
Received April 26, 2021, accepted June 3, 2021, date of publication June 7, 2021, date of current version June 18, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3087179

Real-Time 3D Object Detection From Point Cloud
Through Foreground Segmentation
BO WANG 1,2, MING ZHU1, YING LU1,2, JIARONG WANG 1, WEN GAO1, AND HUA WEI 1,2
1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
2University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: Ming Zhu (zhu_mingca@163.com)

This work was supported by the Education Department of Jilin Province, China, under Grant JJKH20200780KJ.

ABSTRACT This paper aims to apply real-time light-weight high-precision 3D detection for autonomous
driving. We propose LIDAR-based 3D object detection based on foreground segmentation using a fully
sparse convolutional network (FS23D). We design a sparse convolutional backbone network and a sparse
convolutional detection head to efficiently use the computing and memory resources and accelerate the
inference. Instead of using the anchor-based method, we convert the detection problem into a foreground
segmentation problem on a bird’s-eye view. The sparse convolutional detection head predicts the objectness
and bounding box on each active point on the sparse feature map. We design a new oriented bounding box
coding method and corresponding loss functions. We predict the endpoints of two mutually perpendicular
lines that pass through the foreground active points and indirectly predict the objects’ oriented bounding
box from these four endpoints. We use the indirectly calculated object center, size, and orientation as inputs
of loss functions in the training step. Experiments on the KITTI dataset show that the sparse backbone
network we designed is 2.2 times faster and 18.4 times fewer FLOPs than the dense backbone network. The
average improvement of the loss functions based on the bounding box code is 1.1% and 0.8% on the BEV
and 3D detection, respectively, compared to no addition of these losses. Moreover, FS23D outperforms the
state-of-the-art LIDAR-based method in speed and precision for both cars and cyclists.

INDEX TERMS 3D object detection, LIDAR, real-time, sparse convolutional neural network.

I. INTRODUCTION
Three dimension object detection is a fundamental capabil-
ity of perception systems in autonomous driving. It helps
autonomous vehicles recognize and locate objects in the
3D scene, such as cars, pedestrians, and cyclists. Compared
with 2D object detection providing pixel location and pixel
size of objects, 3D object detection provides the location,
dimension, and pose of objects in the real 3D world. The
autonomous driving decision system uses this information to
guide the vehicle to drive safely. Therefore, the 3D object
detection algorithm’s speed and precision directly affect the
safety of autonomous vehicles. To accurately locate objects,
LIDAR has become an indispensable sensor, which provides
reliable depth information. LIDARmeasures the distance and
reflection of objects’ surface in the 3D world under a certain
horizontal and vertical angular resolution. The point cloud
from LIDAR is a sample of the surface of the scene. Limited

The associate editor coordinating the review of this manuscript and

approving it for publication was Syed Islam .

by LIDAR’s angular resolution, the point cloud is sparse and
disordered, making it difficult to detect objects from the point
cloud.

In recent years, the convolutional neural network
(CNN)-led deep learning method has achieved great success
in 2D object detection, object tracking, semantic segmenta-
tion, etc. CNN also has been introduced in the field of 3D
object detection. Compared with the 2D ordered and densely
arranged image, the point cloud is sparse, disordered, and
has a large difference of local density in 3D space [1], [6].
Those unexpected properties bring significant challenges to
processing the point cloud using 2DCNN. However, there are
many methods that can convert the disordered point cloud to
an ordered representation. The first method [4], [5], [20] is
converting the point cloud to the 3D voxel and using the 3D
convolutional neural network to extract the 3D feature from
the 3D voxel. The second method [1], [18], [19] is projecting
the point cloud into the Front View (FV) or the Native Range
View (NRV), FV and NRV is a dense 2D pseudo-image. The
third method [1], [7], [28] is projecting the point cloud onto

84886
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-8980-6646
https://orcid.org/0000-0002-0377-8083
https://orcid.org/0000-0001-6009-6145
https://orcid.org/0000-0002-3200-2903


B. Wang et al.: Real-Time 3D Object Detection

Bird’s Eye View (BEV) to produce a sparse pseudo-image.
FV, NRV, and BEV can be processed by 2D CNN.

The front view is denser than the bird’s eye view and
3D voxels, which means that 2D convolution can be used
efficiently for feature extraction. However, object occlu-
sion and perspective problems are unavoidable.3D voxel can
re-represent the point cloud data more accurately, but 3D
voxel feature is a 4D tensor, and extracting features with
3D convolution is more difficult and slower compared with
extracting feature from FV and BEV, but the performance
of 3D voxel-based target detection methods are better than
the front view method. Both BEV and 3D retain information
about the location, size, and orientation of the objects, but
BEV is a 2D feature map, making the BEV-based detection
method faster than 3DVoxel-based methods. Also, all objects
do not overlap, and the scale of objects is consistent across all
locations on the bird’s eye view. A lot of works focus on the
BEV method.

Suppose that in the autonomous vehicle coordinate system,
the X-axis points forward from the vehicle, the Y-axis points
to the left, and the Z-axis points up from the ground. All
vehicles on the road are driving on the X-Y plane. In this
context, the information of surrounding objects along the
X-axis andY-axis is more valuable than the information along
the Z-axis. And the yaw around the Z-axis is the movement
direction of objects. The X-Y plane can be representing as the
bird’s eye view.

Projecting a point cloud onto a bird’s-eye view is a process
that converts a point cloud into a multichannel pseudo image.
Firstly, the point cloud is limited in the range [ymin, ymax]
and [xmin, xmax] for the Y-axis and X-axis. Then, set a grid
size and discretize the point cloud into the corresponding
grid. For every non-empty grid in the BEV map, we extract
the feature. In early works, researchers design hand-craft
feature extractors to get the BEV input feature. For example,
in MV3D [1], the bird’s eye view representation is encoded
by height, intensity, and density. An intensity map is the
reflection value of the point which has the maximum height
in each cell. The density map is the number of points in each
cell. The point cloud is divided equally into M slices along
the Z-axis to get more detailed height features. For the i-th
slice, its height feature is computed as the maximum height of
points in each cell. Thus the disordered point cloud is encoded
as (M + 2)-channel features (pseudo-image). In Complex-
YOLO [6], only one slice of height is computed to generate
a 3-channels RGB feature combined with intensity map and
density map. Though the hand-craft feature is simple to apply
and interpretable, it is shallow and unlearnable, which limits
the performance of 3D object detection. In 2018, Qi proposed
the PointNet [26], which can process the disordered point
cloud directly. The PointNet consists of several linear layers
followed by a Relu layer, and it can extract point-wise fea-
tures from the point cloud. After employing the element-wise
max-pooling, a global feature is gotten. PointPillars [28]
introduced the PointNet to convert the point cloud into a BEV
pseudo-image.

