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Abstract
Riboflavin is an essential micronutrient for normal cellular growth and function. Lack of dietary riboflavin is associated 
with an increased risk for esophageal squamous cell carcinoma (ESCC). Previous studies have identified that the human 
riboflavin transporter SLC52A3a isoform (encoded by SLC52A3) plays a prominent role in esophageal cancer cell riboflavin 
transportation. Furthermore, SLC52A3 gene single nucleotide polymorphisms rs3746804 (T>C, L267P) and rs3746803 
(C >T, T278M) are associated with ESCC risk. However, whether SLC52A3a (p.L267P) and (p.T278M) act in riboflavin 
transportation in esophageal cancer cell remains inconclusive. Here, we constructed the full-length SLC52A3a protein fused 
to green fluorescent protein (GFP-SLC52A3a-WT and mutants L267P, T278M, and L267P/T278M). It was confirmed by 
immunofluorescence-based confocal microscopy that SLC52A3a-WT, L267P, T278M, and L267P/T278M expressed in cell 
membrane, as well as in a variety of intracellular punctate structures. The live cell confocal imaging showed that SLC52A3a-
L267P and L267P/T278M increased the intracellular trafficking of SLC52A3a in ESCC cells. Fluorescence recovery after 
photobleaching of GFP-tagged SLC52A3a meant that intracellular trafficking of SLC52A3a-L267P and L267P/T278M was 
rapid dynamics process, leading to its stronger ability to transport riboflavin. Taken together, the above results indicated 
that the rs3746804 (p.L267P) polymorphism promoted intracellular trafficking of SLC52A3a and riboflavin transportation 
in ESCC cells.
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Introduction

With the largest population in the world, China’s contribu-
tion to the global new cancer cases has exceeded 20% in 
recent years (Siegel et al. 2018). According to a cancer inci-
dence and mortality report in China, esophageal cancer (EC) 
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is the fifth leading cause of cancer deaths (Chen et al. 2017). 
Esophageal squamous cell carcinoma (ESCC) is the predom-
inant histological type of EC worldwide, which accounts 
for > 90% of all types of EC in China (Lin et al. 2013). The 
5 year overall survival rate of patients with ESCC remains 
below 14% due to the lack of effective early detection bio-
markers and early relapse warning biomarkers of ESCC 
(Lagergren and Mattsson 2012; Enzinger and Mayer 2003; 
Shimada et al. 2003). Therefore, it is imperative to develop 
efficient predictive and prognostic biomarkers of ESCC.

Previous reports indicated that lack of dietary riboflavin 
was associated with high risk of ESCC (Khan et al. 2011; 
He et al. 2009; Siassi and Ghadirian 2005; Zou et al. 2002). 
Human riboflavin transporter, SLC52A3a isoform (Gen-
Bank: AUI80409.1) encoded by the SLC52A3 gene (Long 
et al. 2018b). As the most potent transporter of riboflavin 
(Long et al. 2018b; Yao et al. 2010), SLC52A3a isoform 
is frequently upregulated in ESCC patients, compared with 
normal adjacent tissue, and SLC52A3a could be used as 
both predictive and prognostic biomarker (Long et al. 2018b; 
Jiang et al. 2014; Fujimura et al. 2010; Yamamoto et al. 
2009). Previous studies have shown that SLC52A3 gene 
SNPs rs13042395 (C>T), rs3746803 (C>T), and rs3746804 
(C>T), are associated with ESCC risk (Tan et al. 2016; Ji 
et al. 2011, 2012, 2014). Furthermore, rs13042395 located in 
the flanking region of the SLC52A3 gene is a biomarker for 
regional lymph node metastasis and relapse-free survival in 
ESCC patients (Tan et al. 2016), while the rs3746804 (T>C, 
L267P) and rs3746803 (C>T, T278M), located in the cod-
ing region of SLC52A3, have been reported to be associated 
with tumor characteristics and survival in ESCC patients 
(Tan et al. 2016; Ji et al. 2011, 2012, 2014). However, lit-
tle is known concerning the function of SLC52A3 SNPs 
rs3746804 (T>C, L267P) and rs3746803 (C>T, T278M) 
variants at the riboflavin transportation in ESCC cells. In the 
present study, we hypothesize that the SNP rs3746804 (p. 
L267P) and rs3746803 (p. T278M) affect cancer progression 
by influencing SLC52A3a dynamics and riboflavin transpor-
tation in ESCC cells.

