝑙
𝑗

)) (13)

If all the power can be run out after the 𝐿𝑇 time slots (i.e. 𝑃𝑡𝑜𝑡𝑎𝑙 −
∑𝐿𝑇

𝑘=1
∑

𝑗 𝑃
𝑘
𝑗 =0), the punishment item 𝑅𝑝𝑢 can be approximated to zero

i.e. ∑𝐿𝑇
𝑙=𝑘 𝑟𝑙 ≈ 𝑅𝑐𝑎). That is to say, the designed reward expression in

q. (9) can ensure that the entire power 𝑃𝑡𝑜𝑡𝑎𝑙 can be effectively used.

.3. Parameters’ updating process

In the proposed RL algorithm, we learn the parameters 𝜽𝑎, 𝜽𝑐 , 𝜽𝑡𝑎𝑟𝑎
nd 𝜽𝑡𝑎𝑟𝑐 jointly. In terms of the continuous action space, the actor–
ritic agent has the ability of adjusting the policy in the direction of the
radient of 𝑄𝜃 (𝐬, 𝐚). The estimated value 𝑄𝜃 (𝐬, 𝐚) influences the update
rocesses of both the actor and critic networks. Therefore, the optimal
olicy relies on the estimation of critic network. However, the greedy
olicy cannot be optimal unless the estimation of 𝑄𝜃 (𝐬, 𝐚) has become
ccurate enough. Thanks to adding noises from a sampled noise process
𝑘 ∈ R𝑀×1, the actor policy has the ability of exploration.
′
𝑘 = 𝐚𝑘 + 𝐰𝑘 = 𝜑

(

𝐬𝑘|𝜽𝑎
)

+ 𝐰𝑘 (14)

here 𝜑
(

∙|𝜽𝑎
)

denotes the function of the actor network.
After selecting the action, the environment returns the immediate

eward 𝑟𝑘. We keep tracking the agent’s previous experience in a replay
emory data set  =

{

𝑒1,… , 𝑒
||

}

with 𝑒𝑘 =
(

𝐬𝑘, 𝐚𝑘, 𝑟𝑘, 𝐬𝑘+1
)

. We

denote the number of items in a vector as |∙|. Instead of performing
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Table 1
Pseudo-code of our proposed RL algorithm for power allocation.

Input: parameters , 𝜉, 𝑁𝑚𝑏.
Output: 𝜽𝑎 and optimal action of each time slot.

1 Initialize the replay memory  of size ||.
2 Initialize the network parameters 𝜽𝑎 and 𝜽𝑐 with random weights.
3 Initialize the target networks with 𝜽𝑡𝑎𝑟

𝑎 ← 𝜽𝑎, and 𝜽𝑡𝑎𝑟
𝑐 ← 𝜽𝑐 .

4 FOR 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1, 2,… , 𝐸𝑝 DO
5 Initialize scenario and observe environment state 𝐬1.
6 FOR 𝑘 = 1, 2,… , 𝐿𝑇 DO
7 Take action 𝐚′𝑘 = 𝜑

(

𝐬𝑘|𝜽𝑎
)

+ 𝐰𝑘 with exploration.
8 Receive reward 𝑟𝑘 and observe next state 𝐬𝑘+1.
9 Store data 𝑒𝑘 =

(

𝐬𝑘 , 𝐚𝑘 , 𝑟𝑘 , 𝐬𝑘+1
)

in the experience replay .
10 IF  is full, DO
11 Sample mini-batch sets of data (𝐬̃𝑖 , 𝐚̃𝑖 , 𝑟𝑖 , 𝐬̂𝑖) (𝑖 = 1, 2,… , 𝑁𝑚𝑏) from 

randomly.
12 Update the critic of the estimated network by Eq. (16).
13 Update the actor of the estimated network by Eq. (17).
14 Update the target networks by Eq. (18).
15 END FOR
16 END FOR
17 Choose optimal action 𝐚∗𝑘 = 𝜑

(

𝐬𝑘|𝜽𝑎
)

at time slot 𝑘.

