基于自抗扰控制的四象限变流器过压抑制方法

姚大顺^{1,2},徐 瑞³,张 林^{1,2},李金池^{1,2},郭 洋^{1,2}

(1. 动车组和机车牵引与控制国家重点实验室,辽宁大连116041;2. 中车大连电力牵引研发中心有限公司, 辽宁大连116041;3. 中国科学院长春光学精密机械与物理研究所,长春130033)

摘 要:动车组牵引变流器中间回路过压故障会加速支撑电容、IGBT等器件的老化,影响器件的使用寿命,严重时会导致 IGBT 器件击穿。为了减小负载突变对中间电压的冲击,本文提出了一种基于自抗扰控制的四象限过压抑制方法。首先,对单相四象限变流器进行数学建模,分析了负载突变对中间电压的影响及传统比例 – 积分(PI)控制器对于负载突变抑制能力不足的原因。然后采用自抗扰控制方法设计电压环,对系统总扰动进行实时估计并采取前馈补偿的方法,解决负载突变引起的过压问题。利用 Matlab/Simulink 软件对两种控制方法进行离线仿真对比,采用动车组牵引控制单元和 dSPACE 实时硬件系统进行两种控制方法的半实物硬件在环(HIL)实验验证工作。最后仿真和实验结果表明,自抗扰电压环控制器具有更强的鲁棒性,能有效地解决因负载突变导致的中间回路过压问题。
 关键词:自抗扰;四象限变流器;总扰动;鲁棒性;硬件在环
 中图分类号:TM461
 文载标志码;A
 文章编号:1001-6848(2022)08-0074-06

DOI:10.15934/j.cnki.micromotors.2022.08.005

Overvoltage Suppression Method for Four-quadrant Converter Based on Active Disturbance Rejection Control

YAO Dashun^{1,2}, XU Rui³, ZHANG Lin^{1,2}, LI Jinchi^{1,2}, GUO Yang^{1,2}

(1. State Key Laboratory for Traction and Control System of EMU and Locomotive,

Dalian Liaoning 116041, China; 2. CRRC Dalian Electric Traction R&D

Center Co., Ltd., Dalian Liaoning 116041, China; 3. Changchun Institute of

Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,

Changchun 130033, China)

Abstract: The overvoltage fault of the intermediate circuit of the traction converter of the EMU will accelerate the aging of the intermediate support capacitor, IGBT and other devices, affect the service life of the device, and cause the breakdown of the IGBT device in severe cases. In order to reduce the impact of sudden load disturbance on the intermediate voltage, this paper proposed a four-quadrant converter overvoltage suppression method based on active disturbance rejection control to improve the robustness of the four-quadrant control system. First of all, mathematical modeling of a single-phase four-quadrant converter was carried out, and the influence of load mutation disturbance on the intermediate voltage was analyzed and the reason for the insufficient suppression ability of traditional proportional-integral (PI) controller for load disturbance mutation is analyzed. Then, the auto disturbance rejection control method was adopted to design the voltage loop, the total disturbance of the system was estimated in real time and the feedforward compensation method was adopted to solve the overvoltage problem caused by the sudden change of load. Then, Matlab/Simulink software was used to conduct offline simulation comparison of the two control methods, and the hardware-inthe-loop (HIL) experimental verification of the two control methods was carried out using the EMU traction control unit and the dSPACE real-time hardware system. Finally, the simulation and experimental results show that the active disturbance rejection voltage loop controller has stronger robustness and can effectively solve the overvoltage problem of the intermediate loop caused by the sudden load change.

