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Abstract: We propose a method of measuring the terahertz (THz) Raman spectra of a material. As
Raman spectroscopy is a measurement of the relative frequency spectrum relative to the frequency of
the excitation source, sometimes it is not necessary to use an expensive THz source and THz detector.
Instead, an ultraviolet, visible, or infrared excitation source and corresponding detector can be used.
A combination of prisms and gratings is used to widen the field of view at high resolution. The reso-
lution of the system is 4.945 cm−1 (0.149 THz), and the spectral range is 2531.84 cm−1 (75.963 THz).
We measured the THz Raman spectra of solid powder, aqueous solutions, and mixtures, and studied
the effects of environment, container material, and time of measurement on the spectra. The results
show that the system is not significantly affected by interference from the water environment and
has good stability and repeatability. This method can be applied in many fields such as material
detection and environmental protection.

Keywords: terahertz Raman; spatial heterodyne spectrometer; spectral detection

1. Introduction

Terahertz (THz) waves are electromagnetic waves with frequencies from 0.1 to 10 THz,
wavelengths from 30 to 3000 µm, and wavenumbers from 3.3 to 330 cm−1. They are located
between the microwave and infrared ranges. A THz spectrum contains a wealth of infor-
mation such as molecular interactions [1], macromolecular vibration [2], ion vibrational
transitions [3], plasmon resonance [4,5], and polarization rotation of ferromagnetic semi-
conductors [6]. Due to these characteristics, THz spectroscopy has potential application in
fields such as biomedicine [7–9], astronomy [10], safety [11], and agriculture [12]. Xiaomei
Shi et al. used the resonant cavity mode to detect the THz spectrum of α-lactose. This
replaced the previous direct detection mode, and the sensitivity was more than 400 times
higher than that of the conventional mode. However, the cavity mode transmission caused
great material loss and led to reduction of the signal-to-noise ratio (SNR) [13]. Sayuri
Yamaguchi et al. used THz time-domain spectroscopy to detect rat brain tumors, but both
the THz source and detector had high requirements [14]. In addition, water has strong
absorption in the THz range [15], which makes current technology unable to detect THz
spectra of aqueous solutions. This greatly limits the application of THz spectroscopy.

To solve the above problems, Raman spectroscopy can be used to measure THz spectra
of an object. This can not only overcome the difficulties of detecting THz spectra of aqueous
solutions, but also breaks free of the strict constraints on the light source and detector
during THz measurement. Considering that the intensity of a Raman signal is ten orders
of magnitude lower than that of Rayleigh scattering, improving the intensity of the Raman
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signal and attenuating the intensity of Rayleigh scattering are the key points of instrument
design. C Julien et al. used three cascading monochromators to detect THz Raman spec-
tra [16]. However, the throughput of this method is low and the structure is complex. With
further technological development, THz Raman detection systems now use Bragg notch
filters (BNFs) to filter low-wavenumber signals. Christophe Moser et al. [17] and Xinru
Guan et al. [18] have used a combination of BNFs and a dispersive Raman spectrometer
to realize THz Raman measurement. However, the incidence slit of a dispersive Raman
spectrometer reduces the throughput and the SNR.

In this paper, we propose a THz detection system using a spatial heterodyne Raman
spectrometer structure that has no incident slit, no moving parts, high throughput, good
stability, and strong anti-interference ability. We used 532 nm green laser as the light source.
In addition, the zero-space frequency of spatial heterodyne Raman spectrometer is not
zero, and the detector pixel stores the information of each measured wavelength, which
improves the spectral resolution. The system uses BNFs to filter THz Raman signals. The
throughput is increased by combining prisms and gratings to widen the field of view. THz
Raman spectra were measured for sulfur, organic acids, nucleobases, and other solid
samples. The SNR was calculated for sulfur with different integration times and laser
powers. The spectra of samples in different containers were measured and analyzed. The
same laser power and integration time were used at different times to measure the same
sample to verify the stability and repeatability of the system. The aqueous solutions were
measured under different concentrations. In addition, measurements were done for solid
and liquid mixtures.