The BEV map is quite sparse because most of the grids on
the BEV map do not have points. The BEV map’s sparsity is
defined as the ratio of the number of non-empty grids to the
total number of grids [9]. The sparsity depends on the grid
size. The smaller the grid size, the greater the sparsity. While
present BEV methods employ 2D CNN to extract the feature
of the pseudo image, the 2D CNN kernel sliding everywhere
on the feature map, including empty grids. Though the CNN
is optimized to be computed efficiently, a large amount of
memory is consumed when processing the BEV map due to
saving useless information, and a large number of computing
resources are used to process useless grids. This is a waste of
time, space, and power.

In this paper, we propose a novel 3D detection network,
named FS23D (3D object detection based on Foreground
Segmentation using Fully Sparse convolutional networks)
in which all convolution layers consist of normal sparse
convolutions and submanifold sparse convolutions. Because
the output prediction map is also sparse and few non-empty
grids are assigned a foreground label makes the anchor-based
detector training difficult in the training step, we predict
objects by grid-wise foreground segmentation rather than the
anchor-based method. Inspired by [10], we represent objects
as two mutually perpendicular lines across the foreground
grids. We regress endpoints of two lines, and these values
are used to calculate the center, dimension, and orientation
of objects indirectly. For every foreground grid, we regress
a series of bounding boxes in N directions. We predict the
score of every direction and get the bounding box with the
maximum direction score. In [10], besides the endpoints
regression loss, the collinear loss, and the vertical loss are
introduced to constrain the endpoints of every line to be
collinear and the two lines to be perpendicular to each
other. To regress the bounding box better, we design a serial
of loss functions for regressing objects’ center, dimension,
and orientation. The center, the dimension, and the orienta-
tion of the object are calculated from the endpoints of two
lines.

We evaluate our FS23DNetwork on theKITTI dataset [11].
Results of our detection network achieve comparable per-
formance to the state-of-the-art method, and our detection
network can run at 55.1 FPS in PyTorch [12] with lower
computation cost.

The main contributions of our work are summarized as
follows:
• We propose a novel end-to-end 3D object detection
network architecture, in which all convolution layers
consist of sparse convolutions.

• We propose a novel oriented bounding box regression
method by predicting endpoints of the vertical lines
across the foreground grid on the BEV map.

• We propose three auxiliary loss functions to constrain
regression of the center, the orientation, and the dimen-
sion of 3D objects.

• The proposed 3D object detection network can run at
55.1 FPS with comparable detection precision and lower

VOLUME 9, 2021 84887



B. Wang et al.: Real-Time 3D Object Detection

computation cost compared with the state of the art
methods.

II. RELATED WORK
LIDAR and camera are essential sensors for autonomous
driving vehicles. Most 3D object detection networks are
based on LIDAR and camera. In this section, we briefly
review three types of existing works on 3D object
detection, including camera-based, LIDAR-based, and
fusion-based methods. We also review sparse convolutional
networks.

A. CAMERA-BASED METHODS
Mono3D [16] is an early work of monocular-camera-based
3D object detection. In Mono3D, an energy minimization
approach is proposed to generate 3D candidate boxes. Then,
each 3D candidate box projected to a 2D image is scored
via several hand-craft features such as semantic segmenta-
tion, contextual information, size, location priors, and typical
object shape. In cite3D Box Estimation, the network first
regresses the 2D and 3D dimension and orientation of an
object, and then the real object pose is selected by geometric
constraints. In [17], the coarse 3D object bounding box is
predicted by the modified faster R-CNN framework. Then
it is refined by the guide of its surface feature extracted
from the 2D bounding box. Except for monocular-based
methods, there are several works based on stereo methods.
3DOP [13] has the same pipeline as Mono3D, while 3DOP
has another stream network to process stereo depth infor-
mation, and 3DOP gets better performance than Mono3D.
Stereo R-CNN [14] takes a pair of right and left images as
the input of the network and simultaneously detects objects in
these two images to produce a coarse 3D object bounding box
using stereo Region Proposal Network. The coarse 3D object
bounding box is refined by the dense 3D Box Alignment.
Tested on the KITTI dataset, Stereo R-CNN outperforms
other monocular-based method and 3DOP in terms of pre-
cision of object detection. However, the distance information
loses when the 3D object is projected onto the image plane.
It is hard to recover an accurate depth of the 3D scene by
monocular or stereo depth estimation. The performance of
image-based methods is limited and depends on the distance
of objects—the longer distance of the object, the worse result
of object detection.

B. LIDAR-BASED METHODS
The point cloud generated by LIDAR is a sample of informa-
tion about the surface of objects in the 3D space, including
spatial coordinates and surface reflectance.Moreover, limited
by the scanning resolution of LIDAR, it is essentially sparse
and disordered. In order to process the point cloud using
deep learning methods, the point cloud can be converted into
Front View (FV), Bird’s Eye View (BEV), and 3D voxel
representation. There are also many methods that process the
point cloud directly.

1) METHODS CONVERTING THE POINT CLOUD INTO FV
VeloFCN [19] encodes the point cloud’s distance and height
and projects it into a 2-channel image discrete by an average
horizontal and vertical angle resolution between consecutive
LIDAR beam. The image’s feature is extracted by a CNN
network and feeds it into two branches to predict the object
confidence and bounding box. In MV3D [1], the front view
image is encoded by height, distance, and intensity. In [18],
the point cloud is encoded and projected into native range
view built by mapping the laser id to rows and discretizing
azimuth into columns. The NRV images are denser than
BEV and 3D voxel representations. LMNet [38] encodes the
point cloud into a 5-channel image with five representations
(reflectance, range, forward, side, and height) and proposes a
detection network that uses dilated convolution and proposes
a detection network that uses dilated convolution. Though
LMNet achieves real-time multiclass object detection on
CPU, the object detection precision is significantly lower
than MV3D [1]. The above methods are one-stage methods.
FVNet [39] and RangeRCNN [40] are two-stage methods.
FVNet first generates proposals on FV feature maps using a
CNN and uses a parameter estimation network extended from
PointNet [26] to regress the final bounding box. RangeRCNN
follows a Range View to Point View to Bird’s Eye View
pipeline and achieves better performance compared with the
above methods.

2) METHODS CONVERTING THE POINT CLOUD INTO BEV
In MV3D, the point cloud is divided into several slices along
the height to generate height feature maps. The height maps
are combined with the intensity map and the density map
obtained from the point cloud to obtain channel BEV maps.
Complex YOLO [6] reduces the number of channels of height
maps to one channel, combined with the intensity map and
the density map to obtain a 3-channel RGB-like BEV image.
Complex YOLO follows the YOLO network and encodes
object orientation as a complex angle to increase object detec-
tion speed and precision. PIXOR [7] modifies the encoding
method based MV3D and uses a faster SSD detector to bal-
ance high accuracy and real-time efficiency. Pointpillars [28]
uses a simple version of PointNet to extract local features
of each pillar on the BEV map to make the feature of each
BEV’s grid learnable and achieves higher accuracy and speed.
However, these methods use 2D dense CNN in their network
that wastes a lot of computation resources because the BEV
map is very sparse, and extracting features of empty regions
is useless.