Therefore, we focused on the identification of functional 
SLC52A3a (p. L267P) and (p. T278M) variants, their asso-
ciations with the riboflavin transportation in esophageal can-
cer cells. The 70 samples (29 cases with ESCC, matched 
noncancerous and muscle tissues) were collected and geno-
typed by whole-exon sequencing. The cellular localization 
of wild-type (WT) and mutated SLC52A3a was investigated 
by confocal immunofluorescence microscopy. Live cell 
confocal imaging was performed to observe the SLC52A3a 
intracellular trafficking and assess the riboflavin transporta-
tion capacity of WT and mutated SLC52A3a. Fluorescence 
recovery after photobleaching (FRAP) was used to evaluate 
the movement velocity of WT and mutated SLC52A3a. Gen-
otype analysis showed that rs3746804 (TT genotypes, 267L) 

and rs3746803 (TT genotypes, 278M) only existed in ESCC 
tissues, and that TT genotypes frequency of SLC52A3 gene 
SNP rs3746804 (SLC52A3a-267L) was increased in ESCC 
tissues. Further live cell confocal imaging and FRAP dem-
onstrated that rs3746804 (p.L267P) polymorphism increased 
SLC52A3a dynamics and promoted riboflavin intracellular 
trafficking in ESCC cells.

Materials and methods

SNPs identification and sequencing of the PCR 
products

Genotype analysis was performed on 70 samples resected 
from 29 patients (ESCC and matched noncancerous and 
muscle tissues) at Linzhou Cancer Hospital. All the surgi-
cal specimens were confirmed by pathological physicians, 
the noncancerous tissues were normal epithelium. Surgical 
specimens were prepared for frozen tissues. All the patients 
had not received radiotherapy or chemotherapy before opera-
tion. Information on gender, age, and histopathologic char-
acteristics was obtained from the medical records. Patients’ 
data are summarized in Supplemental Table 1. The studies 
involving human participants were reviewed and approved 
by the Ethics Committee of Shantou University Medical Col-
lege (Institutional approval number: SUMC2013XM-0002). 
The patients provided their written informed consent to par-
ticipate in this study.

Total DNA was extracted from frozen stored tissues of 
resected tumors of 29 ESCC patients (70 samples) using 
DNAzol reagent (Invitrogen) in accordance with the manu-
facturer’s instructions. Primers for PCR are listed in Table 1. 
The PCR began with an initial denaturation step where 
samples were heated at 95 °C for 2 min, followed by dena-
turation at 95 °C for 30 s, annealing at 65 °C for 30 s and 
extension at 72 °C for 30 s in each cycle for 30 cycles, then 
final extension at 72 °C for 5 min. SNPs were identified 
by directly sequencing the PCR products using ABI Prism 
2720 Sequence Detection System at the Beijing Genomic 
Center (BGI).

Human ESCC cell lines

Cell lines used in this study were previously described (Zeng 
et al. 2016; Lv et al. 2014). 1640 medium and riboflavin-
free 1640 medium were purchased from Hyclone (Thermo 
Scientific, USA). Fetal bovine serum (FBS) was obtained 
from GIBCO (Life Technologies, USA). KYSE150 cells 
were cultured in 1640 medium (defined as KYSE150 R+) 
or riboflavin-free 1640 medium (defined as KYSE150 R−) 
media (Long et al. 2018a). All media were supplemented 
with 10% FBS and antibiotics (100 units/mL of penicillin 
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and 100 μg/mL of streptomycin). All cells were maintained 
at 37 °C in a humidified 5% CO2 atmosphere.