2. Theory
2.1. Basic Theory

The spatial heterodyne THz Raman spectrometer is depicted in Figure 1. A 532 nm
laser beam passes through lens 1 and is linearly varied from 0 to 140 mW using a linear
variable filter, and is then incident into beam splitter 1. It is divided into parts with a ratio
of 1:9. One part (10%) is used for the dimming path. The other part (90%) is incident to the
bandpass filters (BPFs) for laser purification; after the noise is removed, this part is reflected
to the collimating lens through mirror 2 and then reflected by mirror 3 and incident to the
BNF. It is then reflected from the filter to mirror 4, and then reflected to the objective lens
and focused to the sample through the objective lens. The Raman signal generated by the
laser beam incident on the sample is reflected to the BNF by mirror 4, and then incident to
the BNFs through the collimating lens and the filter. A pinhole aperture is inserted into
the collimating lens to remove stray light. To achieve maximum inhibition of Rayleigh
light, the BNFs are inclined at an angle to the optical axis and face opposite to each other
to avoid interference between them. After selective filtering, the signal is incident into
beam splitter 2 and is divided into two equal beams. The two beams are incident into
prism 1 (2) on their interference arms at the minimum deviation angle θP and then incident
into grating 1 (2).

θP = arcsin
(

n·sin
(α

2

))
(1)
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Figure 1. Optical structure of the spatial heterodyne THz Raman spectrometer.

The refractive index of the prism is n, and α is the apex angle of the prism. The gratings
are tilted at a fixed angle (the Littrow angle) to the optical axis so that light at the Littrow
wavelength exits the interferometer parallel to the optical axis. The interference between
the two beams results in wavenumber-dependent shearing. Light from the beam splitter
passes through the aperture and is incident to the imaging optics attached to the detector,
resulting in Fizeau-type interference fringes that are received by the detector. The grating
equations of the two interference arms are:

σ(sin(θL ± γ)) = mG1,2 (2)

where σ is the wavenumber of the incident light, θL is the Littrow angle of the grating,
m is the diffraction order, G1,2 are the groove densities of the gratings, and 2γ is the
angle between the two output wavelengths (2γ = 0 for the Littrow wavelength). The
Littrow wavenumber is σ0. In the first-order approximation, the angle between two output
wavefronts of any wavelength is derived as:

2γ = 4tanθL·
(σ − σ0)

σ
(3)

The spatial frequency of the interference is:

fx = 2σsinγ ≈ 4(σ − σ0)tanθL (4)

The Fourier relation between the interferogram and the incident spectrum is:

I(x) =
∫ ∞

0
B(σ)[1 + cos(2πx·4tanθL·(σ − σ0))]dσ (5)

The spectrum of the reconstructed image can be obtained through an inverse Fourier
transform. The spectral resolution of the system depends on the parameter [19] of the
grating on the interference arm:

δσ =
1

4WsinθL
(6)

where W is the grating width.
According to the sampling theorem, the spectral range of the system depends on the

number of pixels of the detector:

∆σ =
N
2
·δσ (7)
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The relationship between spectral resolving power R and maximum field of view
Ωmax is:

R =
2π

Ωmax
(8)

Therefore, to achieve high resolution and high throughput at the same time, we place
a prism with a certain apex angle on the interference arm. To widen the field of view, it
is necessary to reduce the quadratic dependence of the phase difference on the incident
angle, so that the quadratic coefficient of the incident angle is zero [20]; that is:

2
(

n2 − 1
)

tanθP = n2tanθL (9)

According to the above equations, we set the Littrow angle to 2.324◦; when the
refractive index is 1.527, the apex angle of the prism is 2.665◦.

For the spatial heterodyne THz Raman spectrometer system with the widened field of
view, the SNR can be calculated as follows:

SNR =

√
ηAΩ
2N

IδσT (10)

where η is the optical efficiency, A is the effective area of the system, and T is the total
integration time.

2.2. Calibration Theory

In practice, the system error leads to a frequency shift and broadening of spectral lines,
resulting in errors in spectral range and resolution. Wavelength calibration can obtain the
actual spectral range and resolution. Generally, the wavelength can be calibrated using a
light source with a known spectral range. In this study, a mercury lamp light source was
used to calibrate the wavelength of the optical system. After measurement of the fringe
frequencies of two known emission lines, the Littrow wavelength of the system can be
obtained through the following formula:

λL =
f2 − f1

( f2/λ1)− ( f1/λ2)
(11)

where λL is the Littrow wavelength, λ1 and λ2 are the known wavelengths of the calibration
light source, and f 1 and f 2 are the fringe frequencies of the known emission lines. According
to Equation (2), the Littrow angle of the two diffraction gratings on the interference arms
can be deduced:

θL = arcsin
(

λL·G
2

)
(12)

The spectral resolution is:

δσ =
1/λ1 − 1/λ2

f1 − f2
(13)

The spectral range of the instrument can be obtained from Equation (7).

