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Abstract: In this paper, an efficient method for single image dehazing is proposed based on
haze density estimation. We provide two forms of haze density estimation in different color
spaces, which are called scene-based haze density estimation in HSV color space and pixel-based
haze density estimation in RGB color space. The attenuation model of pixel-level transmission is
established based on the two haze density estimations by an exponential function. Guided filtering
is applied to smooth the transmission map and maintain the local edges. Global atmospheric
light is obtained adaptively by smoothed transmission. A series of experiments on different types
of hazy images are implemented, and the results reveal that the proposed method can obtain
high-quality haze-free images along with abundant details, high color fidelity, and few halo
artifacts.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Outdoor images often suffer from limited visibility and low contrast in hazy conditions, which
seriously affect the effectiveness of the surveillance system [1]. Therefore, it is urgent for
research on dehazing technology. Current image dehazing techniques can be grouped into
conventional image enhancement methods and physical-based methods. Image enhancement
methods [2,3], such as histogram equalization [4] and retinex [5], address contrast improvement
without considering the degradation mechanism, so the recovery quality is generally limited.
Improved results have been obtained by employing physical-based models, especially single
image haze removal. Researchers have proposed many dehazing algorithms using multiple
images [6–9], which require additional imaging equipment support. However, it is difficult to
obtain multiple images under different weather conditions, which limits the application of the
dehazing algorithms. For example, polarization-based dehazing methods [7–9] use images taken
with different degrees of polarization to obtain haze-free images effectively.

Algorithms [10–24] have attracted extensive attention from researchers due to their simplicity
and practicability. Many single image dehazing methods presented in the literature are imple-
mented based on the haze optical model proposed in [25,26], the model is usually depicted
as:

I(x) = J(x)t(x)⏞ˉ̄⏟⏟ˉ̄⏞
direct attenuation

+A(1 − t(x))⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
airlight

(1)

where x denotes the pixel location in the image, J(x) denotes the scene radiance, I(x) denotes
the observed hazy image, A denotes the global atmospheric light, and t(x) denotes the medium
transmission. In this model, the light received by the imaging device comes from two parts:
direct attenuation and airlight. In the direct attenuation model, the reflected light is weakened by
the atmosphere, which causes the brightness and contrast to decrease; the airlight describes that
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ambient light is scattered by the atmosphere scattering medium to form background light, which
causes the imaging result to blur. Recovery of a haze-free image from a single hazy image is an
underconstrained problem, as shown in Eq. (1).

Previous studies have proposed many single image dehazing methods. For example, He et
al. [23] proposed a classic dark channel prior (DCP), which is simple and effective, but it may
not work for some scenes that are similar to atmospheric light, such as gray and white objects.
Meng et al. [17] provided a transmission image optimization algorithm by exploring boundary
constraints and contextual regularization. Zhu et al. [18] proposed a simple but powerful color
attenuation prior (CAP) for haze removal. Berman et al. [21] proposed an algorithm based
on a new nonlocal prior in which the colors of a haze-free image were well approximated by
hundreds of distinct colors that form tight clusters in RGB space. Shin et al. [24] presented an
optimization-based dehazing algorithm that combined the radiance and reflectance components
of an image.

More recently, studies have focused on learning-based methods that can significantly improve
the quality of image dehazing, and these methods have achieved promising performance in
various visual tasks [27–33]. DehazeNet [27] designed a convolutional neural network (CNN) to
estimate the transmission map of a hazy image and subsequently used it to estimate atmospheric
light. Yang et al. [30] proposed a novel deep learning approach for single image dehazing
by learning dark channels and transmission priors. Dong [33] proposed a multiscale boosted
dehazing network (MSBDN) with dense feature fusion based on the U-Net architecture.

However, the main limitations of existing dehazing methods suffer from edge, texture, and
color distortion issues. These methods also introduce halo and gradient reversal artifacts. In this
paper, an efficient image dehazing algorithm is proposed based on haze density estimation in
different color spaces.

The remainder of this paper is arranged as follows. In Section 2, the proposed algorithm is
introduced. In Section 3, we present the experimental results and related discussions. Finally, we
conclude this paper in Section 4.