Construction of GFP‑tagged SLC52A3a expression 
plasmids

The coding region of SLC52A3a was amplified using the 
cloning primers listed in Table 1, after which they were 
ligated into the Hind III and BamH I sites of pEGFP-C1 vec-
tor (Clontech) and verified by complete sequencing. A Fast 
Mutagenesis System Kit (TransGen Biotech, Beijing, China) 
was used to generate site-specific mutations, at leucine 267, 
threonine 278, according to the manufacturer’s instructions. 
Detailed information about primers used for mutagenesis is 
listed in Table 1. Human KYSE150 esophageal carcinoma 
cells were transfected, with the GFP-SLC52A3a constructs, 
using Lipofectamine 3000 (Invitrogen) according to the 
manufacturer’s instructions.

Western blotting

Whole cell protein extracts collected from cells were pre-
pared in 1 × Laemmli Sample Buffer (Bio-Rad), and pro-
teins were separated on 10% SDS–PAGE and transferred to 
a PVDF membranes (Roche). The membranes were blocked 
in 5% non-fat milk for 1 h followed by the addition of the 
primary antibody (anti-GFP, SC-9996, Santa Cruz Biotech-
nology) for 1.5 h at room temperature. The membranes were 
then washed and incubated with a secondary antibody cou-
pled to horseradish peroxidase for 1 h at room temperature. 
Antigen–antibody complexes were detected by Western blot 
luminol reagent (Santa Cruz Biotechnology). Image acqui-
sition and quantitative analysis were carried out using the 
ChemiDoc XRS imaging system (Bio-Rad).

Immunofluorescence staining

The immunofluorescence staining was performed as 
described previously. Briefly, GFP-tagged SLC52A3a con-
structs were transfected into KYSE150 cells. After being 
fixed, permeabilized and blocked, cells were incubated 
with antibodies against GFP (Santa Cruz Biotechnology), 
then visualized with an Alexa Fluor 488-conjugated Affin-
ipure donkey anti-mouse secondary antibody (Jackson 
ImmunoResearch). Followed by counterstaining with sec-
ondary antibodies, cells were incubated with 0.1 μg/mL 
DAPI (Sigma–Aldrich). Cells were analyzed using a Zeiss 
LSM880 confocal microscope (Zeiss).

Live cell confocal imaging and FRAP

GFP-tagged SLC52A3a constructs were transfected into 
KYSE150 cells. At 48 h post-transfection, the cells were 
inoculated into fibronectin-coated coverslips. Behavior of 
GFP-tagged SLC52A3a proteins in live cell was visualized 
using a confocal microscope LSM880 (Zeiss) with a 40×, 
1.43NA, Plan-Apochromat oil objective (Zeiss). Fluores-
cence recovery after photobleaching (FRAP) (Day et al. 
2012) was performed on a confocal microscope LSM880 
(Zeiss). Cells were maintained at 37 °C on a heated stage. 
GFP-tagged proteins at the base and center of cell membrane 
were bleached in a rectangular region of area ranging from 
1 to 3 μm2 for ~ 0.5 s using the 488 nm and 543 nm laser 
lines at 100% laser power. Thereafter, fluorescence recovery 
within the bleached region was monitored every 1–3 s over 
a period of 45–60 s. The motion of individual trafficking 
vesicles was analyzed using MetaMorph tracking software 
(Molecular Devices, CN). Videos are provided as supple-
mental material (Supplemental Videos S1–8).

Table 1    Primers used in this 
study

F forward primer, R reverse primer
Cutting sites are underlined
The mutated sequence is in bold and shown as double underlined text

Primer Sequence (5′-3′)

Primers for SNPs identification
SLC52A3a-Exon3-F GGA​GTT​CCC​AGA​GCT​TTG​GT
SLC52A3a-Exon3-R CTG​TTA​GGC​AGG​AAC​ATG​GAGA​

Primers for cloning
SLC52A3a-F GGA​TCC​ATT​GGC​CCA​GTT​AGC​GTG​TC
SLC52A3a-R GAA​TTC​GCC​GCA​CCT​TGC​ATT​TCC​

