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A B S T R A C T   

Despite the increasing visible optical remote sensing cameras equipped with panchromatic and four-band mul-
tispectral sensors, the application of multispectral data is still rarely used in the field of remote sensing ship 
target detection with the openly recognized challenge to improve detection precision. Towards this end, a ship 
target saliency detection method is proposed in the paper, which combines weighted least squares (WLS) with 
maximum symmetric surround (MSS), based on RGB-NIR four-band multispectral remote sensing images to 
locate the candidate area of ship targets quickly and accurately. The high frequency information of the NIR band 
image is extracted through the WLS filter and integrated into the RGB band image, and then the saliency of the 
image is analyzed. The detection results are combined with AIS to achieve complementary information for ship 
recognition. Some experiments show that the proposed method can effectively suppress the complex background 
information of clutter interference such as cloud waves and sea waves, highlight the ship target in low contrast 
scenes, and also increase recall and precision effectively.   

1. Introduction 

The monitoring of marine targets through optical remote sensing has 
become an important monitoring method, and has increasingly impor-
tant value in the military and civilian fields. One of the biggest chal-
lenges for ship detection in optical remote sensing images is to locate 
candidate areas from complex backgrounds quickly and accurately. 

At present, many visible remote sensing cameras in the world are 
equipped with visible panchromatic detectors and four-band multi-
spectral (RGB-NIR) detectors, e.g., Chinese “JL-1” wide format satellite 
camera (launched in January 15, 2020), China-Brazil Earth Resources 
Satellite 04A (launched in December 20, 2019), GF-12 Satellite 
(launched in November 28, 2019), and India ISRO Cartosat-3 (launched 
in November 27, 2019), etc. The same is true for well-known optical 
commercial remote sensing satellites such as QuickBird and SPOT series 
in some European and American countries. The panchromatic visible 
spectrum band is in the visible range (400-700 nm), and the NIR band 
(700-1000 nm) is beyond the visible range. It was shown in Chen et al. 
(2014) that the RGB-NIR data exhibits wider range of characteristics 
than the panchromatic visible spectrum. The combination of RGB and 
NIR data have provided good function and effect for image recognition 

and classification in the life scenes non-remote sensing, see Lezama 
et al. (2017); Pan et al. (2013) for examples. Therefore, it is both prac-
tically and theoretically important to study if we may use multi-spectral 
data for target detection in remote sensing images. 

For the ships detection of optical remote sensing image, despite 
many research efforts (Han et al., 2014; Proia and Page, 2010; Qi et al., 
2015; Song et al., 2018; Sun et al., 2012; Zhou et al., 2018), most of them 
are currently focused on the analysis of visible panchromatic optical 
remote sensing images, but relatively few results haven been obtained 
about the detection and analysis of ship target for multispectral images. 
The same is true of the saliency detection algorithm for remote sensing 
data. Later, many efforts are devoted to improve the existing saliency 
detection algorithms and apply them to the saliency detection of remote 
sensing images (Han et al., 2015; Nie et al., 2020; Wan et al., 2019; 
Zhang and Zhang, 2017). However, most of the research on such 
improved saliency detection algorithms for remote sensing images is 
focused on gray-scale panchromatic remote sensing images, and rarely 
involves multispectral and near-infrared images. Although wang et al. 
Wang et al. (2013a) proposed a saliency detection algorithm that uses 
the color and texture features of the near-infrared image to produce 
more accurate results, the method does not consider the influence of the 
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characteristics of the near-infrared image itself and the spectral infor-
mation on the saliency, just add one-dimensional image data. 