2. Proposed algorithm

2.1. Scene-based haze density estimation

In the HSV color space, the saturation S relates to the purity of a certain hue. Pure spectral color
is completely saturated, and the saturation gradually decreases with the addition of white light.
Therefore, with the addition of haze, the saturation of the image decreases. According to Eq. (2),
we obtain the normalized component of saturation IS.

IS = 1 −
min(Ir, Ig, Ib)

max(Ir, Ig, Ib)
(2)

where Ir, Ig, Ib are three components in the RGB color space. We convert IS to a grayscale image
with [0, 255] and perform histogram statistics to obtain the numbers of each pixel ni. Considering
that some outdoor images usually have some areas (gray objects, gray sky, very distant view,
etc.) with low saturation, to eliminate the interference of these areas on the haze estimation, we
delete these pixels, that is, the first peak of the histogram, and then calculate the average of the
remaining pixels from k1 to 255 as:

Iave =

255∑︁
i=k1

(i ∗ ni)

255 ∗
255∑︁
i=k1

ni

(3)
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For a saturation image, when the scene-based haze density is higher, the average of the
saturation image Iave should be smaller. We adopt the decreasing function of Eq. (4) to adaptively
obtain the representative quantity of scene-based haze density. It shows that a scene with higher
haze density has a larger ξs.

ξs = − log(Iave) (4)

Here, we select three the hazy images (in Fig. 1) for experiments. The first column is the haze
image, the second column is the saturation image, and the third and fourth columns are statistical
histograms. Figure 1 (a) is an image with sky areas with low saturation. Figure 1 (b) is an image
with no sky areas but the saturation is low in the distant view area. Figure 1 (c) is an image
where the sky area is blue and there are non-haze areas with low saturation. All the areas with
low saturation are marked by the red rectangle.

Fig. 1. Acquiring the adaptive ξs of the image

The first peaks are marked by red ellipses of the statistical histograms are removed, as illustrated
in fourth columns of Fig. 1. At this time, the k1 of the three images are 15, 36, 24, and the
corresponding ξs are 1.0589, 1.2384, and 1.0095 according to Eq. (4). In addition, we randomly
select a number of hazy images and conduct statistics on these images to find that the value of ξs
is generally between 1 and 3. Therefore, we give the bounds of ξs: when ξs<1, set ξs = 1; when
ξs>3, set ξs = 3, which makes the final value ξs ∈ [1, 3].

2.2. Transmission physical interpretation

In the RGB color space, c ∈ {R, G, B}, we find the maximum values max(Ic(x)) of the three
channels in the hazy image and consider the three maximum values to have the highest haze
density in the three channels. We calculate and normalize the L2 norm of the distance between
the pixels and max(Ic(x)) in three channels. The distance function drgb(x) is:

drgb(x) = (
| |Ic(x) − max(Ic(x))| |2

max(| |Ic(x) − max(Ic(x))| |2)
)c∈{R,G,B} (5)

Generally, a smaller value of drgb(x) indicates that pixel x has a larger pixel value and a higher
haze density. Therefore, we need to find a decreasing function with drgb(x) as the variable. We
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use ωrgb(x) to represent the pixel-based density of haze and select two simple and representative
decreasing functions, as shown in Eq. (6) and Eq. (7). The Eq. (6) indicates that the slope changes
from fast to slow, and the Eq. (7) indicates that the slope changes from slow to fast.

ωrgb(x) = (1 − drgb(x))
γ (6)

ωrgb(x) = 1 − (drgb(x))
γ (7)

It can be known from Eq. (5), drgb(x) ∈ [0, 1]. From Eq. (6) and Eq. (7), ωrgb(x) ∈ [0, 1].
The relationship between ωrgb(x) and drgb(x) is shown in Fig. 2. The solid curves show the
relationship of Eq. (6), and the dashed curves show the relationship of Eq. (7). When γ = 1,
ωrgb(x) obtained by Eq. (6) and Eq. (7) is the same, as shown by the black straight line in Fig. 2.
The relationship indicated by the solid line is that when it is small, the haze density decreases
rapidly, and when it is large, the haze density decreases slowly. The relationship indicated by the
dashed line is the opposite. Normally, the density of haze increases faster when the distance is
small, the density of haze increases becomes slower when the distance is large. Therefore, the
relationship indicated by the solid line (Eq. (6)) is more consistent with the actual attenuation of
haze density, so we choose Eq. (6) as the final relationship between drgb(x) and ωrgb(x).