3) METHODS CONVERTING THE POINT CLOUD INTO 3D
VOXELS
3D-based methods convert the point cloud into 3D voxels
containing feature vectors. Vote3D [3] uses a convolution-like
voting-based algorithm and a sliding window detector based
on SVM. Vote3Deep [2] proposes a novel convolutional layer

84888 VOLUME 9, 2021



B. Wang et al.: Real-Time 3D Object Detection

leveraging a feature-centric voting scheme to exploit the
sparsity of 3D voxels. Vote3D and Vote3Deep encode the
3D voxel using hand-craft methods, which feature is shallow
cannot adapt complex autonomous driving task. VoxelNet [5]
first proposes the voxel feature encoding (VFE) layer to
make voxel feature learnable from training data. The voxel
feature is 3D dense tensor and processed by 3D convo-
lutional middle layers to obtain a 2D BEV feature map.
VoxelNet follows the SSD network for detection. Though
the accuracy of VoxelNet is better than previous methods,
it cannot achieve real-time detection because the computation
of 3D convolutional middle layers is huge. To overcome the
drawback of 3D convolution layers dealing with 3D dense
tensor, SECOND [4] introduces 3D sparse convolution layers
to replace normal 3D convolutional layers. The voxel fea-
ture is encoded as a sparse tensor containing features and
corresponding coordinates. SECOND follow the pipeline of
VoxelNet and achieve real-time detection performance and
better detection precision.

4) OTHER METHODS
PointRCNN [32] proposes a two-stage detection network.
In the first stage, a PointNet is used to extract the point-wise
feature. Then, anMLP computes 3D proposals based on every
point-wise vector. In the second stage, the local spatial point
combined with the expended 3D proposal’s semantic feature
is calculated to predict the final 3D bounding box. STD [33]
is another type of two-stage 3D object detection, which is
more complex than PointRCNN. The first stage of STD is a
bottom-up proposal generation network that uses raw point
clouds as input to generate accurate proposals by seeding
each point with a new spherical anchor. Then, PointsPool
transforms interior point features from sparse expression to
compact representation. The second stage predicts bounding
boxes with the IoU branch. The performance of STD is better
than PointRCNN in aspects of precision and speed.

C. FUSION-BASED METHODS
In MV3D, the point cloud is converted into the BEVmap and
the FV map, then both feature maps extracted by different
CNN networks are fused with the feature map from the
image. In AVOD [25], only the BEV feature map and image
feature maps are used to generate proposals and refine the
final 3D bounding box. AVOD performs better than MV3D.
F-PointNet [22], F-ConvNet [21] and RoarNet [24] use frus-
tum proposals from 2D object detection as 3D proposals and
regresses the 3D bounding box based on points in 3D pro-
posals. The performance of 2D driven 3D relies on 2D object
detection precision. ContFuse [23] proposes a two-stream
detection network architecture using continuous convolutions
to fuse image and LIDAR feature maps deeply in multiple
scales. The 3D bounding boxes of objects are predicted based
on the bird’s eye view. The fusion-based method performs
better than image-basedmethods and LIDAR-basedmethods.
However, the complex network and multimodal fusion bring

a huge computation, limiting the detection speed and imple-
mentation in autonomous driving systems.

D. SPARSE CONVOLUTIONAL NETWORKS
Sparse Convolution Neural Network (SCNN) [8] was pro-
posed to speed up convolutional operations on sparse tensors.
Themain idea of SCNN is that output points are not computed
if there are no related input points. However, the output spar-
sity is higher than the input sparsity. The increasing sparsity
can lead to a decrease in speed in subsequent convolution
layers due to a large number of active points. B. Graham
proposed the submanifold convolution [9] to keep the spar-
sity after sparse convolution layers by restricting an output
location to be active if and only if the corresponding input
location is active. Yan proposed a GPU-based rule generation
algorithm to replace the CPU-based rule generation algorithm
using a hash table propose by B. Graham to speed up sparse
convolutions [4].

III. FS23D NETWORK
In this paper, we propose a real-time 3D detection network
with higher accuracy and less computation. We follow the
pipeline of PointPillars, a single-stage detection network,
while we redesign the architecture of the backbone network,
the encoding method of 3D bounding boxes, and correspond-
ing bounding box regression loss functions. We generate
proposals through foreground segmentation instead of the
anchor-based method. We regression a serial of bounding
boxes based on every foreground grid on the BEV fea-
ture map. Our network consists of BEV input representa-
tion, sparse backbone network, and sparse detection head.
An overview of our FS23D Network is shown in Figure 1.

A. FROM POINT CLOUD TO BEV PSEUDO-IMAGE
To convert the point cloud into BEV representation, the points
in the point cloud are projected into the BEV plane and
discretized by the 2D grid with a certain size. We first set
a detection range L × W × H on the BEV plane. Then,
the 3D points within this detection range are discretized with
a resolution of dL × dW of the per grid. For non-empty grids,
we keep T points. If the number of points is larger than T ,
we randomly sample T points. If the number of points is less
than T , we use zero-padding to keep the input dimension.
After discretization we get a tensor with a shape L

dL
×

W
dW

.
While this tensor is sparse that only a few parts of grids are
occupied by points. We sample M non-empty grids. If the
number of non-empty is less than M , we use zero-padding.
Thus, after sampling and padding, we get an input tensor
with a shape M × T × D, where D is the input dimension of
point in non-empty grids. We take the vector [x, y, z, x − x,
y−y, z− z, xp, yp, r] as input, where x, y and z are coordinate
average value of points in the grid and xp and yp are the
center’s coordinates of each grid. And, r is the reflectance
of each point in the grid.

We use a simple version of PointNet [26] mentioned
in PointPillars [28], a single linear layer followed by a

VOLUME 9, 2021 84889



B. Wang et al.: Real-Time 3D Object Detection

FIGURE 1. The architecture of FS23D. FS23D only takes a LIDAR point cloud as input. The sparse BEV feature map coded from the point cloud is inputted
into a sparse backbone network, called S-DLA. The S-DLA has three downsampling blocks and three aggregation blocks. S0 is the initial scale of the
sparse BEV feature map. S1, S2, and S3 denote scales of output feature maps from corresponding blocks. The scale S1 of the output feature map from
S-DLA depends on the stride of block D0. The Sparse detection head has three branches sharing a common feature map outputted from S-DLA. Arrows in
the figure represent the direction of data flow.

BatchNorm [41] layer and a ReLU [42] layer to extract the
point-wise feature for each grid and applymax-pooling on the
point-wise feature to get the element-wise maximum value
as the grid feature. For each grid, we extract C dimensions
feature vector, thus combining with the corresponding coor-
dinates of each grid. Finally, we get a sparse BEV feature map
with a shapeM × C .