3. Materials and Methods
3.1. Breadboard

The spatial heterodyne THz Raman spectrometer system consisted of an excitation
system, interference spectrometer, and imaging system. The experimental platform is
shown in Figure 2, and the main device parameters are shown in Table 1. A 532 nm laser
(MSL-FN-532, Changchun New Industries Optoelectronics Tech. Co. Jilin, Changchun,
China) was used as the excitation light source. A linear variable filter was used to adjust
the laser power from 0 to 140 mW. Beam splitter 1 was used to split the beam, and then the
BPFs were used to purify the beam. Then, mirror 2 reflected the beam to the collimating
lens group. The sample was placed at the focal point of the objective lens, and the Raman
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scattering light was excited by the incident laser. Scattering light higher than 550 nm
was reflected by a 550 nm short-pass filter (400–543 nm, Thorlab. Shanghai, China), and
scattering light lower than 500 nm was reflected by a 500 nm long-pass filter (508–2150 nm,
Thorlab). The Rayleigh scattering light was filtered by 532 nm BNFs (Optigrade). The
filtered Raman scattering light entered the interference system, and was divided into two
coherent beams by beam splitter 2 and incident on the respective prisms and gratings
of the two interference arms. After diffraction, the light was returned to beam splitter 2
and combined. The interference fringes were imaged on the target surface of the detector
(Ikon-m 934, Andor. Beijing, China) by the imaging optics (AF-S VR Micro-Nikkor 105 mm,
Nikon. Beijing, China), and the detector was cooled to −60 ◦C to reduce the thermal noise
inside the sensor chip.
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Figure 2. Spatial heterodyne THz Raman spectrometer.

Table 1. Key parameters of components used in the experimental breadboard.

Components Parameters Performance Index

Laser
Wavelength 532 nm, CW

Beam diameter ~2.0 (1/e, mm)
Beam divergence <1.5 (full angle, mrad)

Grating 1 Groove density 150 gr/mm
Littrow angle 2.324◦

Grating 2 Groove density 150 gr/mm
Littrow angle 2.324◦

Prisms Apex angle 2.665◦

Beam splitter Size 50.8 × 50.8 × 50.8 mm3

CCD
Pixel numbers 1024 × 1024

Sensor size 13.3 × 13.3 nm2

Pixel size 13 × 13 µm2

BPF
Design wavelength 532 nm

Diffraction efficiency 99.8%
Transmittance >94%

500 nm long-pass filter
Edge wavelength 508–2150 nm
Transition width 15 nm
Blocking region 200–485 nm

550 nm short-pass filter
Cut-off wavelength 400–543 nm

Transition width 17 nm
Blocking region 567–715 nm
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Table 1. Cont.

Components Parameters Performance Index

BNF
Design wavelength 532 nm

Optical density OD3
Transmittance >92%

Imaging optics Diameter 62 mm
Focal length 105 mm

3.2. Calibration

To determine the actual spectral range and spectral resolution of the optical system,
we used a low-pressure mercury lamp as the light source for wavelength calibration. The
mercury lamp has characteristic peaks at 546.075 nm, 573.964 nm, and 579.067 nm. Figure 3
shows the original interferogram and reconstructed spectrum of the mercury lamp.
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the position of the characteristic spectral line of the mercury lamp is 546.07 nm, 573.964 nm, and 579.067 nm.

According to Equations (11) and (12), two characteristic spectral lines (546.075 nm
and 579.067 nm) of the mercury lamp were used for the calibration. The results show that
the actual Littrow wavelength of the system is 540.904 nm, the Littrow angle is 2.324◦, the
system resolution is 4.945 cm−1 (0.149 THz), the spectral range is 2531.84 cm−1 (75.963 THz),
and the FWHM of the 546.075 nm characteristic spectral line in the restored spectrum is
5.1 cm−1 (0.153 THz), which is almost the same as the theoretical resolution.