Primers for mutagenesis
SLC52A3a-L267P-C-F CCT​CCA​CTC​CAT​CCGG​CCG​CGG​GAA​GAG​AAT​G
SLC52A3a-L267P-C-R GGCCG​GAT​GGA​GTG​GAG​GGT​GAC​CTG​GTCA​
SLC52A3a-T278M-T-F CTT​GGG​CCC​TGC​AGGC​ATG​GTG​GAC​AGCA​
SLC52A3a-T278M-T-R ATGCC​TGC​AGG​GCC​CAA​GTC​ATT​CTC​TTCC​
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FRAP data were analyzed as follows. The average inten-
sity in the bleached zone was measured over the time course 
of the experiment. The intensity of the bleached zone was 
corrected for photobleaching by multiplying a correction 
factor. We made curve fitting for the in vivo FRAP profile 
with a double-exponential function. Fluorescence recov-
ery intensities curves were fitted using the following equa-
tion:I(t) = I
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 , where I(t) is the 
intensity of fluorescence at time t, I1 is the intensity of fluo-
rescence immediately post-bleaching, I2 is the intensity of 
fluorescence following complete recovery (Day et al. 2012; 
Bancaud et al. 2010). Mobile fraction was calculated as the 
following formula: Mf =
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 , where 
IEND is the stable fluorescent intensity of the puncta after suf-
ficient recovery, I1 is the fluorescent intensity immediately 
after bleaching, and IPRE is the fluorescent intensity before 
bleaching. The mobile fraction is the portion of molecules 
that can undergo diffusion. FRAP is a powerful, versatile, 
and widely accessible tool to monitor molecular dynam-
ics in living cells. The mobile fraction rate can reflect the 
movement rate of membrane proteins on the cell membrane 
(Day et al. 2012). SLC52A3a acts as a riboflavin transporter, 
whose rapid distribution on the membrane can improve 
transmembrane transportation of riboflavin.

Riboflavin uptake assay

Both intra- or extra-cellular concentrations of riboflavin 
were measured by high-performance liquid chromatogra-
phy (HPLC) as described previously (Petteys et al. 2011). 
Briefly, KYSE150 cells were plated at a density of 2 × 105 
cells per well in 6-well plates, and culture medium was col-
lected after 0 h, 24 h, 48 h, and 72 h respectively, while cells 
were collected after 72 h. The concentrations of riboflavin 
in the collected culture medium were measured directly by 
HPLC. KYSE150 Cells was lysed by ultrasonic wave, and 
riboflavin concentrations were measured by HPLC.

Statistical analysis

Data analysis were performed using SPSS 13.0 software and 
graphs were generated using GraphPad Prism 8.0. A two-
tailed independent sample T test was used to determine the 
significance of differences between two groups. Differences 
among the multiple groups were analyzed using one-way 
ANOVA followed by Tukey’s test (GraphPad Prism 8.0). 
Statistical significance was set at P < 0.05, P < 0.05 (*), 
P < 0.01 (**), P < 0.001 (***), P < 0.0001 (****), data are 
plotted as mean ± SD.

Results

Exome sequencing identifies frequent mutation 
of the SLC52A3 gene in ESCC

To investigate the allele frequency in the exon region of the 
SLC52A3 gene SNPs rs3746804 and rs3746803, we per-
formed exon sequencing assay in 29 ESCC patients. As 
shown in Tables 2, 3 and 4, the comparative analysis of the 
sequencing results in ESCC, matched noncancerous and 
muscle tissues presents rs3746804 (TT genotypes, 267L) 
and rs3746803 (TT genotypes, 278 M) only existed in ESCC 
tissues, but not in matched noncancerous and muscle tissues. 
Notably, there were 41.38% CC genotypes and 58.62% TT 
genotypes in the genotype analysis of 29 patients with ESCC 
for rs3746804, while 82.76% CC genotypes and 17.24% TT 
genotypes for rs3746803, respectively. Then we searched 
the NCBI SNP database and found that the MAF (Minor 
Allele Frequency) of rs3746804 and rs3746803 were 18.23% 
(C>T) and 9.05% (C>T). Compared with our experimental 
results, the TT genotypes frequency of SLC52A3 gene SNP 
rs3746804 was increased in ESCC tissues. Meanwhile, the 
TT genotypes frequency of SLC52A3 gene SNP rs3746803 
was also increased in ESCC tissues. These results suggest 
that SLC52A3 gene SNP rs3746804 and rs3746803 TT geno-
types have some associations with ESCC.