B. SPARSE BACKBONE NETWORK
Previous BEV-based 3D object detection applies the dense 2D
convolutional network to extract the feature from the pseudo-
image. However, when the kernel of convolution slides on
the pseudo-image, all the empty grids are computed. Accord-
ing to our statistics, the sparsity of the input tensor is less
than 0.1 if the resolution of the grid is less than 0.24 m.
Moreover, the features extracted from empty grids are useless
but take up a lot of memory, which wastes both computing
and memory resources. To overcome the drawback of dense
convolution, we replace the dense convolutions with sparse
convolutions and design a Sparse Deep Layer Aggregation
network (S-DLA) as our detector’s backbone network. The
deep layer aggregation network architecture is proposed to
effectively extract and combine multiscale feature [36]. The
S-DLA network consists of two types of sparse convolu-
tion blocks: downsample blocks and aggregation blocks.
Downsample blocks consist of a sparse convolution layer
and several submanifold sparse convolution layers, shown as
Figure 2. The first sparse convolutional layer of downsam-
pling block has a stride S, and other submanifold convolution
layers have a stride 1. Downsampling blocks take a fine
feature map as input data and output a coarse feature map
with a larger scale if the stride s is bigger than 1. Aggregation
blocks fuse feature maps from two adjacent scales and keep
the output scale the same as the feature map with the small
scale (fine feature map), shown in Figure 2.We use an inverse

FIGURE 2. The structure of the downsampling block and the aggregation
block.

sparse convolution to upsample the coarse feature map with
a larger scale and recover the sparse tensor’s active points.
After that, we use a concatenation layer to fuse features.
Finally, the output from A2 has the same scale as the output
from D0.

C. DETECTION HEAD
In this paper, we propose a novel oriented bounding box
encoding-decoding method. We represent the bounding box
as two mutually perpendicular lines that pass through the
object’s foreground grid on the BEV. Both lines are also
perpendicular to the boundaries of objects. The bounding box
representation is shown in Figure 3.

In the stage of predicting the bounding box, the network
regresses coordinate offsets of endpoints of two mutually

84890 VOLUME 9, 2021



B. Wang et al.: Real-Time 3D Object Detection

FIGURE 3. Representation of bounding box. The blue point is a
foreground point. The two green lines are two mutually perpendicular
lines which endpoints are predicted by the detector. The red box is the
object’s oriented bounding box in the BEV. The yellow point is the object’s
center. The two blue lines are the axis of symmetry of the object, and one
of them with the arrow represents the object’s orientation.

FIGURE 4. The structure of sparse detection head.

perpendicular lines based on every foreground point to calcu-
late the final bounding boxmediately. Typically, the bounding
box of the object is denoted by its center, dimension, and
orientation. We consider the center of the final bounding box
is the intersection point of the perpendicular bisectors of two
lines, the dimension of the bounding box is the length of two
lines, and the orientation is the direction of ray from ep1line0
to ep0line0. To regression a more accurate oriented bounding
box, we leverage a MultiBin method [15] to discretize the
orientation angle and divide it into N bins. For each bin,
we predict a 9-channel vector that contains a bin’s confidence
score and 8 offsets of endpoints of two perpendicular lines
from the foreground point. Then, we predict the height and
the height dimension and combine it with other parameters
mentioned above to get a 3D bounding box.

The detection head we proposed is a multitask network that
contains three branches to predict the 3D bounding box of the
object, and its architecture is shown in Figure 4. All branches
have same structure - two submanifold sparse convolutional

layers. The first submanifold sparse convolutional layer has
a 3 × 3 kernal. and the second submanifold sparse convo-
lutional layer has a 1 × 1 kernal. The foreground segmen-
tation branch outputs 1-channel sparse score map followed
with a sigmoid activation layer. The height dimension and
location branch outputs 2-channel sparse map to regression
the object’s height and height center. The MultiBin bounding
box branch outputs N × 9-channel sparse map. All branches
of the detection head share a common sparse feature map
extracted from the sparse backbone network S-DLA.

D. LOSS
We leverage the commonly used task loss to train our detector.
The total loss has three parts, including foreground seg-
mentation loss, height regression loss, and MultiBin bound-
ing box regression loss. We use modified focal loss on
the foreground segmentation score Y ′x̂y. To get the label of
foreground segmentation, we first compute the set of active
points (non-empty grids) on the output feature map from the
backbone network and project 3D bounding boxes into BEV.
We assign the active point Yx̂y inside projected bounding box
a foreground label 1 and outside active point a value 0.

Lfs = −
1
N

∑
x̂y

{
(1− Y ′x̂y)

αlogY ′x̂y, if Yx̂y = 1

Y ′x̂y
αlog(1− Y ′x̂y), otherwise,

(1)

where α is the hyper-parameter of modified focal loss. x̂y is
the active point on the sparse feature map. N is the number of
active points on the output feature map.

We use the smooth l1 loss on the regression of height and
height center. For regression targets of height ht and height
center zt , we use the following encoding functions:

ht =
hg
ha
, zt = zg − za (2)

where hg and zt are ground truth of height and height center.
ha and za are average values of height and height center.
The regression loss of height and height center has follow-

ing form:

Lh =
1
N

∑
q∈{h,z}

∑
x̂y∈f

SmoothL1(q′x̂y, qx̂y) (3)

where f is the set of active points with the foreground label,
and N is the size of this set. h denotes the object’s height. z
denotes the object’s height center. q′ represents the predicted
value, and q represents the ground truth.
The MultiBin bounding box loss Lmbb has two parts

including bin classification loss Lbc and endpoints regression
loss Ler . We use the cross-entropy loss on bin classification.
To make the endpoints regression more accurate, we design a
serial of loss functions that constrain the endpoints regression
from multiple aspects. We extend the center regression loss,
dimension regression loss, and rotation regression loss based
on the middle line loss of [10]. The first loss is to regress
endpoints of the two mutually perpendicular lines, and it is

VOLUME 9, 2021 84891



B. Wang et al.: Real-Time 3D Object Detection

shown as follows:

L1 =
1
N

2∑
ep=0

∑
x̂y

[SmoothL1
(
1x∗x̂y,1xx̂y

)
+ SmoothL1

(
1y∗x̂y,1yx̂y

)
]ep (4)

where N is the number of active points with foreground label.
x̂y is the coordinate of the active point with foreground label.
1x and1y are predicted endpoints offsets, and1x∗ and1y∗

are the ground truth. ep is the endpoints of the corresponding
line.

The second loss is to solve the endpoints of one of lines
being not collinear caused by that the endpoints are predicted
independently. The loss is as follows:

L2 =
1
N

2∑
l

∑
x̂y

[SmoothL1(1xep0x̂y ×1y
ep1
x̂y ,

1xep1x̂y ×1y
ep0
x̂y )]l (5)

where l denotes the two lines. ep0 and ep1 are the two
endpoints of a line.