Key words: active disturbance rejection; four-quadrant converter; total disturbance; robustness; hardwarein-the-loop

作者简介:姚大顺(1991),男,硕士,工程师,研究方向为牵引四象限变流器控制。

徐 瑞(1991),男,博士,特别研究助理,研究方向为运动伺服控制,非线性控制理论。

收稿日期: 2021-06-07, 修回日期: 2021-09-27

基金项目:中国博士后科学基金特别资助项目(2020TQ0350)

0 引 言

近年来,随着我国铁路运输行业的高速发展, 电力机车具备能量双向流动、绿色环保等特点,已 成为当今铁路运输行业的主流^[1]。但动车组在运行 过程中,也引发出一些问题。如乌鲁木齐局 CR200J-1019车组在2019年11月6日发生牵引中间 回路过压故障^[2]。据统计,当月乌局共发生类似故 障8起。经过对故障时刻运行数据整理,分析结论 均为逆变器在满功率牵引工况下检测到故障突然封 锁脉冲,能量回馈至中间回路,引起中间电压升高 超过保护值。这反映出四象限变流器电压环的鲁棒 性差,PI控制器对于负载扰动突变的情况,调节能 力不足。

自抗扰控制(Active Disturbance Rejection Control, ADRC)是韩京清发明的一种不依赖系统精确模 型的控制技术,具有模型依赖性低,鲁棒性强,跟 踪精度高的特点^[3]。但最初韩京清所提出的自抗扰 控制涉及大量非线性函数,在参数整定上存在一定 困难,这不利于自抗扰控制技术的推广和应用^[4]。 鉴于此,高志强教授提出线性化、带宽化的线性自 抗扰控制器(Linear Active Disturbance Rejection Control, LADRC)^[5]。至此,自抗扰控制器被广泛应用 于永磁电机控制,飞行器控制,异步电机控制,逆 变器并网控制,DC - DC 变换器控制和水力发电等 领域^[6-13]。

本文采用自抗扰控制技术设计四象限电压环控 制器,提高四象限电压环的鲁棒性,解决四象限变 流器在负载扰动突变过压故障问题。

1 单相四象限变流器的数学模型

图 1 为 CR200J 型动车组的单相四象限的主电路 拓扑图,其中 VT1-VT4 为 4 个由 IGBT 反并联二极 管构成的开关器件,*L*和 *R*分别为变压器次边等效 漏感和电阻,*C*_d为中间回路支撑电容,*R*_L为负载侧 等效电阻。

图 1 单相四象限变流器主电路拓扑图

由基尔霍夫定律得到式(1)电容电压方程和电 感电流方程。

$$\begin{bmatrix} C_{\rm d} \frac{\mathrm{d}u_{\rm dc}}{\mathrm{d}t} = i_1 - \frac{u_{\rm dc}}{R_{\rm L}} \\ L \frac{\mathrm{d}i_{\rm s}}{\mathrm{d}t} = u_{\rm s} - u_{\rm ab} - i_{\rm s}R \end{bmatrix}$$
(1)

式中, u_s 为变压器次边电压, i_s 为四象限输入电流, i_1 为四象限输出电流, u_{dc} 为中间回路支撑电容两端 电压, u_{ab} 为四象限交流侧电压。

为了便于分析, 定义理想开关函数为

$$\begin{cases} S_{a} = \begin{cases} 0 & (VT1 \ \text{F}\ \text{id}, \ VT2 \ \text{F}\ \text{id}, \ VT2 \ \text{F}\ \text{id}, \ VT1 \ \text{id}, \ VT$$

根据式(2)的理想开关函数,得到单相四象限 理想开关函数模型如图2所示。

图 2 单相四象限变流器开关等效电路图 由图 2 可知:

$$\begin{cases} i_{a} = (S_{a} - S_{b})i_{1} \\ u_{dc} = (S_{a} - S_{b})u_{ab} \end{cases}$$
(3)

将式(3)带入式(1)得到单相四象限变流器的开 关等效数学模型为

$$\begin{cases} C_{\rm d} \frac{\mathrm{d}u_{\rm dc}}{\mathrm{d}t} = (S_{\rm a} - S_{\rm b}) i_{\rm s} - \frac{u_{\rm dc}}{R_{\rm L}} \\ L \frac{\mathrm{d}i_{\rm s}}{\mathrm{d}t} = u_{\rm s} - (S_{\rm a} - S_{\rm b}) u_{\rm dc} - i_{\rm s}R \end{cases}$$
(4)