4. Results and Discussion
4.1. THz Raman Spectrum and SNR of Sulfur

The measured sulfur powder concentration was 99.9%, and the integration time was
50 s under laser powers of 5 mW, 38 mW, and 70 mW. The obtained spectrum is shown in
Figure 4a. The external vibration of S8 molecules in the low-frequency part shows clear
Raman peaks at 27 cm−1 (0.81 THz), 50 cm−1 (1.5 THz), and 83 cm−1 (2.49 THz), and the
Raman peak at 151 cm−1 (4.53 THz) is assigned to the asymmetric S–S bending [21]. With
the increase of laser power, the intensity of characteristic peak increases significantly. At 50
cm−1 in Figure 4a, when the laser power is 5 mW, 38 mw and 70 mW, the intensities are
0.453, 3.739, and 8.571, respectively. There is an approximate linear relationship between
intensity and laser power.
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To test the system performance, we calculated the SNR of sulfur with different laser
powers and integration times. The strongest 50 cm−1 (1.5 THz) spectral line intensity
in the spectrum was divided by the noise value of the system. The result is shown in
Figure 4b; the SNR reaches approximately 750 at a low laser power of 60 mW with a short
integration time of 20 s. When the integration time is fixed and the laser power is increased
to 45 mW, the SNR growth slows down and tends to a fixed value. Similarly, when the
laser power is constant and the integration time increases to 5 s, the SNR growth slows
down and gradually tends to a fixed value. In the X–Z and Y–Z planes, the SNR curve is
approximately a square-root function, which is consistent with the SNR equation [22].

4.2. THz Raman Spectra of Organic Acids

Benzoic acid (BA) is a kind of organic acid. It is a flake- or needle-like crystalline
powder with the smell of benzene or formaldehyde. It is directly connected with the carbon
atom of a benzene ring by a carboxyl group. It can be used in medical treatments, fuel car-
riers, plasticizers, perfumes, and preservatives. The THz Raman spectrum of BA is shown
in Figure 5a, where the Raman peaks at 29 cm−1 (0.870 THz) and 93.17 cm−1 (2.795 THz)
belong to translational vibration of Ag, the Raman peaks at 48.74 cm−1 (1.462 THz) and
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117.8 cm−1 (3.534 THz) belong to directional vibration of Bg, and the Raman peak at 73.4
cm−1 (2.202 THz) belongs to directional vibration of Ag [22].
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Salicylic acid (2-hydroxy BA) is a white crystalline powder that is similar to BA in
structure. It can be used in perfumes, medicines, and pesticides. Figure 5b shows the THz
Raman spectrum of 2-hydroxy BA, which is significantly different from Figure 5a, indicat-
ing that the measurement system performs well in distinguishing chemical structures of
similar substances.

Figure 6 is the spectrum of 2-hydroxy BA at different times (from 10:30 to 16:30 at
30 min intervals). Under the same power and integration time, the signal position and
intensity of the Raman spectrum of 2-hydroxy BA obtained at different times have almost
no change, which proves the stability of the system.
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In addition, gallic acid was placed in different containers (plastic bags, plastic bottles,
and glass bottles) to detect the influence of the container on the measurement. The final
results are shown in Figure 7, where the thickness of the plastic bags is 0.02 mm, the
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thickness of the plastic bottles is 0.1 mm, and the thickness of the glass bottles is 0.2 mm.
The Raman peak intensity of gallic acid in plastic bags is the highest, and the vibration
spectrum can be clearly distinguished. The signal intensity of gallic acid in plastic bottles
and glass bottles is weaker, and the peak intensity at 114.7 cm−1 (3.441 THz) is obviously
weaker. The results show that the reflection of laser from plastic bottle and glass bottle
weakens the Raman signal and affects the measurement results. The influence of containers
with different thickness on the measurement results is different. The results of measurement
with thin plastic bags as containers are the best, indicating that the spatial heterodyne THz
Raman spectroscopy system can be applied to the detection of thin plastic bag packaging
samples. This widens the application prospects of THz Raman spectroscopy.
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4.3. THz Raman Spectra of Nucleobases

RNA is the intermediate carrier of biological genetic information and participates in
protein synthesis and gene expression. The chain molecule is formed by the condensation
of nucleotides with phosphate diester bonds. A nucleotide is composed of pentose, phos-
phoric acid, and a nucleobase. There are four RNA nucleobases: cytosine, uracil, guanine,
and adenine. Figure 8 shows the THz Raman spectra of the four nucleobases under a laser
power of 50 mW and integration time of 80 s. The measured results are consistent with
the theory. The measurement of RNA nucleobases is of great significance for structural
research on and identification of biomacromolecules.