Fig. 2. The relationship between drgb(x) and ωrgb(x) under different γ.

As γ increases in Eq. (6), the pixel-based haze density ωrgb(x) decreases faster, indicating
that the haze density of the imaging scene is also greater. It can be seen that γ is similar to
the physical meaning of the scene-based haze density ξs, which was discussed in the previous
section, and there is a positive correlation between ξs and γ. We assume that there is a simple
linear relationship between them:

γ = kξs + b (8)

Since ξs ∈ [1, 3], when ξs = 1, if γ = ξs, then γ = 1, as the black straight line in Fig. 3, which
does not conform to the actual haze density attenuation; therefore, in the range of ξs ∈ [1, 3], it
requires γ>ξs and γ(ξs) is an increasing function.

Fig. 3. The relationship between ξs and γ under different k and b.
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We select two forms of straight lines: one form is a group of parallel lines with the same slope
(i.e., k= 1) to the black line, and we set b as 0.5 and 1.0, as shown by the red and blue solid lines;
the other form is a group of straight lines passing the point of (0, 0), i.e., b= 0, which satisfies
γ = kξs and k> 1. We set k as 3.5/3, 4.0/3, and 4.5/3, as shown by the dashed line in Fig. 3.
As the scene-based haze density ξs increases, γ increases gradually, so it is more reasonable to
choose a straight line γ = kξs and k>1. Pixel-level transmission estimation according to the
physical meaning of ξs and ωrgb(x), the larger ξs and ωrgb(x) are, the higher the haze density and
the lower the transmission; the smaller ξs and ωrgb(x) are, the lower the haze density and the
greater the transmission. It can be seen that ξs and ωrgb(x) are positively correlated with the haze
density but negatively correlated with the transmission. Therefore, an estimation model for the
transmission is:

t(x) = e−ξs∗wrgb(x) (9)

Here, ωrgb(x) ∈ [0, 1], ξs ∈ [1, 3], then t(x) ∈ [exp(−3), exp(0)], that is, [0.0498, 1] is close to
[0, 1], which meets the actual transmission requirements t(x) ∈ [0, 1]. The influence of different
ξs on t(x) is shown in Fig. 4. It can be seen that when ξs ∈ [1, 3], the larger ξs is, the faster t(x)
attenuates; the smaller ξs is, the slower t(x) attenuates. When the scene-based haze density ξs is
the same, the transmission t(x) decreases as the pixel-based haze density ωrgb(x) increases.

Fig. 4. The effect of different ξs values on t(x).

We substitute Eq. (8) into Eq. (9) to obtain the expression of transmission estimation:

t(x) = e−ξs(1−drgb(x))
(kξs)

(10)

Here, drgb(x) ∈ [0, 1], ξs ∈ [1, 3], and we choose ξs = 1.5 and ξs = 2.0 as shown in Fig. 5 with
the solid line and the dashed line, respectively. We set k as 3.5/3, 4.0/3, and 4.5/3, corresponding
to the red, blue, and green curves in Fig. 5, respectively. When drgb(x) = 0, t(x) = e−ξs . The larger
the scene-based ξs is, the smaller the transmission t(x). For the same ξs, when drgb(x) is smaller,
that is, when the pixel-based haze density ωrgb(x) is larger, as the parameter k increases, the
transmission t(x) increases faster, which conforms to the change law of actual hazy scenes. In this
paper, we choose k = 4/3, which can obtain ideal dehazing results. In general, the transmission
changes slowly in a certain area, but the obtained pixel-level transmission map t(x) is greatly
affected by the grayscale of the hazy image. Therefore, it is necessary to perform smoothing
operations. Finally, the guide filter [34] is selected for smoothing with high efficiency and good
edge preservation.