由于开关函数 S_a , S_b 的存在,该数学模型具有时变、非线性的特征,不利于系统的性能分析^[14]。

2 单相四象限变流器双闭环控制

为保持中间电压恒定,功率因数接近1,单相 四象限变流器通常采用电压外环和电流内环组成的 双闭环控制策略,控制结构图如图3所示。

其中,电压外环采用 PI 控制器,其控制原理为中间 电压给定值 U^{*}_{de}与反馈值 u_{de}相减经 PI 控制器输出, 电压外环的计算输出作为电流内环的幅值给定 i^{*}_s, 与锁相环(PLL)输出的电网同步信号相乘,作为电 流环的给定。电流内环采用预测电流控制策略。将 电流环输出与次边电压 u_s 相减,得到调制指令信号 u^{*}_{ab},经 SPWM 调制输出四路脉冲驱动信号,控制开 关器件开通关断。

动车组在线路上运行时,逆变器输出功率受到 司机手柄级位和车速影响,存在一定的不确定性。 等效成式(4)中负载阻抗 *R*_L具有时变性,可将 *R*_L 对 *u*_{de}的影响视为电压外环的未知扰动。对于图 3 所示 的控制系统,采用 PI 控制器设计的电压环,原理是 利用电压环的给定值和测量值之间的误差量生成控 制量进行测量和补偿,本质是一种滞后补偿策略。 并没有实时对扰动量进行测量和补偿,因此鲁棒性 差。对于负载突变的工况,容易引起过压故障。

3 单相四象限变流器自抗扰控制器 设计

3.1 电压环模型线性化

根据第2节分析可得,由于 PI 控制器没有对系统的扰动进行实时测量,导致系统鲁棒性差的特点。本文提出利用自抗扰技术设计电压环,对扰动量进行实时测量和补偿。提高四象限控制系统的鲁棒性,解决负载扰动突变导致的过压问题。

考虑式(4)具有时变、非线性函数,不利于分 析的特点,建立系统平衡点附近的线性化模型^[15-16]。 中间电压平衡点为

$$u_{\rm dc} = U_{\rm dc} + u_{\rm a} \sin(2wt + \theta) \tag{5}$$

忽略 IGBT 器件损耗开关损耗,可近似认为四象 限交流输入侧和直流输出侧功率相等。

$$P_{\rm in} = P_{\rm out} \tag{6}$$

四象限输入侧功率 P_{in}为

$$P_{\rm in} = u_{\rm ab} i_{\rm s} = (u_{\rm s} - u_{\rm L}) i_{\rm s}$$
(7)

其中,

$$u_{\rm s} = U_{\rm s} \sin(wt) \tag{8}$$

考虑单位功率因数,电流环响应时间远小于电 压环,得

$$i_{\rm s} = I_{\rm s}^* \sin(wt) \tag{9}$$

计算出电感两端电压

$$u_{\rm L} = w L I_{\rm s}^* \cos(wt)$$
(10)
将式(8) ~ 式(10) 带入式(7)得

$$P_{in} = (U_{s}\sin(wt) - wLI_{s}^{*}\cos(wt)) * I_{s}^{*}\sin(wt) = \frac{1}{2}U_{s}I_{s}^{*} - \frac{1}{2}U_{s}I_{s}^{*}\cos(2wt) - \frac{1}{2}(I_{s}^{*})wL\sin(2wt)$$

四象限输出侧功率为

$$P_{\rm out} = u_{\rm dc} i_1 = u_{\rm dc} \left(C_{\rm d} \, \frac{{\rm d} u_{\rm dc}}{{\rm d} t} + \frac{u_{\rm dc}}{R_{\rm L}} \right)$$
(12)

$$\frac{du_{dc}}{dt} = -\frac{1}{R_{L}C_{d}}u_{dc} + \frac{U_{s}}{2u_{dc}C_{d}}I_{s}^{*} - \frac{U_{s}}{2u_{dc}C_{d}}I_{s}^{*} \cos(2wt) - \frac{(I_{s}^{*})^{2}wL}{2u_{dc}C_{d}}\sin(2wt)$$
(13)