Table 2   Exon sequencing 
identifies SLC52A3 SNP site in 
29 ESCC patients

Name SLC52A3a-L267P SLC52A3a-T278M

dbSNP rs3746804 rs3746803
Nucleotide position (NM_033409.4) 1139 1172
Nucleotide mutation T → C C → T
Amino acid position (NP_212134.3) 267 278
Amino acid mutation Leu (L) → Pro (P) Thr (T) → Met (M)
Allele frequency (%)
 C/C 41.38 82.76
 T/T 58.62 17.24
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Localizations of GFP‑SLC52A3a‑WT, L267P, T278M, 
and L267P/T278M in human ESCC cells

To further investigate the above-mentioned SNP sites in 
ESCC, we constructed a GFP-tagged SLC52A3a plas-
mid and obtained several other mutants by mutation (See 
Method). SLC52A3a is a 469-amino acid protein, pre-
dicted to have 11 putative membrane-spanning domains by 
the SOSUI program (Hirokawa et al. 1998), as illustrated 
in Fig. 1A. Previously we have confirmed that SLC52A3a-
WT (wild type, sequencing confirmed that amino acid 
positions 267 and 278 are leucine and threonine, respec-
tively) expressed in cell membrane, cytoplasm and nucleus 
(Long et al. 2018b). To further confirm and compare the 
localizations of SLC52A3a mutants, we examined the 
sub-cellular localizations of GFP-SLC52A3a-WT, L267P, 
T278M, and L267P/T278M in KYSE150 cells. Western 
blot analysis confirmed successful over-expressions of 
GFP-SLC52A3a proteins (Fig.  1B). Positive staining 
for GFP-SLC52A3a was observed in all KYSE150 cells 
including cells transfected with GFP-SLC52A3a-WT, 
L267P, T278M, and L267P/T278M. Consistent with pre-
vious results, SLC52A3a was detectable in all sub-cellular 

Table 3   The exon sequencing assay results of 29 patients with ESCC

Sample ID rs3746804 rs3746803
T → C (SLC52A3a-L267P) T → C 

(SLC52A3a-
T278M)

1322N C C
1322T C C
1336N T C
1336T T C
1339N T C
1339T T C
1357N C C
1357T T C
1395N C C
1395T T C
1405N T C
1405T T C
1430N C C
1430T C C
1432N C C
1432T T C
1443N C C
1443T T C
1445N C C
1445T C C
1469N T T
1469T C T
1481M C C
1481N C C
1481T C C
1486M C C
1486N T C
1486T T C
1527M T C
1527N T C
1527T T C
1550N C C
1550T C C
1569M C C
1569N C C
1569T C C
1572M C C
1572N C C
1572T C C
1582M T T
1582N T T
1582T T T
1618N T T
1618T T T
1642N C C
1642T C C
1652N C C

Table 3   (continued)

Sample ID rs3746804 rs3746803
T → C (SLC52A3a-L267P) T → C 

(SLC52A3a-
T278M)

1652T T C
1665M C C
1665N C C
1665T T C
1706M T C
1706N T T
1706T T T
1708M T C
1708N T C
1708T T C
1805M C T
1805N C T
1805T C T
1829N C C
1829T C C
1859M T C
1859N T C
1859T T C
1867M C C
1867N C C
1867T C C
1868N C C
1868T T C
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compartments, including cell membrane, cytoplasm as 
well as nucleus (Fig. 1C).