The two lines are perpendicular to each other. To make the
network learn to predict perpendicular lines, the following
loss is needed:

L3 =
1
N

∑
x̂y

[SmoothL1(1xep0l0x̂y ×1xep0l1x̂y

+1yep0l0x̂y ×1yep0l1x̂y ), 0]l (6)

where ep0l0 and ep0l1 are the 1st endpoint of line 0 and the
1st endpoint of line 1.

We calculate the object’s center, dimension and orientation
angle through the endpoints of the two lines. Those value have
the correspending ground truth and can therefore be used to
calculate losses. To constrain the center regression, we design
the center regression loss as follows:

L4 =
1
N

∑
x̂y

[SmoothL1(1x∗center ,1xcenter )

+ SmoothL1(1y∗center ,1ycenter )] (7)

where1x and1y are the predicted coordinate of the object’s
center. 1x∗ and 1y∗ are the found truth.
The object’s length and width are the length of line 0 and

line 1. To make the detector learn to predict object’s dimen-
sions, we design the dimension regression loss as follows:

L5 =
1
N

∑
x̂y

[SmoothL1(w∗x̂y,wx̂y)+ SmoothL1(l
∗

x̂y, lx̂y)]

(8)

where w and l are predicted values. w∗ and l∗ are the ground
truth.

The object’s rotation angle is the direction of ray from
ep1line0 to ep

0
line0. Tomake the network learn to predict rotation

angle, we introduce the rotation regression loss as follows:

L6 =
1
N

∑
x̂y

[SmoothL1(sin(r∗x̂y, rx̂y), 0)] (9)

where r is the predicted value. r∗ are ground truth.
The L1, L2, L3, L4, L5 and L6 make up the endpoint

regression loss:

Ler =
6∑
i=1

wiLi (10)

where wi are the weights of losses.
The MultiBin bounding box loss is as follows:

Lmbb = w0Lbc + Ler (11)

where w0 is the weight of the bin classification loss.
The total loss of our model can be expressed as:

Ltotal = αLfs + βLh + Lmbb (12)

where α, β are the weights of losses.

IV. IMPLEMENTATION
In this section, we describe the implementation detail of our
network.

A. NETWORK ARCHITECTURE
In the spare BEV feature coding network, we set the linear
layer’s input/output channel to (9, 64). In the backbone net-
work, our S-DLA network consists of 3 downsampling blocks
and 3 aggregation blocks.

The downsampling block has a normal sparse convolution
with 3 sparse submanifold convolution layers. The param-
eters of downsampling block are (Cin,Cout ,K , S,Nsubm).
In the downsampling block, the input sparse tensor is down-
sampled by a normal sparse convolution with the input chan-
nel Cin, the output channel Cout , the kernel size K × K and
the downsampling stride S. The output feature is fed into
the sparse submanifold convolution with the input channel
Cout , the output channel Cout , the kernel size K . We cascade
Nsubm sparse submanifold convolution layers. The aggrega-
tion block takes two feature maps as inputs, one of them is
a coarse feature map from the downsampling block with a
larger scale, and another one is a fine feature map from the
block with a smaller scale. The parameters of aggregation
layer are (C l

in,C
s
in,Cout ,K , S,Nsubm). In aggregation block,

we first upsample the coarse feature map using sparse inverse
convolution layer with the input channelC l

in, the output chan-
nelC l

in, the kernel sizeK and the upsampling stride S to make
its size and active point same with the fine feature map, then
we concatenate channel-wise feature vectors of upsampled
feature map with feature vectors from fine feature map using
concatenation layer to produce a C l

in + Cs
in feature map.

We cascade Nsubm submanifold sparse convolution layer. The
first of them compresses the channel of feature map from
C l
in + Cs

in to Cout with a kernel size K × K . The following

84892 VOLUME 9, 2021



B. Wang et al.: Real-Time 3D Object Detection

TABLE 1. Evaluation of Lidar-based 3D object detectors in KITTI validation dataset.

sparse submanifold convolution layers have the same param-
eters (Cout ,Cout ,K ). We add a BatchNorm layer after every
convolution layer.

We use three two-layer-submanifold-convolution branches
in sparse detection head to predict foreground score, height
and height center, andMultiBin bounding box.We use a 3×3
kernel convolution for every branch, followed by a Batch-
Norm layer to extract the branch-special feature from the
shared sparse feature map. For foreground segmentation task,
we add a submanifold convolution with parameters (Cin, 1, 1)
followed by a sigmoid layer to get the probability. For height
and height center regression task we add a submanifold
convolution with parameters (Cin, 2, 1). And, for bounding
box regression task we add a submanifold convolution with
parameters (Cin, 9× Nb, 1).

B. CAR DETECTION
Following the detection range for cars in PointPillars [28],
we only take the point cloud within x, y, z range
[(0, 70.4), (−40, 40), (−3, 1)] meters as network’s input.
In input representation network we set the grid size to dL =
0.16 and dW = 0.16 meter, the maximum number of point in
grid T to 1000. We only keep M = 12000 non-empty grids.
For every point in a grid we generate a 9-channel input vector
and feed it into a linear layer with 64-channel output followed
by a BatchNorm layer and a ReLU layer to extract 64-channel
point-wise features. After element-wise max-pooling we get
M grid feature combining with the corresponding coordinates
we get a sparse feature map with size of H = 496 and W =
432. For car detection in the backbone network We assign
block D0(64, 128, 3, 2, 3), block D1(128, 128, 3, 2, 3), block
D2(128, 128, 3, 2, 3), block A0(128, 128, 256, 3, 2, 3) and
block A1(256, 256, 256, 3, 2, 3), block A2(256, 256, 256,
3, 2, 3). In the detection head network we set the first convo-
lution layer (256, 128, 3) in every branch. And all the follow-
ing 1× 1 convolution layers in every branch has 128-channel
input. We divide the orientation angle into N = 8 bins. For
car detection, we define the mean of height ha and the mean
height center za as 1.56 and −1.0 meters.

C. PEDESTRIAN AND CYCLIST DETECTION
Following the detection range for pedestrians and cyclists
in PointPillars [28], we set the input point cloud range to
[(0, 48), (−20, 20), (−2.5, 0.5)] meters for x, y, z respec-
tively. We use the same parameters in the stage of input
representation. And we get a feature map that has size of
H = 296 and W = 248. We follow the architecture settings
for car detection while we set the stride of block D0 to 1 to
get a final feature map with high resolution. We use different
detection heads for pedestrians and cyclists, and the parame-
ters of detection head networks are the same as the parameter
of the detection head network for cars. The two heads share
a common feature map as input. For pedestrian and cyclist
detection, we define the mean of height ha and the mean of
height center za as 1.73 and −0.6 meters.