updates to the networks using transitions from the current episode, we
sample a random transition (𝐬̃, 𝐚̃, 𝑟, 𝐬̂) (or a mini-batch illustrated later)
from . We first discuss the one random transition case. Following
the actor–critic approach, we obtain the target 𝑄-value as 𝑦 = 𝑟 +
𝑄𝑡𝑎𝑟 (𝐬̂, 𝜑𝑡𝑎𝑟 (𝒔̂|𝜽𝑡𝑎𝑟𝑎

)

∣ 𝜽𝑡𝑎𝑟𝑐
)

, where 𝑄𝑡𝑎𝑟 (∙|𝜽𝑡𝑎𝑟𝑐
)

and 𝜑𝑡𝑎𝑟 (
|𝜽𝑡𝑎𝑟𝑎

)

stands for
he function of the target critic network and target actor network,
espectively. In this sequel, the loss function 𝑘

(

𝜽𝑐
)

for the critic
etwork is equal to

(

𝑦 −𝑄𝜃
(

𝐬̃, 𝐚̃ ∣ 𝜽𝑐
))2.

Now, let us consider the mini-batch case. In this case, 𝑁𝑚𝑏 samples
re taken out from  rather than 1. An arbitrary sample are assumed
o be (𝐬̃𝑖, 𝐚̃𝑖, 𝑟𝑖, 𝐬̂𝑖) with 𝑖 = 1, 2,…, 𝑁𝑚𝑏. In this sequel, the loss function
hanges into the average form 𝑘

(

𝜽𝑐
)

= 1
𝑁𝑚𝑏

∑

𝑖

(

𝑦
𝑖
−𝑄𝜃

(

𝐬̃𝑖, 𝐚̃𝑖 ∣ 𝜽𝑐
)

)2
.

With the differential operation on the loss function 𝑘
(

𝜽𝑐
)

, we can get

∇𝜽𝑐𝑡
(

𝜽𝑐
)

= 1
𝑁𝑚𝑏

∑

𝑖

[

𝑟 +𝑄tar (𝐬̂𝑖, 𝜑tar (𝐬̂𝑖 ∣ 𝜽tar𝑎
)

∣ 𝜽𝑡𝑎𝑟𝑐
)

−𝑄𝜃
(

𝐬̃𝑖, 𝐚̃𝑖 ∣ 𝜽𝑐
)]

⋅ ∇𝜽𝑐𝑄𝜃
(

𝐬̃𝑖, 𝐚̃𝑖 ∣ 𝜽𝑐
)

(15)

where ∇𝜽𝑐𝑓 (∙) represents the gradient vector of function 𝑓 (∙) with
espect to 𝜽𝑐 . By defining 𝜉 to be the learning rate, the parameters 𝜽𝑐
n critic network can be updated.

𝑐 ← 𝜽𝑐 + 𝜉 ⋅ ∇𝜽𝑐𝑡
(

𝜽𝑐
)

(16)

The update of the actor network depends on the estimation of 𝑄-
values in the critic network. Recall that the action is fed into the
input layer of the critic network. Let us consider an arbitrary experi-
ence replay (𝒔̃𝑖, 𝒂̃𝑖, 𝑟𝑖, 𝒔̂𝑖). The gradients ∇𝜽𝑐𝑄𝜃

(

𝒔̃𝑖, 𝒂̃𝑖 ∣ 𝜽𝑐
)

determine the
changes on the parameters 𝜽𝑎 in the action network. For convenience,
we simplify the gradients ∇𝒂𝑖𝑄𝜃

(

𝒔̃𝑖,𝒂𝑖 = 𝜑
(

𝒔̃𝑖,𝜽𝑎
)

∣ 𝜽𝑐
)

as ∇𝒂𝑖𝑄𝜃(𝒔̃𝑖,𝒂𝑖 ∣
𝜽𝑐 ).