Scholars have studied and proved that near-infrared band images 
have a certain positive effect on image saliency detection. A multi- 
spectral image dataset of ordinary life scenes was produced as a new 
platform for saliency research(Wang et al., 2013b). Some regression 
model experiments have proved the effectiveness using the data set 
which includes RGB and NIR bands images in saliency detection. Due to 
the near-infrared image is not easy to obtain in life scenes, a method of 
directly generating near-infrared images from RGB images by a shallow 
neural network is proposed (DAI et al., 2019). This method effectively 
solves the problems in this direction that the difficulty of acquiring 
near-infrared images and hinders the development. However, the syn-
thesized near-infrared image is not obtained by real imaging, and the 
imaging mechanism is essentially different from the real near-infrared 
image. The traditional SLR camera was modified into a four-band 
camera, which captured hundreds of color (RGB) and near-infrared 
(NIR) scene images (Brown and Susstrunk, 2011). The calculation of 
the maximum entropy and joint entropy of the data set shows that the 
NIR channel provides significantly different information from the R, G, 
and B channels, and the experiment shows that the addition of 
near-infrared information leads to a significant improvement of scene 
detection and recognition performance. The above researches prove that 
the near-infrared band is of great significance for the detection of image 
saliency. Unfortunately, these saliency detection algorithms focuse on 
daily life pictures rather than remote sensing data. So naturally, whether 
the introduction of near-infrared images in remote sensing data will 
bring positive effects is the question of this paper. 

Optical remote sensing satellites can be used as independent systems 
to detect and track ships. However, it was unable to provide relevant 
information about the identity of the ship. Automatic Identification 
System (AIS) is a collaborative self-reporting system that can provide 
accurate static data (such as name, type, length and width), dynamic 
data (such as location, course over ground-COG and speed over ground- 
SOG), and some voyage-related data (Last et al., 2014). Currently, the 
main platforms of AIS are ground AIS and satellite AIS. Satellite AIS is 
not restricted by region, making it powerful, and it can provide the 
possibility of global maritime surveillance. On the one hand, AIS data 
can not only be used be used as ground-truth verification for ship 
detection in optical remote sensing satellite images, but also can be 
fused with optical satellite data to provide more information about the 
identity of noncooperative ships which are not broadcasting their po-
sitions. On the other hand, it is possible to pin-point those ship candi-
dates that do not carry an AIS, and thereby take appropriate security or 
rescue actions. Therefore, the combination of optical satellite data ship 
detection and AIS can overcome the limitations of the two and effec-
tively improve maritime surveillance capabilities. 

It is openly recognized that locating the candidate area is one of the 
most important steps of target detection in order to be able to extract the 
target quickly and efficiently. By analyzing the characteristics of the 
four-band remote sensing image, we found that the longer the wave-
length of the NIR image, the more prominent the high frequency in-
formation, including the high frequency information of the target and 
some background. After extracting the high frequency of the NIR image 
with WLS filter, Combined with the low frequency information of the 
RGB image, the reconstructed image high frequency can well surround 
the low frequency information, the saliency area extracted by the MSS 
method is more obvious, and it is easier to extract the saliency area. 
Motivated by this fact, a new method named Weighted least squares- 
maximum symmetric surround (WLS-MSS) is proposed in the paper to 
analyze the saliency of ship targets for RGB-NIR four-channel multi-
spectral remote sensing images, and obtain candidate areas for ship 
target detection and recognition. 

The remainder of this paper is structured as follows. Section 2 pre-
sents a comprehensive description of the WLS-MSS model and analyze 
the effectiveness of this model. In Section 3, the experiments and 

analysis of result is done. Finally, the conclusion is presented in Section 
4. 

Highlights  

C1 Instead of commonly used panchromatic single-band data, we 
utilize multi-spectrum data for ship targets detection. Using 
multi-spectral data can reflect the target spectral characteristics, 
which is more conducive to target detection.  

C2 For ship targets saliency detection, we propose a novel model 
named WLS-MSS with superior precision and recall using four- 
band multi-spectral remote sensing data. The model is robust, 
and it can detect dark targets and small targets in complex 
backgrounds. 

2. Relevant Theories 

2.1. Maximum symmetric surround visual attention model 

First, we introduce the maximum symmetric surround algorithm 
(Achanta and Susstrunk, 2010). Fig. 1 is a schematic diagram of the 
maximum symmetrical surrounding of each pixel, the area used is the 
sub-image of “maximum symmetrical surround”. “Maximum symmet-
rical surround” is a maximum rectangular sub-image with the target 
pixel as the center of its own sub-image and the entire image boundary 
as the limit. As shown in the blue and green pixels in Fig. 1, the corre-
sponding area is centered on blue or green pixels, and the area set with 
the minimum distance from the image in the x and y directions as the 
side length is the sub-image of “maximum symmetrical surround”. As 
shown in the blue and green dotted boxes in Fig. 1, the largest sub-image 
in the whole picture is the image center point, that is, the sub-image 
corresponding to the red pixel point. 