2.3. Recovering the scene radiance

We first pick the top 0.05% darkest pixels in the transmission map. These pixels with the highest
intensity in the hazy image Ic(x) are selected as the calculation area Ω of atmospheric light,
and the total pixels of the areas Ω are N. The average of the pixels of the three channels in the
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Fig. 5. The effect of different ξs and k on t(x).

corresponding areas Ω are calculated, and then the maximum value of the average of the three
channels is found as the atmospheric light A.

A = max
c∈{r,g,b}

(

∑︁
x∈Ω

Ic(x)

N
) (11)

The areaΩ of the atmospheric light obtained by this method are shown in the red pixels marked
with yellow circle in Fig. 6. The atmospheric light is selected in the brightest area of the sky in
Fig. 6(a) and Fig. 6(b). Although there is a white car in Fig. 6(c), the atmospheric light is not
disturbed by the white objects. In Fig. 6(d), some pixels are selected on the white gooses, but
most pixels are selected in the region with the highest haze density, the average of pixels in the
area Ω effectively reduces the interference of white objects on atmospheric light A. This simple
method based on the correct estimation of transmission is more robust than the other methods.

Fig. 6. The areas Ω of atmospheric light selection

With t(x) and A being obtained, we can recover the scene radiance according to

J(x) =
I(x) − A

max(t(x), 0.1)
+ A (12)

Since the scene radiance is usually not as bright as the atmospheric light, the image after haze
removal looks dim [23]. We adopt the UM (unsharp masking) algorithm [22] to enhance the
recovered image J(x).
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3. Experimental results

3.1. Transmission estimation

The pixel-based estimation of t(x) proposed in this paper completely depend on the gray value of
the image pixels. Selecting the local area marked by the red box in the forest image of Fig. 1 for
experiment.

The smoothing transmission maps by Guided filter and the dehazed images are as shown in
the first row and second row of Fig. 7(a) ∼ 7(d), where corresponding to different Guided filter
radius of r=3, r=5, r=9 and r=15. The pixel-based transmission estimation and corresponding
dehazed image are shown in Fig. 7 (e). After smooth filtering, the transmission maps are blurred
to varying degrees, and the dehazed result is significantly better than the unfiltered one.

Fig. 7. The effect of different guided filter radius. (a) r= 3, (b) r= 5, (c) r= 9, (d) r= 15, (e)
Pixel-level unfiltered, (f) one-dimensional signal of the 202nd row and the column 90 to 130.

In order to more intuitively show the effect, we select one-dimensional signal of the 202nd row
and the column from 90 to 130 in the second row of Fig. 7(a) ∼ Fig. 7(d) which is marked by
red line. The one-dimensional signals with abrupt changes of the scene depth are displayed in
Fig. 7(f) with green, red, pink and blue curve respectively.

In Fig. 7(f), there are two abrupt edges which are marked with black circles. Compare with
the smoothed transmission map by bigger Guided filter radius, the smoothed transmission map
by the smaller Guided filter radius have more clear edge details of the leaves. However, when r
is too small (as shown by the green curve in Fig. 7 (f)), the transmission map is not smoothed
very well in areas with similar depth of field, and the noise of image is obvious after dehazing.
When r is too large (as shown by the blue curve in Fig. 7 (f)), the transmission map is excessively
blurred, and the halo effects will be obvious in the dehazed image where the depth of field
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changes abruptly. The pixels value of dehazed image become smaller, that is, the dehazed image
becomes darker. In summary, the radius of Guided filtering is selected as r= 5. In this paper, the
regularization parameter is set 0.01.

The dehazing results and the corresponding transmission results of He’s method [23], CAP
[18], Berman’s method [21], Shin’s method [24] and the proposed method as shown in Fig. 8 (a)
- Fig. 8 (e) (redder parts indicate high values, and bluer parts indicate low values).

Fig. 8. Comparison of the dehazing results and estimated transmission. (a) He’s [23]; (b)
CAP [18]; (c) Berman’s [21]; (d) Shin’s [24]; (e) Ours.