Then, these gradients ∇𝒂𝑄𝜃
(

𝒔̃𝑖,𝒂𝑖 ∣ 𝜽𝑐
)

are back propagated to the
actor network. Together with the gradients ∇𝜽𝑎𝜑

(

𝒔̃𝑖|𝜽𝑎
)

, finally, the
actor network gets the actor gradients to update the parameter 𝜽𝑎,
which is illustrated as

∇𝜽𝑎𝜑 = 1
𝑁𝑚𝑏

∑

𝑖
∇𝐚𝑖𝑄𝜃

(

𝐬̃𝑖, 𝐚𝑖|𝜽𝑐
)

⋅ ∇𝜽𝑎𝜑
(

𝐬̃𝑖,𝜽𝑎
)

𝜽𝑎 ← 𝜽𝑎 + 𝜉 ⋅ ∇𝜽𝑎𝜑
(17)

Then the target networks can be updated in a soft way.
𝑡𝑎𝑟
𝑎 ← 𝜉 ⋅ 𝜽𝑎 + (1 − 𝜉) ⋅ 𝜽𝑡𝑎𝑟𝑎
𝑡𝑎𝑟
𝑐 ← 𝜉 ⋅ 𝜽𝑐 + (1 − 𝜉) ⋅ 𝜽𝑡𝑎𝑟𝑐

(18)

According to the process above, the continuous power control al-
orithm is summarized in Table 1, which maximizes Eq. (6). The
onstraints of Eq. (7b) have been guaranteed by the design of reward
5

Fig. 3. Average capacity versus training episode.

function in Eq. (9). The constraint of Eq. (7a) can be guaranteed by
adding the maximum operation max{𝑃 𝑘

𝑗 , 0} and minimum operation
in{𝑃 𝑘

𝑗 , 𝑃𝑚𝑎𝑥 }. 𝐸𝑝 stands for the total number of episode.
The total complexity of the proposed scheme is equal to the product

f the total number of time steps and the complexity of each time step.
e note that the complexity of an arbitrary time step is determined

y the calculation for the parameter updates. According to Ref. [40],
or the policy gradient-based learning algorithms, the computational
omplexity of all the parameters updates is 𝑂 (𝑚𝑛) per time step,
here 𝑚 and 𝑛 denote the action dimension and the number of policy
arameters, respectively. In the proposed actor–critic-based algorithm,
he action dimension equals 𝑀 . We denote the number of items and
he number of parameters in the proposed algorithm is |𝜽𝑎| + |𝜽𝑐 |.
hus, the approximate computational complexity at each time slot of
he proposed algorithm is 𝑂

(

𝑀 ⋅ |𝜽𝑎| +𝑀 ⋅ |𝜽𝑐 |
)

.

. Numerical results

In this section, we numerically show the performance of the pro-
osed continuous power control algorithm. During the simulation, we
ssume the parameters as follows, unless otherwise stated. The number

of parallel channels is set to be 4. The turbulent channel is modeled
ith the parameters of 𝛼 = 4.43, 𝛽 = 4.39, while the equivalent
eam radius 𝑤𝑧𝑒𝑞 and standard deviation 𝜎𝑠 of the pointing errors
re set to be 4 m and 0.1 m, respectively. In this sequel, the fading
ariance 𝜎2𝐼 is equal to 1+𝜌2

𝜌2

(

𝛼−1 + 𝛽−1 + 𝛼−1𝛽−1 + 1
1+𝜌2

)

. The electro-
optical conversion constant 𝜂 is set to be 0.9 A/W. We assume 𝑃𝑚𝑎𝑥 to
equal to 𝑃𝑡𝑜𝑡𝑎𝑙∕𝐿𝑇 . Besides, the number 𝐿𝑇 of slots is set to be 100.

During our simulation, we first generate 𝑁𝐸 channel groups. The
average channel capacity is the mean value of the 𝑁𝐸 groups, which is
set to be 10000. Each channel group can be considered as an episode
with independent 𝐿𝑇 ×𝑀 channel samples corresponding to 𝑀 parallel
channels in 𝐿𝑇 slots. In any arbitrary 𝑘th time slot, our DDPG agent
will make corresponding actions 𝐚𝑘 according to the current state 𝐬𝑘.
After these actions, our DDPG agent will calculate the current reward
𝑟𝑘 by the function of states and actions in Eq. (9). The agent can learn
from its own experience by updating the parameters (i.e. our strategy)
to maximizing the long term reward Eq. (6). Our DDPG algorithm
will never stop the training process and will continue as long as the
communication events are active [41].