The dynamics of GFP‑SLC52A3a‑WT, L267P, T278M, 
and L267P/T278M with or without riboflavin 
in human ESCC cells

Previously, we have found that the SLC52A3a protein 
isoform encoded by the SLC52A3 gene is responsible for 
the transport of riboflavin transport in esophageal cancer 
cells. To explore the effect of SNP locus on the ability of 
SLC52A3a to transport riboflavin, we next sought to investi-
gate the dynamics of GFP-SLC52A3a-WT, L267P, T278M, 
and L267P/T278M with or without riboflavin in human 
ESCC cell line models. We photobleached GFP-SLC52A3a-
WT, L267P, T278M, and L267P/T278M fluorescence in 
the membrane of KYSE150 R+ and R− cells and examined 
the fluorescence recovery dynamic using Fluorescence 
Recovery After Photobleaching (FRAP). The mobile frac-
tion values were also presented. We found that L267P and 
L267P/T278M promoted recovery of GFP fluorescence of 
SLC52A3a in the membrane of KYSE150 R+ and R− cells 
within 60 s (Fig. 2A, B). Furthermore, the mobile fraction 
of GFP-SLC52A3a-L267P and GFP-SLC52A3a-L267P/
T278M in cell membrane of KYSE150 R+ and R− cells were 
also significantly increased compared with GFP-SLC52A3a-
WT (Fig. 2C). Meanwhile, the recovery of GFP-SLC52A3a 
showed no difference between T278M and WT form in GFP 
fluorescence recovery and Mobile Fraction. These data sug-
gest that L267P increased SLC52A3a dynamics and pro-
moted riboflavin transmembrane transportation.

Intracellular trafficking of GFP‑SLC52A3a‑WT, L267P, 
T278M, and L267P/T278M in living cells

Since WT SLC52A3a and mutant SLC52A3a (L267P, 
T278M or L267P/T278M) can affect dynamics, we sus-
pect that these mutations may affect the transportation of 
riboflavin in ESCC cells. Confocal immunofluorescence 
microscopy showed that the WT SLC52A3a and mutant 
SLC52A3a expressed in cell membrane, as well as in a 
variety of intracellular punctate structures, congruent with 
previous observations (Subramanian et al. 2011) (Fig. 1C). 

To investigate the dynamics of individual trafficking vesicles 
in intracellular trafficking of WT SLC52A3a and mutant 
SLC52A3a to the cell membrane, we used live cell con-
focal imaging to track the motility of individual structures 
in the vesicle population. Results showed that the velocity 
of vesicle movements in GFP-SLC52A3a-L267P and GFP-
SLC52A3a-L267P/T278M significantly increased com-
pared to SLC52A3a-WT in KYSE150 R+ cells. In contrast, 
expression of GFP-SLC52A3a-L267P and GFP-SLC52A3a-
L267P/T278M did not significantly cause alterations in 
KYSE150 R− cells, while expression of GFP-SLC52A3a-
T278M significantly decreased vesicle movements veloc-
ity (Fig. 3B, left and middle panel, Supplemental Videos 
S1–8). Intriguingly, when compared overall vesicle move-
ments velocity in KYSE150 R+ and R− cells, the vesicle 
movements mean velocity of GFP-SLC52A3a-WT, L267P, 
and L267P/T278M in cell membrane of KYSE150 R− cells 
were also significantly increased compared with KYSE150 
R+ cells, while we found that the vesicle movements mean 
velocity of GFP-SLC52A3a-T278M in KYSE150 R− cells 
did not show any significant change between KYSE150 
R+ cells (Fig. 3B, right panel). These data suggest that 
SLC52A3a-L267P increases the intracellular trafficking of 
SLC52A3a.

Transport capacity of riboflavin by SLC52A3a ‑WT, 
L267P, T278M, and L267P/T278M in human ESCC 
cells

We next sought to investigate the transport capacity of ribo-
flavin by SLC52A3a-WT and mutants using ESCC cell line 
KYSE150. We have measured both riboflavin consumption 
in cell culture medium and intracellular riboflavin con-
centration using high-performance liquid chromatography 
(HPLC). Importantly, our results showed that cells express-
ing SLC52A3a-L267P exhibited faster riboflavin consump-
tion and maintained higher intracellular concentration of 
riboflavin compared to SLC52A3a-WT cells (Fig. 3C). 
These data suggesting that SLC52A3a-L267P has higher 
capacity in transporting riboflavin than SLC52A3a-WT.