The transmission results of He’s method [23] and CAP [18] have clear details at the abrupt
change in depth of field, and other areas are excessively blurred; the overall edge information of
Berman’s method [21] and Shin’s method [24] transmission results are retained, and all other
details are blurred; the transmission map with our guide filtering is somewhere in between. The
transmission results of He’s method [23], CAP [18], Shin’s method [24] and ours are similar in
color, but the transmission of Berman’s method [21] is different from other colors that estimate
too small, especially in distant areas. Therefore, although the two rows of trees are well separated
in Berman’s [21] result, the enlarged images (as shown in the bottom left corners of Fig. 8,
which are outlined by the red rectangles) show that the details of the distant trees cannot be
distinguished, while the details of the trees in the distance of our method have been restored very
well. This shows that our method can recover haze-free images well from hazy images with
different depths of field.

3.2. Dehazing result with different hazy images

In this section, we compare our results with those of four state-of-the-art visibility restoration
algorithms: Berman’s [21], Shin’s [24], DehazeNet [27] and MSBDN [33]. The image with a
monotonous color is shown in the first row of Fig. 9, and the color of the image in the second row
of Fig. 9 is rich and contains white regions that are hard to handle because most existing dehazing
methods are sensitive to the white color. The dehazed images of Beman [21] and DehazeNet
[27] are too dark in local areas (such as tree trunk in Fig. 9), resulting in poor image contrast.
The details of Shin’s [24] and MSBDN [33] methods are not clear and still retain some dense
haze. The enlarged images shown in the upper left corner of Fig. 9 show that our method has
more cloud edge details than the other methods. Although the proposed method depends on the
gray values of the images, it is not affected by white objects (such as the white geese in Fig. 9).

The sky region is challenging for dehazing methods because clouds and haze are similar
natural phenomena with the same atmospheric scattering model. Three widely used images with
large sky areas are chosen as shown in Fig. 10.

The details of the scenes and objects are effectively restored by Berman’s [21] and Shin’s [24]
methods. However, the results significantly suffer from color distortion and halo artifacts in the
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Fig. 9. Comparison of the results from different methods. (a) Input hazy image; (b)
Berman’s [21]; (c) Shin’s [24]; (d) DehazeNet [27]; (e) MSBDN [33]; (f) Ours.

Fig. 10. Comparison of the results from different methods. (a) Input hazy image; (b)
Berman’s [21]; (c) Shin’s [24]; (d) DehazeNet [27]; (e) MSBDN [33]; (f) Ours.

sky regions. Although the color of DehazeNet [27] and MSBDN [33] is natural, their dehazing
ability is insufficient, and the dehazed images are still very blurry. Our method maintains the
natural colors of sky regions, but our method achieves a promising dehazing effect with little
color distortion and few halo artifacts in the sky due to the effectiveness of the transmission
estimation model in this paper.

One real-world outdoor hazy image is chosen in the test subset named SOTS of the RESIDE
dataset [35], as shown in the first row of Fig. 11(a). We also choose a hazy image with
inhomogeneous and dense haze as shown in the second row of Fig. 11(a). The visibility of Shin
[24] and DehazeNet [27] improves, but the contrast is not high. The MSBDN [33] tend to leave
haze in the results. The proposed method obtains higher contrast while retaining fine structures
and natural colors.

Other experimental results are shown in Fig. 12. This shows that the proposed method can
obtain images with natural colors and clear details under all different conditions.

3.3. Objective evaluation

We choose the mean square error (MSE) and image information entropy (IIE) as nonreference
image quality assessment metrics [22]. The reference image quality assessment metrics are the
rate of new visible edges ‘e’ and mean ratio ‘r’ of the gradients at visible edges [36,37]. High
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Fig. 11. Comparison of the results from different methods. (a) Input hazy image; (b) Shin’s
[24]; (c) DehazeNet [27]; (d) MSBDN [33]; (e) Ours.

Fig. 12. Part of the experimental results of the proposed method.

values of MSE, IIE, ‘e’ and ‘r’ obtained by a method indicate that the method achieves a better
performance than others.

In Table 1, we select two images in the first row of Fig. 9 and Fig. 10 for experiments, the
MSEs of the images dehazed by Berman’s [21] method are higher than our algorithm because
Berman’s [21] method has more serious overcorrection in the two images, making the image
contrast higher and the MSE value larger. The IIE, ‘e’ and ‘r’ of the image dehazing by our
method are the highest. Compared with the other four methods, our method obtains a higher
value in the quantitative analysis, which shows that our method improves the image contrast and
effectively enhances the image details.