For a w × h image, the saliency values of image pixels defined by the 
MSS algorithm are 

S(x, y)= ‖ Iμ(x, y) − Iω(x, y) ‖, (1)  

where ‖ ⋅ ‖ is ℒ2 norm representing the Euclidean distance, Iω(x, y) is an 
image smoothed by a Gaussian filter in Lab color space, Iμ(x, y) is the 
characteristic mean value of the sub-image of “maximum symmetrical 
surround” of (x, y) pixel in Lab color space. The calculation formula is as 
follow 

Iμ(x, y) =
1
S
∑x+x0

i=x− x0

∑y+y0

j=y− y0

I(i, j), (2) 

The sub-image in the above formula is the maximum possible sym-
metrical surrounding area of a given central pixel in Lab color space, the 

Fig. 1. Schematic diagram of maximum symmetrical surround  
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Fig. 2. Flow chart of ship saliency detection of four-band remote sensing image  
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offset x0, y0, and area S are calculated as 

x0 = min(x,w − x),
y0 = min(y, h − y),
S = (2x0 + 1)(2y0 + 1),

(3) 

Therefore, the closer the center pixel is to the edge of the object, the 
narrower it is, that is, the sub-image with the object partial area centered 
on the center pixel is smaller. The acquisition process of Iμ(x, y) can 
essentially be regarded as the mean filter of the adaptive window, which 
can average the energy of object boundary and interior with high energy 
and can average the low energy of the background area. The algorithm 
can suppress the low-brightness background of the image and highlight 
the foreground area of the high-brightness target. However, when there 
is a lot of high-frequency information in a complex background, the 
target will be insignificant. 

2.2. Weighted least squares filtering 

The weighted least squares optimization framework(Farbman et al., 
2008) is a non-linear, edge-preserving smoothing method that can 
capture details at various scales through the multi-scale decomposition 
of preserved edges. An edge-preserving filter can be seen as a combi-
nation of two contradictory goals. We want the target image to be as 
close as possible. At the same time, except where there is a large change 
in the edge gradient, the smoother the better, which is expressed 
mathematically as: 

∑

p

(
(
up − gp

)2
+ λ

(

ax,p(g)
(

∂u
∂x

)2

+ ax,p(g)
(

∂u
∂y

)2
))

, (4)  

where the subscript p represents the spatial position of the pixel. The 
goal of data term (up − gp)

2 is to minimize the distance between u and g,
while theregularization tries to achieve smoothing by minimizing the 
partial derivatives of u. The smoothness requirements vary spatially by 
the smoothness weights ax and ay depending on g. Finally, λ is respon-
sible for the balance between the two terms; increasing the value of λ 
will cause the image u to gradually smooth. 

The Eq. (4) can be rewritten into matrix form: 

(u − g)⊤(u − g) + λ
(

u⊤D⊤
x AxDxu+ u⊤D⊤

y AyDyu
)
, (5)  

where Ax and Ay are diagonal matrices with ax, p(g) and ay, p(g) as di-
agonal elements, Dx and Dy are forward difference matrices, and are 
backward difference operators. To make the minimum value of Eq. (5), u 
should meet the following requirements: 
(
I + λLg

)
u = g, (6)  

which Lg = D⊤
x AxDx + u⊤D⊤

y AyDy. 
To obtain an approximate image gfilter, which is as close as possible 

to the input image g, while the obviously gradient along g is as smooth as 
possible at the same time, we seek solutions that minimize the following 
objective functions: 

Fig. 4. The original L band image and the Lnew image reconstructed by adding high-frequency information of NIR image  

Fig. 3. Picture of ships under the interference of four-band waves. (a) RGB color image (b) Blue band image (c) Green band image (d) Red band image (e) NIR 
band image 
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Fig. 5. Comparison of saliency detection results between traditional MSS algorithm and WLS-MSS method  
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gfilter = Fλ(g) =
(
I + Lg

)− 1g, (7)  

with the subscript representing the pixel position in space. The first term 
of the objective function represents that the more similar the input 
image and the output image are, the better, and the second term is the 
regular term, which makes the output image as smooth as possible by 
minimizing the partial derivative. The weight of the smoothing term 
depends on the input image. When the edge gradient of the input image 
changes greatly, we want its constraint to be smaller to retain the 
structural information of the image, and when the edge gradient of the 
image changes very little, we think these details are not important. The 
constraint can naturally be larger, it is a regular term parameter. 
Balancing the proportion of the two, the larger the proportion of the two 
is, the smoother the image will be. 