Table 4   Comparing the 
sequencing results in 29 
cases with ESCC, matched 
noncancerous, and muscle 
tissues

Tissue type rs3746804 rs3746803
T → C (SLC52A3a-L267P) C → T (SLC52A3a-T278M)

Tumor CC (41.38%), TT (58.62%) CC (82.76%), TT (17.24%)
Adjacent non-tumor CC (100.0%), TT (0.00%) CC (100.0%), TT (0.00%)
Muscle CC (100.0%), TT (0.00%) CC (100.0%), TT (0.00%)
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Fig. 1   Subcellular localization 
of GFP-tagged SLC52A3a in 
ESCC cell lines by immunoflu-
orescence analysis. A Topology 
of SLC52A3a. Transmembrane 
domains were predicted by the 
SOSUI program. Position of the 
267-leucine residue is marked 
by red triangle. Position of the 
278-threonine residue is marked 
by purple star. B Western 
blot analysis of GFP-tagged 
SLC52A3a transfected into 
KYSE150 cells. Data shown are 
representative of two independ-
ent experiments. C Immuno-
fluorescence analysis of GFP-
SLC52A3a in KYSE150 cells. 
The GFP-tagged SLC52A3a 
were labeled with Alexa Fluor 
488 (green) and nuclei were 
counterstained with DAPI 
(blue). Bar = 10 μm. Experi-
ments were repeated three times 
with similar results
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Discussion

The SNP has been shown to be associated with tumor 
progression in various malignancies (Zhang et al. 2018; 
Briones-Orta et al. 2017; Johnson et al. 2016). Previous 
studies on SNP indicated that the polymorphisms in the 
exon coding regions can directly influence the functional 
properties of the proteins and the mutations may be asso-
ciated with different responsiveness to cancer therapies 
and patients’ survival (Srinivasan et al. 2019; Katiyar 
et al. 2017; Wagner et al. 2010). The SNP rs3746804 and 
rs3746803 in the exon coding region of SLC52A3 gene 
identified might be as susceptibility locus of ESCC (Ji 
et al. 2011, 2012). In this study, we investigated whether 
the SNP rs3746804 and rs3746803 alleles could affect 
the SLC52A3a protein expression and regulating ribo-
flavin transportation in ESCC cells. The rs3746804, 
SLC52A3a 267P, is proline endopeptidase cleavage site. 
The rs3746803, SLC52A3a 278T, is a site of modifica-
tion by protein kinase C. Our study indicated that the 
SLC52A3a-L267P increased SLC52A3a dynamics and 
promoted ribof lavin transmembrane transportation. 
Simultaneously, SLC52A3a-L267P and T278M increased 
the intracellular trafficking of SLC52A3a. Together with 
our results, these findings indicating that the SLC52A3a-
L267P might play a prominent role in riboflavin transpor-
tation in ESCC.

SLC52A3a is a crucial riboflavin transporter, involved 
in cell uptake of riboflavin (Long et al. 2018b; Yang et al. 
1982, 1984; Thurnham et al. 1982; Groenewald et al. 1981). 
Riboflavin deficiency has been identified as a risk factor for 
ESCC (Khan et al. 2011; Zou et al. 2002; Siassi and Ghadi-
rian 2005). Previous research indicates that riboflavin sup-
plementation can reduce the incidence of ESCC (He et al. 
2009; Dawsey et al. 1994; Blot et al. 1993). However, blood 
riboflavin in 34% of the riboflavin supplemented ESCC 
patients was still lower than normal (He et al. 2009). These 
findings suggest that the lack of riboflavin in ESCC patients 
is not only related to the concentration of riboflavin in the 
environment but also to riboflavin transporters. Our find-
ings indicated that the SNP rs3746804 (p. L267P) could 
increase the intracellular trafficking of SLC52A3a and pro-
mote riboflavin transportation in ESCC cells according to 
the live cell confocal imaging and FRAP results. Notably, 
our exon sequencing results showed that the TT genotypes 
frequency of SLC52A3 gene SNP rs3746804 was signifi-
cantly increased in ESCC (TT genotypes, SLC52A3a amino 
acid 267 site is leucine). We speculate SLC52A3a L267 fre-
quency increased and SLC52A3a P267 frequency decreased 
in ESCC, which lead to weaker riboflavin transportation 
capacity and promote cancer progression.