Then, the full reference PSNR and SSIM metrics are computed, the image of the first rows of
Fig. 11 in the SOTS dataset is chosen for experiments, as shown in Table 1. It can be seen that
although MSBDN [33] method has obtained the highest PSNR and SSIM values. This is not
only due to the small distortion of the MSBDN [33] method, but also the ground truth of outdoor
images in the SOTS dataset are related to a certain amount of haze. Among the remaining results,
our method obtains higher PSNR and SSIM values.

To verify the speed advantage of our method, various images with different sizes were tested,
and the running times are compared with He’s method [23], Tarel’s method [12], Meng’s method
[17], Berman’s method [21], Shin’s method [24], and DehazeNet [27]. To ensure the fairness
of the comparison, all programs of the different methods are run in MATLAB 64-bit on a
personal computer equipped with Intel Core i7-4712HQ processor and 16 GB memory, and
image restoration is performed ten times to find the average time.
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Table 1. Objective Comparison of Image Dehazing effects

Example Berman’s Shin’s DehazeNet MSBDN Ours

First Row Fig. 9 MSE 68.228 46.431 53.402 46.499 51.476

IIE 7.438 6.832 7.246 7.095 7.611
e 1.737 1.652 1.525 1.501 2.097
r 2.967 1.503 1.309 1.294 3.158

First Row Fig. 10 MSE 71.112 55.743 62.295 60.001 67.725

IIE 7.250 7.291 7.352 7.377 7.497
e 0.144 0.131 0.136 0.139 0.194
r 1.783 1.352 1.175 1.108 2.341

1st row of Fig. 11 PSNR 11.784 14.904 14.030 23.921 22.348
SSIM 0.680 0.849 0.769 0.972 0.903

Table 2 lists the run-time (in seconds for processing an image) of the six dehazing methods
and our method. The data in Table 2 is listed in order from top to bottom according to the size of
the image resolution. From Table 2, Tarel’s method [12] was optimized using a median filter,
however, as the size of the image increased, the computational complexity rapidly increased. The
He_Guided’s method [34] uses guided filtering instead of soft matting operation, which reduced
the time-consuming significantly, but it is longer than the DehazeNet [27]. It can be observed
from Table 2 that the computational complexity of our method is significantly lower than other
methods, and the time-consuming of our method basically increases linearly with the increase of
resolution. In summary, our method has a highly efficient implementation.

Table 2. Run Time of Different Methods (s)

Resolution(pixels) He_Guided’s Tarel’s Meng’s Berman’s Shin’s DehazeNet Our

1024×768 8.351 61.224 8.483 12.776 10.913 6.267 4.437
511×513 4.437 5.133 3.614 9.095 4.091 2.109 1.249
600×400 2.695 6.692 3.633 8.549 3.418 1.879 1.180
512×350 1.679 3.427 3.621 8.452 3.262 1.581 0.718
427×312 1.491 2.365 2.941 5.397 2.449 1.373 0.574

4. Conclusion

In this paper, an efficient dehazing method is proposed based on haze density estimation in
different color spaces. In the HSV space, an estimate of the haze density of the scene is
obtained adaptively based on the saturation characteristics; In the RGB space, we obtain the
pixel-based haze density estimation map; then an exponential function transmission attenuation
model is established based on the above-estimated haze densities, which can accurately estimate
the transmission map; the global atmospheric light is obtained adaptively from the smoothed
transmission map which smoothed by Guided filter; Finally, the haze-free scene is restored
based on the atmospheric scattering model. Experimental results show that our method achieves
outstanding recovery performance for images with different color complexity, white interference,
sky, and inhomogeneous and dense haze.
Funding. National Natural Science Foundation of China (61801455).

Disclosures. The authors declare no conflicts of interest.

References
1. M. Saini, X. Wang, P. Atrey, and M. Kankanhalli, “Adaptive workload equalization in multi-camera surveillance

systems,” IEEE Trans. Multimedia 14(3), 555–562 (2012).

https://doi.org/10.1109/TMM.2012.2186957


Research Article Vol. 4, No. 6 / 15 June 2021 / OSA Continuum 1734

2. A. Galdran, J. Vazquez-Corral, D. Pardo, and M. Bertalmo, “Fusion-based variational image dehazing,” IEEE Signal
Process. Lett. 24(2), 1 (2016).