2.3. WLS-MSS saliency detection model 

Because in the optical remote sensing images, the image contrast is 
often relatively low, especially in marine areas, sometimes targets such 
as ships are not prominent. Compared with the visible image, the near- 
infrared image can better reflect the image details, which is of great 
significance for image enhancement. In order to make the ship target 
more prominent, we combined the near-infrared image, used the WLS 
filtering method to enhance the high-frequency information of the 

image, and loaded the high-frequency area of the near-infrared image 
onto the visible image, and reconstructed the Lab image transformed 
from the visible remote sensing image. Finally, the reconstructed Lab 
image is used to calculate the saliency in the largest symmetric sur-
rounding area. 

Fig. 2 illustrates the entire process of the proposed method. Given the 
four-channel multispectral input image, we first convert the RGB three- 
channel image to the CIELab color space and obtain the brightness im-
ages L and two chroma images a and b. Then, the NIR channel image and 
the L channel image are decomposed into base and detail layers by WLS 
filter. The operation process only needs to subtract the low-frequency 
filtered image from the original image to obtain the high-frequency 
image with details. The base image contains low-frequency content, 
which is usually a smoother area, while the detail layer includes high- 
frequency content with edges and sharp transitions(such as noise). In 
this way, we get the base image Bnir and the detail image Dnir of the NIR 
image, as well as the base layers BL and the detail layer DL of the 
brightness channel L. The base layer of the RGB image BL contains low- 
brightness information perceived by the human visual system, so the 
base layer of NIR is discarded. We combine the detail layer Dnir of the 
NIR image with the base layer BL of the Lab color space image brightness 
map L obtained by using WLS to obtain a new brightness image Lnew. 
This new brightness image Lnew enhances the contrast and detail of the 
original image. Next, it is combined with the chrome images a and b of 
the Lab color space image to reconstruct the final image Labnew. Finally, 

Fig. 6. Comparison of detection results in different scenes. Line (a) is the original RGB image, the ship target is circled, line (b) is the improved algorithm detection 
result, and line (c) is the original algorithm detection result. 

Fig. 7. Procedure of fusion between optical satellite remote sensing image and AIS data  
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Fig. 8. The typical scenes of original color remote sensing image. (a) is the black polarity target scene, (b) is the sea wave scene, (c) is the fog interference scene, (d) 
and (e) are the cloud interference scenes, (f) is the clean scene. 
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the new image is calculated by the maximum surround model to obtain 
the final saliency image. 

Fig. 3 shows the B, G, R, and NIR four-channel images of the input 
image, which contain ten ships. The background is filled with a lot of the 
clutter formed by the waves, and the clutter is not uniform. It can be seen 
from the Fig. 3 that the longer the wavelength of the NIR image, the 
cleaner the background and the more prominent the target. Fig. 4 shows 
the L-channel image under the original Lab transformation and the 
reconstructed L-channel image after adding the near-infrared image. In 
the Fig. 4, we can see that the reconstructed L-channel clearly highlights 
the target and suppresses the background after adding the near-infrared 
image Fig. 5 (a) is the saliency map obtained by the traditional MSS 
saliency detection algorithm, and (b) is the saliency map using WLS 
filtering. We can see that there are four ships in the traditional MSS 
algorithm that are not as obvious as the improved ones, as shown by the 
red circle; in addition, one ship is almost lost, as shown by the green 
circle. Fig. 6 shows the detection results of several other different scenes 
(including wave, low contrast and cloud and fog scenes), (a) (b) are the 
detection results under the interference of sea waves, (c) (d) is the 
detection results of dark polar ships, (e) is the detection result of low 
contrast under the influence of fog, and (f) is the detection result of cloud 
interference. It can be seen that the improved algorithm effect is 
significantly better than the traditional algorithm. 