There are still some limitations in our findings. In our 
experiment, we found that the rs3746804 (p.L267P) could 
increase the intracellular trafficking of SLC52A3a and pro-
mote riboflavin transportation in ESCC cells, while the 
deeper insight into the molecular mechanisms involved in 
SLC52A3a-L267P affecting riboflavin transportation still 
need to be investigated in future studies.

Conclusion

In summary, we identified that the SNP rs3746804 (p. 
L267P) in SLC52A3a was closely related to SLC52A3a 
dynamics and riboflavin transportation in ESCC cells. The 
rs3746804 (p.L267P) could increase the intracellular traf-
ficking of SLC52A3a and promote riboflavin transportation 
in ESCC cells (Fig. 4). These results provided some new 
choices for clinical research of ESCC and targeted therapy.

Fig. 2   Comparison of FRAP data for different GFP-SLC52A3a pro-
teins in riboflavin normal or riboflavin deficiency KYSE150 cell 
membrane. A The representative images of FRAP were shown and 
the selected areas were measured for fluorescence recovery after 
photobleaching. Bar = 5  μm. B Recovery curves for SLC52A3a-WT 
(red circles), SLC52A3a-L267P (blue squares), SLC52A3a-T278M 
(green triangles), and SLC52A3a-L267P/T278M (purple inverted 
triangles) in the membrane of KYSE150 cells. Data show the mean 
recoveries for 30 cells for each protein from a representative experi-
ment. The above data were analyzed by one-way ANOVA, followed 
by Tukey’s test, T (time) = 59.91  s, ****P < 0.0001, ***P < 0.001. 
C, Summarized data of the mobile fractions (Mf) of SLC52A3a-WT 
(red), SLC52A3a-L267P (blue), SLC52A3a-T278M (green), and 
SLC52A3a-L267P/T278M (purple) in KYSE150 cells. The above 
data were analyzed by one-way ANOVA, followed by Tukey’s test. 
****P < 0.0001, ***P < 0.001, *P < 0.05. Error bars indicate SD, 
n = 30 cells. The experiments were performed independently in tripli-
cate. R+ riboflavin normal; R− riboflavin deficiency

◂
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Fig. 3   Intracellular trafficking of GFP-SLC52A3a-WT, L267P, 
T278M and L267P/T278M in living cells. A Distribution of GFP-
SLC52A3a trafficking vesicles in KYSE150 R+ and R− cells. 
Bar = 5 μm. B Average velocity of GFP-SLC52A3a trafficking vesi-
cles was observed in KYSE150 R+ and R− cells maintained at 37 °C. 
Data are from 266 vesicles. Data are means ± SD of at least three 
separate determinations. The above data were analyzed by one-way 
ANOVA, followed by Tukey’s test. ****P < 0.0001, ***P < 0.001. 
C Concentrations of riboflavin in culture medium and intracellu-
lar were quantified by HPLC. The concentrations of riboflavin in 

culture medium after KYSE150 cells were transfected with vector, 
SLC52A3a-WT or mutants for 0  h, 24  h, 48  h and 72  h (left). The 
concentrations of riboflavin in culture medium after KYSE150 cells 
were transfected with vector, SLC52A3a-WT or mutants for 24  h 
(middle). The intracellular riboflavin concentrations in KYSE150 
after being transfected with vector, SLC52A3a-WT or mutants for 
72  h (right). The value was an average of three times repeats, and 
error bars indicate S.D. ****P < 0.0001, ***P < 0.001 based on one-
way ANOVA, followed by Tukey’s test. R+ riboflavin normal, R− 
riboflavin deficiency
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