Ŷ

$$w(t) = -\frac{U_{\rm s}}{2u_{\rm dc}C_{\rm d}}I_{\rm s}^*\cos(2wt) - \frac{(I_{\rm s}^*)^2wL}{2u_{\rm dc}C_{\rm d}}\sin(2wt)$$
(14)

则式(13)变成

$$\frac{\mathrm{d}u_{\mathrm{dc}}}{\mathrm{d}t} = -\frac{1}{R_{\mathrm{L}}C_{\mathrm{d}}}u_{\mathrm{dc}} + \frac{U_{\mathrm{s}}}{2u_{\mathrm{dc}}C_{\mathrm{d}}}I_{\mathrm{s}}^{*} + w(t) \qquad (15)$$

ş

$$f(u_{\rm dc}, t, w(t)) = -\frac{1}{R_{\rm L}C_{\rm d}}u_{\rm dc} + w(t) \qquad (16)$$

结合式(15) – 式(16),
$$u_{dc}$$
和 I_s^* 之间满足关系:
 $\dot{x} = f(x, t, w(t)) + b(t)u$ (17)

由于 $b(t) = \frac{U_s}{2u_{dc}C_d}$ 项,含有 u_{dc} ,具有一定的时

变性,考虑在平衡点附近,选取标称量:

$$b_0 = \frac{U_{\rm s}}{2U_{\rm dc}^* C_{\rm d}}$$
(18)

将 $(b(t) - b_0(t)) \cdot u(t)$ 作为新的扰动项。 总扰动被定义为 $a(t) = f(x, t, w(t)) + (b(t) - b_0(t))u(t)$ (19)

被控对象运动方程如式(20)所示。

$$\dot{u}_{\rm dc} = a(t) + b_0 I_{\rm s}^* \tag{20}$$

3.2 基于线性自抗扰的电压环控制器的设计

3.2.1 线性状态观测器(LESO)的设计

根据式(20),建立二阶扩张状态观测器,形式 如下:

$$(\dot{z}_{1} = -\beta_{1} \cdot (z_{1} - u_{dc}) + b_{0} \cdot I_{s}^{*} + z_{2}$$

$$(\dot{z}_{2} = -\beta_{2} \cdot (z_{1} - u_{dc})$$

$$(21)$$

(11)

式中, z_1 为中间电压 u_{de} 的观测值, z_2 为总扰动 a(t)的观测值。 $\beta_1 > 0$, $\beta_2 > 0$ 为可调误差反馈系数,决定状态观测器的跟踪速度。

3.2.2 控制律设计

由式(20) u_{dc} 和 I_s^* 的关系,设计一阶线性自抗 扰控制器:

$$I_{\rm s}^* = \frac{k_{\rm p} (U_{\rm dc}^* - z_1) - z_2}{b_0}$$
(22)

式中, k_p为控制器比例系数,得到基于自抗扰电压 外环的四象限双闭环控制策略,如图4所示。

图 4 基于自抗扰外环的双闭环控制系统结构图 3.2.3 参数整定

采用文献[5]提出的带宽整定法。对于二阶 LE-SO 选择:

$$\begin{cases} \beta_1 = 2\omega_0 \\ \beta_2 = \omega_0^2 \end{cases}$$
(23)

$$k_{\rm p} = \boldsymbol{\omega}_{\rm c} \tag{24}$$

式中, ω_0 为观测器带宽, ω_e 为控制器带宽。需要整 定的参数变成 3 个,即 ω_0 、 ω_e 、 b_0 ,其中 b_0 由式 (18)确定,文献[5]指出,一般的选择经验是:

$$\omega_0 \approx (3 \sim 5) \,\omega_c \tag{25}$$

4 仿真验证

采用 Matlab/Simulink 软件搭建图 1 所示 CR200J 型动车组主电路拓扑,电压环分别采用 PI 控制器和 ADRC 控制器对四象限控制系统进行仿真,系统参 数如表 1 所示。