D. HYPER-PARAMETERS
We use Adam optimizer together with one-cycle policy with
LR max 1 ∗ 10−4, division factor 10, momentum ranges
from 0.95 to 0.85, and fixed weight decay 0.01. The model
is trained for 200 epoch with batch size 8 on a NVIDIA
RTX2080Ti with 11 GB memory. During inference, we keep
top 1000 proposals for each object class, then apply NMS
with score threshold 0.3 and IoU threshold 0.5. The parame-
ters for total loss are set to α = 2, β = 1, w0 = 1, w1 = 2
and wi = 0.2 for i = 2, 3, 4, 5, 6.

E. DATA AUGMENTATION
Data augmentation is verified useful in training a 3D object
detection model [4], [5], [7]. In this paper, it is necessary to
introduce the data augmentation strategy to generate more
samples of objects for training themodel. Our data augmenta-
tion pipeline is shown as follows. First, we follow the method
of SECOND [4]. We collect the ground truths, including
labels, 3D bounding boxes, and the point cloud inside 3D
bounding boxes from the training dataset. For every training
point cloud and targets fed into the model, we randomly
select some labels and corresponding points and put them
into the training pairs. We randomly select 15, 10, 10 ground

VOLUME 9, 2021 84893



B. Wang et al.: Real-Time 3D Object Detection

truth samples for cars, pedestrians, and cyclists. We apply
a collision test to avoid overlap between added objects and
objects in the original training data.

Next, all ground-truth boxes and corresponding points
are individually rotated around the z-axis and translated
along X, Y, Z axes [28]. The rotation angle is from a
uniform distribution U[−π/20, π/20]. And the amount of
translation is from a Gaussian distribution N [0, 0.25]. After
that, we remove background points if they are in a ground
truth box.

Finally, we apply random flip along the x-axis [7], random
global rotation from U[−π/4, π/4]), random global transla-
tion along X, Y, Z axes from N [0, 0.2] and random scaling
from U[0.95, 1.05] [4], [5], [28].

V. EXPERIMENTS
We evaluate the performance of proposed FS23D on the
KITTI-object detection benchmark for 3D object detection
and BEV object detection tasks on the car, pedestrian, and
cyclist. In the KITTI dataset, each class’s objects are divided
into three different difficulty levels: easy, moderate, and hard,
accounted for the size, occlusion, and truncation of objects.
The KITTI dataset contains 7481 samples for training and
7518 samples for testing. We only perform experiments on
the original training data because access to the official KITTI
test server is limited. We split 7481 samples into a train-
ing subset with 3712 samples and a validation subset with
3769 samples, according to [13].We follow the official KITTI
evaluation protocols, evaluating the 3D object detection and
BEV object detection at a 0.7 IoU threshold for cars and a
0.5 IoU threshold for pedestrians and cyclists. The average
precision (AP) is computed as the performance measure.
Meanwhile, we measure the inference time of our model on
an NVIDIA RTX2080Ti GPU.

A. QUANTITATIVE ANALYSIS
We compare the 3D localization and 3D detection per-
formance of our model with state-of-the-art Lidar-based
methods, including MV3D [1], PIXOR [7], VoxelNet [5],
SECOND [4] and PointPillars [28]. The validation perfor-
mance of methods including MV3D, PIXOR, VoxelNet,
SECOND is copied from published papers if there are pro-
vided. Because the performance of PointPillars isn’t avail-
able in the article, we get the evaluation results for the car
categories from [37] and evaluation results for pedestrian and
cyclist category are produced by their released code. The
results of the evaluation on the validation dataset are shown
in Table 1.
On the car class, FS23D achieves the best results for

the hard instances in both BEV and 3D object detection,
increasing 1.17% and 4.18%, respectively, compared with
the second-best method PointPillars. Although our model
performs slightly worse than other methods on easy and
moderate instances, the means of average precision of three
levels of difficulty on the BEV detection and 3D detection

increase 0.3% and 1.77%, respectively, compared with the
second-best performing method. For the pedestrian class,
FS23D is slightly weaker than PointPillars, but it outperforms
VoxelNet for 3D detection. In the ablation study section
VI.D., we discuss the effect of grid size on detector per-
formance. When the grid size is 0.12 meters, the detection
performance of our model for pedestrians outperforms that
of Pointpillars on easy and moderate objects, though the
inference time is 2 ms longer. For the cyclist class, FS23D
outperforms other methods in all metrics. Compared with
PointPillars, FS23D increases the mean of average preci-
sion of three levels of difficulty on the BEV detection and
3D detection by 5.96% and 6.22%, respectively. Because
the NVIDIA TensorRT does not support sparse convolution,
we only test our FS23D in the Pytorch pipeline. We measure
the inference time of FS23D on an RTX2080Ti GPU and
achieve 18.1 ms of inference time. Compared with Pointpil-
lars running at 42.4 Hz, our FS23D can run at 55.1 Hz in the
Pytorch [12] pipeline.

B. QUALITATIVE ANALYSIS
We visualize the 3D detection boxes on the KITTI validation
set in Fig. 5 and Fig. 6.The detection boxes are shown in the
LIDAR view and projected onto the image view for better
visualization.

Fig. 5 shows high-quality detection results produced by
FS23D. From the figure, it is observed that our model could
locate and classify the objects in the complex scene (see
the subfigure in the first column of the first row and the
subfigure in the fourth column of the first row). Our FS23D
even detects objects not being labeled in the ground truth. For
hard-level objects that are heavily occluded or far away from
LIDAR, our model could keep the performance of detection if
there are enough points for extracting the objectness feature
(see the subfigure in the second column of the first row ).
As observed from the figure, our model could predict the
high-accurate orientation of objects, which is necessary for
the autonomous driving system to predict the object’s motion
direction.

Fig. 6 shows the failure case including false positives and
false negatives. False positives are most likely to occur on
background objects with features similar to object features
learned by FS23D network. For example, the motorcycle
is misclassed as a car, and the traffic sign on the sidewalk is
misclassed as a pedestrian in the Fig. 6(c). And the pole is
identified as a pedestrian in the Fig. 6(d). False negatives
mostly occur when the LIDAR points of objects are not
enough to extract distinguishable features for detection. The
main reasons are distance and occlusion. For example, in the
Fig. 6(b), the car on the top in the lidar view provides only a
few points that make it difficult to extract feature from those
points. The car is misclassed as background on the left of the
LIDAR view because of heavy occlusion, see Fig. 6(a). The
cyclist occluded by the traffic light pole is misclassed as back-
ground, see Fig. 6(c). Two nearby pedestrians only get one

84894 VOLUME 9, 2021



B. Wang et al.: Real-Time 3D Object Detection

FIGURE 5. Results of 3D detection on the KITTI validation set. In the figure 8 samples are visualized. For each sample, the 3D detection boxes and
ground-truth boxes are shown in the Lidar view (the lower part) and projected into the image-view (the upper part). We show the detection boxes
for cars (green), pedestrians (red), and cyclists (yellow). The ground-truth boxes are shown in gray. The orientation of boxes is shown by a ray
from the bottom center to the front of the box.