It can be seen that after the near-infrared image added, the target is 
obviously highlighted, the WLS algorithm is used to extract high- 
frequency information, and it is reconstructed with an L-channel 
image transformed from the RGB image and then combined with the 
original MSS algorithm, it has a good effectto extract the target’s sig-
nificance in a variety of complex scenes. 

2.4. Ship identification and confirmation combined with AIS 

Here, Fig. 7 describes the workflow of the proposed method of fusing 
optical satellite ship detection and AIS. First, the ship detection is per-
formed on the optical remote sensing image through the WLS-MSS 
method. Then, the ship positioning is realized via coordinate conver-
sion, and the AIS data is projected to the remote sensing image acqui-
sition time. Finally, extracted in the ships detection step, features 
(mainly geometric features) are compared with the information pro-
vided by the AIS to confirm the targets.  

1) Geographical location: To obtain the geographic location of the 
ships, the pixel coordinates need to be geo-referenced. For optical 
remote sensing data, the rational polynomial coefficients (RPCs) that 
directly describes the ground-to-image transformation by two-part 
cubic polynomial (Oh and Lee, 2015) is usually provided with the 
image. When the ship is at sea, the height can be set to approximately 
0. The inverse transformation (image to ground) can be used to 
calculate the corresponding ground coordinates.  

2) Time projection: Given remote sensing images, a spatiotemporal 
filtering is required to select only the AIS messages useful for data 
fusion. Based on the ships Maritime Mobile Service Identification 
(MMSI) number, AIS data is organized by location. A time projection 
step needs to be performed to obtain the ship positions of all AIS ship 
tracks at the time of remote sensing image acquisition, so as to obtain 
the time alignment between satellite image ship detection and AIS 
data. The approximate location of AIS data should be linearly 
interpolated or extrapolated to the acquisition time of satellite im-
ages because AIS transmission usually occurs continuously, but 

Fig. 9. The black polarity target scene result of image Fig. 8(a)  
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remote sensing image acquisition is only performed at fixed intervals 
(Yao et al., 2019).  

3) Information association and target confirmation: In the process of 
simultaneously observing remote sensing image and AIS, the 
following situations may occur: target and AIS target represent the 
same ship, and AIS target has no counterpart in image target (e.g., 
due to cloud shadowing), or the target is not displayed in AIS (e.g., 
due to lack of AIS transponder), the two systems can complement 
each other. Through Yao et al. (2019) tracking correlation method, 
the correspondence between the same target in the two systems can 
be solved. Confirm the target by comparing the target features ob-
tained by image detection with the information provided by AIS. 

3. Experimental Analysis 

3.1. Experimental data and environment 

In the experiment, four-band multispectral images of GF-1 and ZY-3 
optical remote sensing cameras were used as experimental materials. 
The spatial resolution of the multispectral detector is 8m, and the cor-
responding panchromatic image resolution is 2m. 500 groups of multi-
spectral data of different scenes (including calm sea, low contrast, dark 
polarity, obvious sea clutter, and cloud interference, etc.) were selected 
for the experiment. The image contains ships of different types and sizes, 
and the image size was unified at 512*512 pixels. 

3.2. Qualitative analysis of experimental results 

This section gives the detection results and comparative experiments 

in different scenes and selects several representative extreme environ-
ments for display. The six groups of source images is presented in Fig. 8 
(a)-(f) from the first to the sixth group. The current classic saliency 
detection algorithms AC(Cheng et al., 2015), FT(Yang et al., 2013), SR 
(Hou and Zhang, 2007), GBVS(Harel et al., 2006) algorithm and tradi-
tional adaptive algorithm based on pixel value segmentation (OTSU) 
(Otsu, 1979) are compared with the proposed method shown from Fig. 9 
(a)-(f) to Fig. 14(a)-(f). The first group to the sixth group of experiments 
are shown from top to bottom. The ship in Fig. 9 is a dark polar target. 
The contrast between the target and the scene is very low and it is hard 
to distinguish by the naked eye. The algorithm in this paper detects all 
the targets very well, while other centralized algorithms lose a large 
number of targets. For large-area and non-uniform wave interference, as 
shown in Fig. 10, some ships are in the wave and some are outside the 
wave. The algorithm in this paper, FT and SR algorithm can detect the 
target, but the algorithm in this paper is significantly better than the 
other two algorithms, and the other two algorithms have some clutter 
not filtered; the AC algorithm misses some targets. For a scene covered 
by fog, as shown in Fig. 11, there are four targets in the scene and all of 
them are detected by the proposed method, and the saliency is the best. 
Several other algorithms will lose 1-2 targets, especially small targets. 
Several other algorithms will lose 1-2 targets, especially small targets. 
Fig. 12-13 is the interference of two typical cloud cover targets. The 
clouds in Fig. 12 are relatively broken and high-frequency, while the 
clouds in Fig. 13 are relatively slow. As can be seen from Fig. 12, in the 
background of clouds, the algorithm in this paper and SR algorithm have 
good anti-cloud interference ability and good resistance to cloud cover 
and surrounding, and can accurately detect targets, especially those 
whose upper left corner is obscured by shredded clouds are difficult to 