4.4. THz Raman Spectra of Aqueous Solutions

The THz Raman spectrometer system was used to measure signals of aqueous solu-
tions. Figure 9 shows the THz Raman spectra of different concentrations of uracil aqueous
solution (a) and salicylic acid aqueous solution (b) at a laser power of 50 mW and integra-
tion time of 50 s. The Raman peaks in the figure are identical to those for the solid state, and
the Raman signal intensity increases with increasing concentration. The lowest measurable
concentration of 2-hydroxy BA solution is 0.015 mol/L. This experiment breaks through
the difficulties of THz measurement of aqueous solutions and makes it possible to detect
low-concentration liquids.
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Figure 9. (a) THz Raman spectra of uracil aqueous solution at different concentrations. (b) THz Raman spectra of 2-hydroxy
BA aqueous solution at different concentrations.
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4.5. THz Raman Spectra of Nucleobases
4.5.1. Spectra of Solid Mixtures

The performance of the system was further tested by measuring mixtures. Figure 10a
shows the THz Raman spectra of a mixture of BA powder and 2-hydroxy BA powder with
a ratio of 2:1, and Figure 10b shows the THz Raman spectra of a mixture of cytosine powder
and uracil powder with a ratio of 1:2. The components of each mixture can still be clearly
distinguished in the spectra. Therefore, the spatial heterodyne THz Raman spectrometer
can easily be used to identify the compositions of such samples, which further broadens
the application range of this system.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 14 
 

  
(a) (b) 

Figure 9. (a) THz Raman spectra of uracil aqueous solution at different concentrations. (b) THz Raman spectra of 2-

hydroxy BA aqueous solution at different concentrations. 

4.5. THz Raman Spectra of Nucleobases 

4.5.1. Spectra of Solid Mixtures 

The performance of the system was further tested by measuring mixtures. Figure 10a 

shows the THz Raman spectra of a mixture of BA powder and 2-hydroxy BA powder with 

a ratio of 2:1, and Figure 10b shows the THz Raman spectra of a mixture of cytosine 

powder and uracil powder with a ratio of 1:2. The components of each mixture can still 

be clearly distinguished in the spectra. Therefore, the spatial heterodyne THz Raman 

spectrometer can easily be used to identify the compositions of such samples, which 

further broadens the application range of this system. 

  
(a) (b) 

[THz]

0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0

[THz]

1.5 3.0 4.5 6.0

2
9 4
8
.
7
4

7
3
.
4

9
3
.
1
7

1
1
7
.
82
4
.
4

4
3
.
2
1

6
3
.
6
7

1
0
8

1
2
2
.
8

1
8
2

2
6
1
.
1

2
8
4
.
4

2
9

4
3
.
2
1
4
8
.
7
4

6
3
.
6
7

9
3
.
1
7

1
0
8
1
1
7
.
8

1
8
2

2
6
1
.
1

2
8
4
.
4

[THz]

1.5 3.0 4.5 6.0 7.5 9.0 10.5

[THz]

1.5 3.0 4.5 6.0 7.5 9.0

63
.4
8

10
2.
8

12
7.
3

73
.5
6

12
7.
3

15
2.
7

17
2.
5

73
.5
6

10
2.
8 12
7.
3

15
2.
7

17
2.
5

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 14 
 

  
(c) (d) 

Figure 10. (a) THz Raman spectra of BA powder and 2-hydroxy BA at a laser power of 128 mW with an integration time 

of 50 s. (b) THz Raman spectra of cytosine powder and uracil powder at a laser power of 128 mW with an integration time 

of 50 s. (c) THz Raman spectra of 0.1 mol/L 2-hydroxy BA aqueous solution and 0.1 mol/L theophylline aqueous solution 

(ratio 1:5) at a laser power of 128 mW with an integration time of 100 s. (d) THz Raman spectra of 0.1 mol/L theophylline 

aqueous solution and 0.1 mol/L uracil aqueous solution (ratio 2:1) at a laser power of 128 mW with an integration time of 

100 s. 

4.5.2. Spectra of Liquid Mixtures 

Aqueous solutions were also measured. In Figure 10c,d, the spectral lines of the 

mixtures contain almost all the characteristic peaks of the components, except that a small 

number of characteristic peaks are masked owing to the mutual cancellation between the 

characteristic peaks of the components. This provides an experimental basis and technical 

support for developing THz Raman technology in such fields as water quality, 

agriculture, and medicine. 

5. Conclusions 

We have proposed a spatial heterodyne THz Raman spectrometer based on field 

widening. The system includes 532 nm BNFs for selective filtering of Raman scattering 

light, two field-widening prisms with an apex angle of 2.665° on the interference arms, 

and 150 gr/mm gratings. 