FIGURE 6. The failure case of results on the KITTI validation set. We follow the same visiualiztion setup from Fig.5.

TABLE 2. A comparison of the performance of different backbone networks on the KITTI validation set.

detection box because the pedestrian in the back is occluded,
see Fig.6(d).

VI. ABLATION STUDY
A. BACKBONE NETWORK
This section compares the detection performance of mod-
els with the sparse convolutional backbone network and

the dense convolutional backbone network. Shown in the
Table. 2, the detection performance of the method with the
sparse convolutional backbone network outperform that of
the method with the dense convolutional backbone network
for cars and cyclists. For pedestrian detection, the introduc-
tion of sparse convolution reduces the performance of BEV
detection and 3D detection. This is because the sparse feature

VOLUME 9, 2021 84895



B. Wang et al.: Real-Time 3D Object Detection

TABLE 3. A comparison of the performance of models with different box coding method and loss function.

TABLE 4. A comparison of the performance of models with different configurations of the number of bins.

map output from the sparse convolutional backbone network
has fewer proposals for the detection head than the dense
feature map output from the dense convolutional backbone
network. In particular, pedestrians occupy fewer grids than
cars and cyclists. This effect causes the reduction of the
number of foreground proposals for training and detection.
So, the performance of pedestrian detection gets worse after
the introduction of the sparse convolution.

B. BOX CODING METHODS
As shown in Table 3, we compare our box coding method
with box coding method proposed in [15]. Our method with
the endpoint regression loss L1 outperforms the method we
compare in all the difficult levels on the BEV detection, 3D
detection, and AOS. Adding the endpoint collinear loss and
the line vertical loss the BEV and 3D detection performances
increase obviously. After adding the center regression loss L4,
the dimension regression loss L5 and the rotation regression
loss L6, the BEV and 3D detection performances achieve
the best results compared with the above three methods. The
ablation study shows that the loss functions L4, L5, and L6
we designed could help to increases detection performance
for 3D detectors.

C. NUMBER OF BINS FOR ROTATION PREDICTION
The Classification-regression method proposed in [15] has
many applications in 3D object detection and has previously
only been used to predict target orientation. In this paper,
we propose a method that first predicts the orientation angle
classification and then predicts the corresponding 3D bound-
ing box of objects. Like predicting the orientation angle
influenced by the number of bins, our model is affected by
the number of bins. As shown in Table 4, the detection perfor-
mance of the bounding box increases as the bin increases, and
the BEV and 3D detection performances get the best results
when the number of bins = 8.

TABLE 5. Effect of the grid size for car detection.

TABLE 6. Effect of the grid size for pedestrian detection.

D. GRID SIZE
The effect of the grid size for car detection is shown
in Table 5. The grid size directly determines the number
of non-empty grids. In the pseudo-image, the larger grid
size brings fewer non-empty grids and faster detection speed
and reduces the detection precision for trade-off because the
larger grid size can obscure the extracted features inputted to
the backbone network, the precision of object classification,
and 3D bounding box prediction. The grid size of 0.16 m gets
the best results, while the grid size of 0.20 m brings the fastest
detection speed. For pedestrian detection, the small grid size
of 0.12 meters improves the detection precision compared to
the grid size of 0.16meters shown in Table 6. Simultaneously,
when the grid size is 0.12 meters, our model outperforms
Pointpillars [28] on easy and moderate objects, although the
inference time is 2ms less.

84896 VOLUME 9, 2021



B. Wang et al.: Real-Time 3D Object Detection

VII. CONCLUSION
In this paper, we introduce FS23D, a novel end-to-end fully
sparse convolutional 3D detection network. We design the
S-DLA backbone network and sparse detection head using
sparse convolutional layers that only process non-empty grids
to reduce the inference runtime and FLOPs. And, the Multi-
Bin box coding method can predict 3D bounding box and ori-
entation effectively. Experiments on the KITTI dataset show
that our FS23D outperforms other state-of-the-art methods for
detecting cars and cyclists. Meanwhile, our FS23D realizes
real-time 3D detection for cars, pedestrians, and cyclists.

REFERENCES
[1] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, ‘‘Multi-view 3D object

detection network for autonomous driving,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 1907–1915.

[2] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner, ‘‘Vote3Deep:
Fast object detection in 3D point clouds using efficient convolutional neu-
ral networks,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2017,
pp. 1355–1361.

[3] D. Z. Wang and I. Posner, ‘‘Voting for voting in online point cloud object
detection,’’ in Proc. Robot., Sci. Syst., 2015.

[4] Y. Yan, Y. Mao, and B. Li, ‘‘SECOND: Sparsely embedded convolutional
detection,’’ Sensors, vol. 18, no. 10, p. 3337, Oct. 2018.

[5] Y. Zhou and O. Tuzel, ‘‘VoxelNet: End-to-end learning for point cloud
based 3D object detection,’’ in Proc. IEEE/CVFConf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 4490–4499.

[6] M. Simon, S. Milz, K. Amende, and H. M. Gross, ‘‘Complex-YOLO:
An Euler-region-proposal for real-time 3D object detection on point
clouds,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), Munich, Germany,
Sep. 2018, pp. 197–209.

[7] B. Yang, W. Luo, and R. Urtasun, ‘‘PIXOR: Real-time 3D object detection
from point clouds,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 7652–7660.

[8] B. Graham, ‘‘Spatially-sparse convolutional neural networks,’’ 2014,
arXiv:1409.6070. [Online]. Available: http://arxiv.org/abs/1409.6070

[9] B. Graham,M. Engelcke, and L. V. D.Maaten, ‘‘3D semantic segmentation
with submanifold sparse convolutional networks,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 9224–9232.

[10] H.Wei, Y. Zhang, Z. Chang, H. Li, H.Wang, and X. Sun, ‘‘Oriented objects
as pairs of middle lines,’’ 2019, arXiv:1912.10694. [Online]. Available:
http://arxiv.org/abs/1912.10694

[11] A. Geiger, P. Lenz, and R. Urtasun, ‘‘Are we ready for autonomous driving?
The KITTI vision benchmark suite,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2012, pp. 3354–3361.

[12] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, ‘‘Automatic differentiation in
PyTorch,’’ in Proc. Future Gradientbased Mach. Learn. Softw. Techn.
(Autodiff), 29th Annu. Conf. Neural Inf. Process. Syst. (NIPS), 2017.

[13] X. Chen, K. Kundu, Y. Zhu, H. Ma, S. Fidler, and R. Urtasun, ‘‘3D
object proposals using stereo imagery for accurate object class detection,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 5, pp. 1259–1272,
May 2018.

[14] P. Li, X. Chen, and S. Shen, ‘‘Stereo R-CNN based 3D object detection
for autonomous driving,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 7636–7644.

[15] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecká, ‘‘3D bounding
box estimation using deep learning and geometry,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5632–5640.