Fig. 10. The sea wave scene result of image Fig. 8(b)  
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see with naked eyes, both algorithms can detect well. However, in 
Fig. 13, the SR algorithm does not detect the target ship. From this we 
can see that the SR algorithm can be highlighted in the relatively 
high-frequency areas, but not in the relatively flat low-frequency areas. 
Although some clouds will be attached to the algorithm in this paper, the 
detection results do not miss the ship target, so as to achieve the purpose 
of no missed alarm in the candidate area screening, and then the clouds 
can be removed in the target screening process. The AC algorithm and 
the FT algorithm cannot detect ships covered by clouds or near the 
clouds. In addition, it can be seen from the figure that the overall effect 
of GBVS algorithm is not good, and it is not suitable for the detection of 
small targets such as marine targets in remote sensing image; OSTU 
algorithm is only effective for scenes with very clean calm sea surface, as 
shown in Fig. 14, while other algorithms of this scene also can basically 
complete the detection. 

The reason why the WLS-MSS model is better than the above- 
mentioned algorithms for detection is that it not only adds multiple 
band information of the image, but also organically combines the ad-
vantages of the two algorithms. First, the MSS algorithm can shield the 
background and extract the saliency area of the target. In the back-
ground of large waves, the ship will be submerged in the waves. 
Although the ship will be larger than the wave, the MSS algorithm will 
integrate the texture of the ship and the background area. Either the 
significant area cannot be extracted, or both the ship and the waves are 
extracted. After adding the WLS of the near-infrared image to extract the 
high-frequency information, the outline of the ship is more prominent. 
The model effectively increases the contrast between the ship and the 
sea wave. In this way, when the MSS algorithm is used to extract the 
saliency area, the ships can be extracted and waves are suppressed, 

effectively. 
In general, in the above several scenarios, some algorithms can only 

be competent for the detection of one or two or three scenarios, and the 
algorithm in this paper can be well qualified for the detection task in the 
above several scenarios, and the saliency is the best. It can be seen from 
the figure that the algorithm in this paper is resistant to interference 
from complex backgrounds, and has good effects on targets with low 
contrast or dark polarity, and can also detect small targets very well. 

3.3. Quantitative analysis of experimental results 

Compare the proposed algorithm with the AC algorithm, FT algo-
rithm, and SR algorithm which have a better visual effect and are 
competent for more scenes, and carry out the quantitative calculation. In 
the test results, true positive (TP), false positive (FP), false negative(FN), 
and true negative (TN) are used to evaluate algorithm performance. The 
region in a bounding box is considered as TP or FP (also called as false 
alarm). On the other hand, the region of a target is considered as FN (also 
called as miss alarm) if its bounding box exists in the ground truth but no 
bounding boxes predict it. Otherwise, the region is considered as TN 
(also called as correct rejection). Hence, the precision, recall indicators 
are formulated as follows: 

Recall =
TP

TP + FN
=

TP
NP

, (8)  

Precision =
TP

TP + FP
=

TP
NC

, (9)  

where NT is the total number of targets and NC is the total number of 
detected targets. 

Fig. 11. The fog interference scene result of image Fig. 8(c)  
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Fig. 12. The cloud interference scenes result of image Fig. 8(d)  
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The 450 groups of experimental materials including cloud cover 
scenes, strong sea clutter scenes, and stable sea surface scenes were 
calculated quantitatively. The results are shown in Tables 1-3. 