In our simulation, both the actor and critic networks consist of four
layers (i.e. 1 input layer, 2 hidden layers, 1 output layer), where there
are 50 neurons for the each hidden layer. Either the actor network or
the critic network uses a fully connected layer with tanh activation
function. It is noted that we take the advantage of the feature that
tanh function ranges from [−1,1], where the negative value makes
the output action constrained to be zero under the circumstance of
unsatisfactory channel status. The actor network outputs the action
𝐚 =

[

𝑃 𝑘, 𝑃 𝑘,… , 𝑃 𝑘 ]

corresponding to the allocated power on 𝑀
𝑘 1 2 𝑀
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Fig. 4. Power allocation result by DDPG and WF with given channels.

Fig. 5. Simulation results of various fading statistics with (a) 𝜎2
𝐼 = 0.5087 and (b)

2
𝐼 = 2.0075.

arallel channels. In other words, there are 𝑀 neurons in the output
ayer of the actor network (or target actor network). The dimension
f input layer in the actor network (or target actor network) is equal
o 𝑀 + 2, due to states 𝐬𝑘 =

[

ℎ𝑘1 , ℎ
𝑘
2 ,… , ℎ𝑘𝑀 , 𝑘∕𝐿𝑇 , 𝑃𝑡𝑜𝑡𝑎𝑙 −

∑𝑘−1
𝑙=1

∑

𝑗 𝑃
𝑘
𝑗

]

.
The role of the critic network (or the target critic network) is to
estimate the action-state value function 𝑄𝜃 (𝐬, 𝐚). In this sequel, the
number of neurons in the input and output layers are equal to 2𝑀 + 2
and 1, respectively. The learning rate is set to be 10−4. During the
training process, the mini-batch size 𝑁𝑚𝑏 is chosen to be 32. All the
simulation results are obtained based on the deep learning framework
in TensorFlow 1.2.1 of Python 3.6.

The performance of proposed DDPG algorithm in terms of the aver-
age capacity over the number of training episodes is given in Fig. 3. To
make a comparison, the water-filling (WF) algorithm is also depicted,
which assumes the sum power is fixed in each slot (i.e. 𝑃𝑡𝑜𝑡𝑎𝑙∕𝐿𝑇 ). There
is a sharp drop in the lavender curve around the NO.50 episode. It is
because that the size of experience replay is set to be 5000, which is
equal to the product of 50 episodes and the episode length 𝐿𝑇 . In other
words, we can interpret that the training really begins around there.
Our proposed DDPG algorithm is efficient that it catches up the WF
curve only after about 40 episodes.

In order to see the difference between our proposed algorithm
and the WF more clearly and intuitively, Fig. 4 illustrates the power
allocation results obtained by DDPG and WF respectively. In Fig. 4, 𝐿𝑇
and 𝑀 are assumed to be 10 and 2 for convenience. The subplot in the
first row show that the channel gains vary with time slots. The black
line in the second row denotes the constraint of 𝑃𝑚𝑎𝑥 from Eq. (7a). We
respectively explain the PA results when the channels are pleasant or
6

Fig. 6. Performance of the proposed DDPG algorithm versus 𝑃𝑚𝑎𝑥 in Eq. (7b).

unpleasant. The third and fourth time slots are determined to have a
better channel gains. In this sequel, the DDPG algorithm arranges more
power on them. In the seventh time slot, the two parallel channels (2nd
channel > 1st channel) are not satisfying. Our DDPG algorithm does not
allocate any power on these channels, while most power are allocated
into the 2nd channel in the WF method due to the 2nd channel is
better than the 1st one. The average capacities are equal to 0.7832 and
0.7252 by DDPG and WF method. Our DDPG makes it a larger average
capacity by considering long-term reward, achieving an enhancement
nearly 8%.