[16] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun, ‘‘Monoc-
ular 3D object detection for autonomous driving,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2147–2156.

[17] B. Li, W. Ouyang, L. Sheng, X. Zeng, and X. Wang, ‘‘GS3D: An effi-
cient 3D object detection framework for autonomous driving,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 1019–1028.

[18] G. P. Meyer, A. Laddha, E. Kee, C. Vallespi-Gonzalez, and
C. K. Wellington, ‘‘LaserNet: An efficient probabilistic 3D object
detector for autonomous driving,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 12669–12678.

[19] B. Li, T. Zhang, and T. Xia, ‘‘Vehicle detection from 3D lidar using fully
convolutional network,’’ in Proc. 12th Robot. Sci. Syst., 2016.

[20] B. Li, ‘‘3D fully convolutional network for vehicle detection in
point cloud,’’ 2016, arXiv:1611.08069. [Online]. Available: http://
arxiv.org/abs/1611.08069

[21] Z. Wang and K. Jia, ‘‘Frustum ConvNet: Sliding frustums to aggre-
gate local point-wise features for amodal 3D object detection,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Nov. 2019, pp. 1742–1749.

[22] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, ‘‘Frustum PointNets for
3D object detection fromRGB-D data,’’ inProc. IEEE/CVFConf. Comput.
Vis. Pattern Recognit., Jun. 2018, pp. 918–927.

[23] M. Liang, B. Yang, S. Wang, and R. Urtasun, ‘‘Deep continuous fusion
for multi-sensor 3D object detection,’’ in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2018, pp. 641–656.

[24] K. Shin, Y. P. Kwon, and M. Tomizuka, ‘‘RoarNet: A robust 3D object
detection based on RegiOn approximation refinement,’’ in Proc. IEEE
Intell. Vehicles Symp. (IV), Jun. 2019, pp. 2510–2515.

[25] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander, ‘‘Joint 3D
proposal generation and object detection from view aggregation,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2018, pp. 1–8.

[26] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, ‘‘PointNet:
Deep learning on point sets for 3D classification and segmentation,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 77–85.

[27] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, ‘‘PointNet++: Deep hierarchical
feature learning on point sets in a metric space,’’ in Proc. Conf. Neural Inf.
Process. Syst. (NIPS), 2017, pp. 5099–5108.

[28] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
‘‘PointPillars: Fast encoders for object detection from point clouds,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 12689–12697.

[29] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time
object detection with region proposal networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 91–99.

[30] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot MultiBox detector,’’ in Proc. Eur. Conf.
Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 21–37.

[31] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2016, pp. 779–788.

[32] S. Shi, X. Wang, and H. Li, ‘‘PointRCNN: 3D object proposal generation
and detection from point cloud,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 770–779.

[33] Z. Yang, Y. Sun, S. Liu, X. Shen, and J. Jia, ‘‘STD: Sparse-to-dense 3D
object detector for point cloud,’’ in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2019, pp. 1951–1960.

[34] E. Shelhamer, J. Long, and T. Darrell, ‘‘Fully convolutional networks for
semantic segmentation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 4, pp. 640–651, 2017.

[35] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional net-
works for biomedical image segmentation,’’ in Proc. Med. Image Comput.
Comput.-Assist. Intervent., 2015, pp. 234–241.

[36] F. Yu, D. Wang, E. Shelhamer, and T. Darrell, ‘‘Deep layer aggregation,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 2403–2412.

[37] Z.Wang, H. Fu, L.Wang, L. Xiao, and B. Dai, ‘‘SCNet: Subdivision coding
network for object detection based on 3D point cloud,’’ IEEEAccess, vol. 7,
pp. 120449–120462, 2019.

[38] K. Minemura, H. Liau, A. Monrroy, and S. Kato, ‘‘LMNet: Real-time
multiclass object detection on CPU using 3D LiDAR,’’ in Proc. 3rd Asia–
Pacific Conf. Intell. Robot Syst. (ACIRS), Jul. 2018, pp. 28–34.

[39] J. Zhou, X. Tan, Z. Shao, and L. Ma, ‘‘FVNet: 3D front-view proposal
generation for real-time object detection from point clouds,’’ in Proc. 12th
Int. Congr. Image Signal Process., Biomed. Eng. Informat. (CISP-BMEI),
Oct. 2019, pp. 1–8.

[40] Z. Liang, M. Zhang, Z. Zhang, X. Zhao, and S. Pu, ‘‘RangeR-
CNN: Towards fast and accurate 3D object detection with range image
representation,’’ 2020, arXiv:2009.00206. [Online]. Available: http://
arxiv.org/abs/2009.00206

[41] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. Int. Conf. Mach.
Learn., 2015, pp. 448–456.

[42] V. Nair and G. E. Hinton, ‘‘Rectified linear units improve restricted Boltz-
mann machines,’’ in Proc. ICML, 2010, pp. 807–814.

VOLUME 9, 2021 84897



B. Wang et al.: Real-Time 3D Object Detection

BO WANG received the B.S. degree in micro-
electronics from Jilin University, in 2016. He is
currently pursuing the Ph.D. degree with the
Changchun Institute of Optics, Fine Mechanics
and Physics, Chinese Academy of Sciences,
China. His research interests include object detec-
tion and 3D object detection.

MING ZHU is currently a Research Fellow
and a Supervisor of Ph.D. candidates with the
Changchun Institute of Optics, Fine Mechanics
and Physics, Chinese Academy of Sciences. His
research interests include digital image process-
ing, television tracking, and automatic target
recognition technology.

YING LU received the B.S. degree in mechanical
engineering from Shandong University, in 2016.
She is currently pursuing the Ph.D. degree
with the Changchun Institute of Optics, Fine
Mechanics and Physics, Chinese Academy of Sci-
ences, China. Her research interests include optical
mechanical structure design and remote sensing.

JIARONG WANG was born in Changchun, Jilin,
China, in 1989. She received the B.S. degree in
optical engineering from the Changchun Univer-
sity of Science and Technology and the M.S.
degree in circuits and systems from Jilin Univer-
sity. She is currently pursuing the Ph.D. degree
with the Changchun Institute of Optics, Fine
Mechanics and Physics, Chinese Academy of Sci-
ences, China. Her research interests include 2D
and 3D object detections and stereo vision.

WEN GAO is an Associate Research Fellow
with the Changchun Institute of Optics, Fine
Mechanics and Physics, Chinese Academy of Sci-
ences. Her research interests include digital image
processing, television tracking, and automatic tar-
get recognition technology.

HUA WEI received the B.S. degree in automation
from Shandong University. She is currently pursu-
ing the Ph.D. degree with the Changchun Institute
of Optics, Fine Mechanics and Physics, Chinese
Academy of Sciences, China. Her research inter-
ests include object detection and fine-grained
recognition.

84898 VOLUME 9, 2021