Tables 1 -3 give the quantitative evaluation index results of the 
proposed method and other algorithms. It can be seen from the table that 
for the targets of different application scenes, several algorithms have 
higher detection rates and lower false alarm rates in simple scenes, and 
the detection effect is good. However, in the case of strong clutter 
interference, the detection ability of the AC saliency algorithm is not 
stable, and the detection error rate is high (83.3%). The detection ability 
of the FT algorithm is slightly better than the AC saliency algorithm, but 
it is also sensitive to clutter and has a high detection error rate (75%). 
The SR algorithm has a high detection ability for all three targets, but it 
is accompanied by the highest false alarm rate for all three targets. The 
Precision-Recall Curves of three scenes are shown in Fig. 15. 

3.4. The result matching AIS 

After the targets are located by saliency detection, the geometric 
features are trained and extracted through the Support Vector Machine 
(SVM) algorithm in the location small box. The final detection result is 
obtained. Fig. 16 is the result of ship detection and matching with the 
AIS at the location of E114.2,N22.1 taken by the GF-1 satellite. The red 
frame is the target segmentation by SVM after the saliency detection 
locates the ship target. Through the use of inverse transformation (image 

to the ground) to calculate the corresponding ground coordinates, and 
time projection, and ship information in AIS for comparison. The green 
dot indicates the position of the ship in the AIS. Judging whether the 
matching result is correct through information such as location infor-
mation and ship area. At the same time, more specific information such 
as ship model can be obtained according to the AIS. The specific infor-
mation of the ship circled in yellow in the Fig. 16 is shown in Table 4 In 
addition, through the figure we can see that some ships have been 
detected without AIS. In this way, the two systems complement each 
other and play a more active role in ship inspection and ocean 
monitoring. 

4. Conclusion 

The saliency detection algorithm combined with RGB-NIR four-band 
multispectral remote sensing image marine target proposed in this paper 
effectively solves the problem of accurate detection of the weak signal 
saliency detection of ship target image under complex background to 
accurately locate the candidate area. The algorithm makes full use of the 
four-band detectors commonly used in existing visible remote sensing 
cameras, incorporates the characteristics of high-frequency highlights of 
near-infrared images in imaging into the algorithm, and uses the WLS- 
MSS method for image saliency analysis and obtain the saliency image 
of the ship targets. Compared with the existing classical saliency 
detection algorithms in different scenes, the method proposed in this 

Fig. 13. The cloud interference scenes result of image Fig. 8(e)  
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paper is more excellent in detection ability and false alarm suppression. 
The experimental results show that the algorithm can fully suppress the 
complex background information of clutter interference such as cloud 
wave wake, highlight the ship target, and can effectively reduce the false 
alarm rate while maintaining a high detection rate, and achieve the 
detection of single-frame ship target candidate areas. In addition, the 
combination of optical satellite remote sensing images and AIS can 
provide more detailed ship information for detection results, which is 

more conducive to target recognition. 
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Fig. 14. The clean scene result of image Fig. 8(f)  

Table 2 
Performance comparison in the scene of strong clutter interference (such as 
cloud, fog, sea waves) between the proposed method and other algorithms(200 
groups of 512*512 multispectral data)   

NT NC TP FP Recall Precision 

Ours 368 354 332 22 90.2% 93.8% 
AC 330 289 41 78.5% 87.6% 
FT 348 296 52 80.4% 85.1% 
SR 475 315 160 85.6% 66.3%  

Table 3 
Performance comparison in the low contrast and black polarity target scene 
between the proposed method and other algorithms(200 groups of 512*512 
multispectral data)   

NT NC TP FP Recall Precision 

Ours 165 161 158 3 95.8% 98.1% 
AC 108 101 7 61.2% 93.5% 
FT 126 116 10 70.3% 92.1% 
SR 136 124 12 75.2% 91.2%  

Table 1 
Performance comparison in the simple scene between the proposed method and 
other algorithms(200 groups of 512*512 multispectral data)   

NT NC TP FP Recall Precision 

Ours 589 592 580 12 98.5% 98.0% 
AC 606 547 59 92.9% 90.3% 
FT 615 550 65 93.4% 89.4% 
SR 708 560 148 95.1% 79.1%  
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Fig. 15. The Precision-Recall Curves of three typical scenes  
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