3. C. O. Ancuti and C. Ancuti, “Single image dehazing by multi-scale fusion,” IEEE Trans. on Image Process. 22(8),
3271–3282 (2013).

4. M. Abdullah-Al-Wadud, Hasanul Kabir, M. Ali Akber Dewan, and O. Chae, “A dynamic histogram equalization for
image contrast enhancement,” IEEE Trans. Broadcast Telev. Receivers 53(2), 593–600 (2007).

5. X. Fu, Y. Sun, M. Liwang, H Yue, and X Ding, “A novel retinex based approach for image enhancement with
illumination adjustment,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2014, 1190–1194.

6. H. Hu, J. Wu, B. Li, Q. Guo, and J. Zheng, “An adaptive fusion algorithm for visible and infrared videos based on
entropy and the cumulative distribution of gray levels,” IEEE Trans. Multimedia 19(12), 2706–2719 (2017).

7. Y.Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Polarization-based vision through haze,” Appl. Opt. 42(3),
511–525 (2003).

8. L. Shen, Y. Zhao, Q. Peng, CW. Chan, and SG. Kong, “An Iterative Image Dehazing Method With Polarization,”
IEEE Trans. Multimedia 21(5), 1093–1107 (2019).

9. F. Liu, L. Cao, X. Shao, P. Han, and X. Bin, “Polarimetric dehazing utilizing spatial frequency segregation of images,”
Appl. Opt. 54(27), 8116–8122 (2015).

10. R. T. Tan, “Visibility in bad weather from a single image,” in Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, 1–8 2008.

11. R. Fattal. “Dehazing Using Color-Lines,” Acm Transactions on Graphics 34(1), (2014).
12. J. P. Tarel and N. Hautiere, “Fast visibility restoration from a single color or gray level image,” in Proceedings of

IEEE International Conference on Computer Vision, 2201–2208 2009.
13. J. H. Kim, W. D. Jang, J. Y. Sim, and C. S. Kim, “Optimized contrast enhancement for real-time image and video

dehazing,” J. Vis. Commun. Image R. 24(3), 410–425 (2013).
14. R. Luzón-González, J. L. Nieves, and J. Romero, “Recovering of weather degraded images based on rgb response

ratio constancy,” Appl. Opt. 54(4), B222–31 (2015).
15. K. J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele, and D. Lischinski, “Deep

Photo: Model-based Photograph Enhancement and Viewing,” ACM Trans. Graph. 27(5), 1–10 (2008).
16. C. Dai, M. Lin, X. Wu, and D Zhang, “Single hazy image restoration using robust atmospheric scattering model,”

Signal Processing 166, 107257 (2020).
17. G. Meng, Y. Wang, J. Duan, S. Xiang, and C. Pan, “Efficient image dehazing with boundary constraint and contextual

regularization,” IEEE International Conference on Computer Vision 617–624 (2014).
18. Q Zhu, J Mai, and L Shao, “A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior,” IEEE

Trans. on Image Process. 24(11), 3522–3533 (2015).
19. K. B. Gibson and T. Q. Nguyen, “An analysis of single image defogging methods using a color ellipsoid framework,”

EURASIP Journal on Image and Video Processing, 2013(1), 2013.
20. R. Fattal, “Single image dehazing,” ACM Trans. Graph. 27(3), 1–9 (2008).
21. D. Berman, T. Treibitz, and S. Avidan, “Non-local Image Dehazing,” IEEE Conference on Computer Vision &

Pattern Recognition IEEE, 2016.
22. G Bi, J Ren, T Fu, T Nie, C Chen, and N Zhang, “Image Dehazing Based on Accurate Estimation of Transmission in

the Atmospheric Scattering Model,” IEEE Photonics J. 9(4), 1–18 (2017).
23. K. He, J. Sun, and X. Tang, “Single image haze removal using dark channel Prior,” in IEEE International Conference

on Computer Vision and Pattern Recognition, 1956–1963 (2009).
24. J Shin, M Kim, J Paik, and S Lee, “Radiance–Reflectance Combined Optimization and Structure-Guided l0-Norm

for Single Image Dehazing,” IEEE Trans. Multimedia 22(1), 30–44 (2020).
25. E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles. Wiley, New York, NY, USA 1976.
26. S. G. Narasimhan and S. K. Nayar, “Contrast restoration of weather degraded images,” IEEE Trans. Pattern Anal.