Figs. 5(a) and 5(b) illustrate the superiority of our proposed algo-
rithm with the fading variance 𝜎2𝐼 = 0.5087 (𝛼 = 4.43, 𝛽 = 4.39, 𝑤𝑧𝑒𝑞 = 4,
𝜎𝑠 = 0.1) and 𝜎2𝐼 = 2.0075 (𝛼 = 2, 𝛽 = 1, 𝑤𝑧𝑒𝑞 = 4, 𝜎𝑠 = 0.1), respectively.
t is evident that both our DDPG and the classic WF algorithm are
ignificantly better than the situation of equal allocation. The equal
llocation scheme behaves worse with larger 𝜎2𝐼 . Besides, larger 𝜎2𝐼
egrades the channel capacity under the circumstance of large SNR.
n addition, the superiority of our DDPG algorithm is more obvious
ver the traditional WF algorithm in worse channels. The reason for
his incident can be analyzed as follows. With greater variance 𝜎2𝐼 , the

channel fluctuation becomes larger, where the events of high channel
gains are more rare. In this light, the power allocated on the global
valuable slots (by our DDPG) can achieve larger channel capacity
than the local optimization of allocating power in each slot (by WF).
According to Fig. 5, the gap between our DDPG and the classic WF
gets smaller gradually. When the transmitting power is rather small,
we need to allocate the precious power carefully. Our DDPG algorithm
can keep most of the power until it judges the current channel to be
far better than others. In this light, the DDPG algorithm behaves better
than the classic water-filling algorithm. However, as the total power
increases, the power becomes less valuable that almost all the good
channels can be allocated power. That is why our DDPG algorithm
performs nearly the same as WF with higher transmitting power.

Fig. 6 shows how 𝑃𝑚𝑎𝑥 influences the capacity with fixed SNR =
3 dB. As obtained from Fig. 6, larger 𝑃𝑚𝑎𝑥 will increase the channel
capacity up to 32.58% (1.731 bit/s/Hz of WF, 2.295 bit/s/Hz of DDPG),
which owes to the reason that more power can be allocated on the
precious slots. That is to say, the constraint 𝑃𝑚𝑎𝑥 in Eq. (7a) makes
the gap between WF and equal allocation case not as significant as
the situation of a single constraint in Eq. (7b). Because we cannot
only allocate all the power to the best several channels, which exceeds
the threshold of 𝑃𝑚𝑎𝑥. It is also mentioned that the results of WF are
constant. It results from the fact that the sum power in each slot is a
constant value in the WF algorithm (i.e. ∑𝑀

𝑗=1 𝑃
𝑘
𝑗 = 𝑃𝑡𝑜𝑡𝑎𝑙∕𝐿𝑇 ), which

has nothing to do with 𝑃𝑚𝑎𝑥.
Fig. 7 furnishes the results of MIMO with larger scales. During this
simulation, the SNR is fixed as 3 dB. Recalling that the degrees of MIMO
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s

Fig. 7. Channel capacity of the DDGP, WF and equal allocation versus increasing 𝑀 .

ystem are equal to min [𝑀,𝑁]. With the more transceivers, there
will be more parallel channels. The advantage of the DDPG algorithm
(or WF algorithm) over the equal allocation algorithm becomes more
obvious, which indicates the necessity of power allocation. In addition,
the gap between our DDPG algorithm and WF algorithm stays almost
the same with increasing 𝑀 . That is to say, our DDPG algorithm can
be widely adaptable in MIMO FSO systems with spatial multiplexing
scheme.

5. Conclusion

In this paper, we consider an FSO multiplexing system with several
parallel channels. We propose an RL based algorithm to allocate power,
which aims at maximizing the average capacity with the constraints
on both peak power and total power. In our RL algorithm, the states
include current channel status, the slot number, and the energy that
remains, while the action is the allocated power in each time slot.
Different from existing RLs, we design the unique reward function with
a punishment item for remaining power, which guarantees to utilize the
total power efficiently. Our RL algorithm can avoid both the extreme
situations, where the agent runs out of power without waiting for a
best channel one radical case, while the agent greedily waits for supe-
rior channels and gives up the opportunities for previous suboptimal
channels in the other conservative case. Benefiting from the feature of
larger long-term reward, our proposed algorithm behaves better than
traditional water-filling algorithm and equal allocation scheme.
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