We measured the THz Raman spectra of sulfur, organic acids, RNA nucleobases, and 

aqueous solutions. In addition, we measured solid and liquid mixtures. The results show 

that the system can effectively distinguish the components of a mixture. The calculated 

SNRs of sulfur samples under different integration times and laser powers show that the 

system has good stability, and the SNR reaches approximately 750 at a low laser power of 

60 mW with a short integration time of 20 s. We measured 2-hydroxy BA at different times 

under the same integration time and laser power. The positions and intensities of Raman 

peaks were almost the same, which proved that the system had good repeatability. To test 

the influence of the container, we measured the THz Raman spectra of a sample in 

containers of different thicknesses and materials. The results show that the spectral 

resolution is not significantly affected by the selection of different containers. The spatial 

heterodyne THz Raman spectrometer system has no incident slit, which effectively 

improves the throughput. The system has good stability and repeatability, and realizes 

signal measurement of aqueous solutions in the THz band. It can be applied in such fields 

as material detection, environmental protection, medicine, and marine exploration. 

Author Contributions: Conceptualization, X.L. and Y.S.; methodology, Y.S.; software, Z.L.; 

validation, Y.S. and X.L.; formal analysis, X.M.; investigation, Q.C.; resources, J.G.; data curation, 

J.C.; writing—original draft preparation, Y.S.; writing—review and editing, Y.S.; visualization, X.Y. 

[THz]

9.06.0 7.51.5 3.0 4.5

43
.2
1

24
.4

63
.6
7

10
8

12
2.
8

18
2

34
34

59
63
.6
7

18
2

93
.1
5

93
.1
5

22
0.
7

22
0.
7

63
.6
7

[THz]

0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0 6.6

7
3
.
5
6

1
2
7
.
3

3
4

5
9 9
3
.
1
5

3
4

5
3
.
7
8 7
3
.
5
6

6
3
.
6
7

9
3
.
1
5

1
2
7
.
3

Figure 10. (a) THz Raman spectra of BA powder and 2-hydroxy BA at a laser power of 128 mW with an integration time of
50 s. (b) THz Raman spectra of cytosine powder and uracil powder at a laser power of 128 mW with an integration time of
50 s. (c) THz Raman spectra of 0.1 mol/L 2-hydroxy BA aqueous solution and 0.1 mol/L theophylline aqueous solution
(ratio 1:5) at a laser power of 128 mW with an integration time of 100 s. (d) THz Raman spectra of 0.1 mol/L theophylline
aqueous solution and 0.1 mol/L uracil aqueous solution (ratio 2:1) at a laser power of 128 mW with an integration time
of 100 s.

4.5.2. Spectra of Liquid Mixtures

Aqueous solutions were also measured. In Figure 10c,d, the spectral lines of the
mixtures contain almost all the characteristic peaks of the components, except that a small
number of characteristic peaks are masked owing to the mutual cancellation between the
characteristic peaks of the components. This provides an experimental basis and technical
support for developing THz Raman technology in such fields as water quality, agriculture,
and medicine.
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5. Conclusions

We have proposed a spatial heterodyne THz Raman spectrometer based on field
widening. The system includes 532 nm BNFs for selective filtering of Raman scattering
light, two field-widening prisms with an apex angle of 2.665◦ on the interference arms, and
150 gr/mm gratings.

We measured the THz Raman spectra of sulfur, organic acids, RNA nucleobases, and
aqueous solutions. In addition, we measured solid and liquid mixtures. The results show
that the system can effectively distinguish the components of a mixture. The calculated
SNRs of sulfur samples under different integration times and laser powers show that
the system has good stability, and the SNR reaches approximately 750 at a low laser
power of 60 mW with a short integration time of 20 s. We measured 2-hydroxy BA
at different times under the same integration time and laser power. The positions and
intensities of Raman peaks were almost the same, which proved that the system had good
repeatability. To test the influence of the container, we measured the THz Raman spectra
of a sample in containers of different thicknesses and materials. The results show that the
spectral resolution is not significantly affected by the selection of different containers. The
spatial heterodyne THz Raman spectrometer system has no incident slit, which effectively
improves the throughput. The system has good stability and repeatability, and realizes
signal measurement of aqueous solutions in the THz band. It can be applied in such fields
as material detection, environmental protection, medicine, and marine exploration.
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