Mach. Intell. 25(6), 713–724 (2003).
27. B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao, “Dehazenet: An end-to-end system for single image haze removal,” IEEE

Trans. on Image Process. 25(11), 5187–5198 (2016).
28. W. Ren, S. Liu, H. Zhang, J. Pan, X. Cao, and M.-H. Yang, “Single image dehazing via multi-scale convolutional

neural networks,” in Proc. Eur. Conf. Comput. Vis, 154–169 2016.
29. Z. Yu, X. Wang, X. Bi, and D. Tao, “A Light Dual-Task Neural Network for Haze Removal,” IEEE Signal Processing

Letters, 1 2018.
30. D. Yang and J. Sun, “Proximal Dehaze-Net: A Prior Learning-Based Deep Network for Single Image Dehazing,”

Computer Vision ECCV 2018. Springer, Cham, 2018.
31. B. Li, X. Peng, Z. Wang, J. Xu, and F. Dan, “AOD-Net: All-in-One Dehazing Network,” IEEE International

Conference on Computer Vision (ICCV). IEEE, 2017.
32. A. Wang, W. Wang, J. Liu, and N. Gu, “AIPNet: Image-to-Image Single Image Dehazing with Atmospheric

Illumination Prior,” IEEE Transactions on Image Processing, 2018:1.
33. H. Dong, J. Pan, L. Xiang, Z. Hu, and M. H. Yang, “Multi-Scale Boosted Dehazing Network with Dense Feature

Fusion,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., 2020.
34. K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409

(2013).

https://doi.org/10.1109/LSP.2016.2643168
https://doi.org/10.1109/LSP.2016.2643168
https://doi.org/10.1109/TIP.2013.2262284
https://doi.org/10.1109/TCE.2007.381734
https://doi.org/10.1109/TMM.2017.2711422
https://doi.org/10.1364/AO.42.000511
https://doi.org/10.1109/TMM.2018.2871955
https://doi.org/10.1364/AO.54.008116
https://doi.org/10.1016/j.jvcir.2013.02.004
https://doi.org/10.1364/AO.54.00B222
https://doi.org/10.1145/1409060.1409069
https://doi.org/10.1016/j.sigpro.2019.107257
https://doi.org/10.1109/TIP.2015.2446191
https://doi.org/10.1109/TIP.2015.2446191
https://doi.org/10.1145/1360612.1360671
https://doi.org/10.1109/JPHOT.2017.2726107
https://doi.org/10.1109/TMM.2019.2922127
https://doi.org/10.1109/TPAMI.2003.1201821
https://doi.org/10.1109/TPAMI.2003.1201821
https://doi.org/10.1109/TIP.2016.2598681
https://doi.org/10.1109/TIP.2016.2598681
https://doi.org/10.1109/TPAMI.2012.213


Research Article Vol. 4, No. 6 / 15 June 2021 / OSA Continuum 1735

35. B. Li, W. Ren, D. Fu, D. Tao, D. Feng, W. Zeng, and Z. Wang, “Reside: A benchmark for single image dehazing,”
IEEE Transactions on Image Processing 28(1), 492–505 (2018).

36. N. Hautière, J.P. Tarel, D. Aubert, and É. Dumont, “Blind contrast enhancement assessment by gradient ratioing at
visible edges,” Image Anal. Stereol. 27(1), 87–95 (2008).

37. L. K. Choi, J. You, and A. C. Bovik, “Referenceless prediction of perceptual fog density and perceptual image
defogging,” IEEE Trans. on Image Process. 24(11), 3888–3901 (2015).

https://doi.org/10.5566/ias.v27.p87-95
https://doi.org/10.1109/TIP.2015.2456502