据表 1 主电路参数和式(18)得 $b_0 = 42.55$, AD-RC 控制器参数选择 $\omega_0 = 180$ rad/s, $\omega_e = 60$ rad/s; PI 控制器参数选择 P=3, I=25。

ŧ	1 仿	直系	统参	\$ 数表
× .	1 1/1	云小	シルヨ	2222

系统参数名称	参数值	系统参数名称	参数值	
次边电压 U_{s}/V	2757.3	负载电阻 R/Ω	7.5	
次边等效漏感 L/H	3.3e-3	中间电压给定 U_{dc}^*/V	3500	
支撑电容 C_d/F	9.5e-3	IGBT 开关频率 f/Hz	350	

图 5 和表 2 的仿真结果表明在牵引满载突投工 况下, ADRC 控制器相比于 PI 控制器在满载突投中 间电压的冲击减小了 178 V,恢复时间缩短了 27.08 ms。

	ADRC	3084	31.12	
_	PI	3856	89.22	_
	图6和表3的	仿真结果表明在	牵引满载突切	工况
下,	ADRC 控制器	相比于 PI 控制器	在满载突投中间	间电

压的冲击减小了172 V,恢复时间缩短了58.1 ms。

5 半实物仿真实验验证

为了验证本文控制方案的工程有效性。本文基 于 dSPACE 硬件实时系统对被控对象 CR200J 型动车 组牵引系统的主电路拓扑进行实时数字模型模拟, 采用 CR200J 型动车组牵引控制单元(Traction Control Unit, TCU)进行程序设计, 两者通过脉冲光纤线、 硬线及连接器实现信号交互,构成硬件在环(Hardware-in-the-loop, HIL)平台^[17]。平台结构如7图所 示。其中, dSPACE 硬件系统采用 DS1006 主处理 器, TCU 牵引控制单元采用 TMS320F28335 主控 芯片。

图 7 HIL 平台结构图

表 4

从图 8 和表 4 的实验结果可以看出在牵引满载 突投工况下,采用 ADRC 控制器中间电压的恢复时 间为68.22 ms,由于真实牵引控制单元(TCU)在实 验过程中受到 IGBT 开关特性、死区时间(25 μs)、 最小脉宽限制(60 µs)、采样噪声等因素影响,导致 实验结果较离线仿真恢复时间要长。然而仍可以看 出 ADRC 控制器相比于 PI 控制器中间电压冲击减小 了 105 V,恢复时间缩短了 35.1 ms。

满载突投工况实验性能对比 恢复时间/ms 控制方式 电压谷值/V ADRC 3082 68.22 ΡI 2977 103.32 us(17.5 kV/格)is(400 A/格) tac(1000 V/格 过压保护,脉冲封锁 0.02 : (a) PI算法 us(17.5 kV/格)is(400 A/格) ide (1000 V/格) 0.02 s (b) ADRC算法 图 9 满载突投工况实验波形 图 9 和表 5 的实验结果表明在牵引满载突切工

况下, ADRC 控制器在负载突切时刻, 中间电压峰 值为3862 V,恢复时间为68.24 ms, PI 控制器在负 载突切时刻,中间电压峰值超过保护值4000 V,触

发 TCU 过压保护逻辑,引起中间回路过压故障,控制单元脉冲封锁。实验结果验证了 ADRC 算法抑制 负载突变导致过压保护的工程有效性。

表 5 满载突切工况实验性能对比

控制方式	电压峰值/V	恢复时间/ms
ADRC	3862	68.24
PI	4125	脉冲封锁

6 结 论

本文采用自抗扰控制策略解决由负载突变导致的过压问题,分析了传统 PI 算法对于负载突变工况 调节能力不足的原因,设计 ADRC 电压环控制器, 基于 Matlab/Simulink 进行离线仿真,验证了算法的 理论可行性。基于 HIL 平台进行了半实物仿真实验, 验证了本文提出算法的工程可行性。半实物仿真结 果表明:相较于传统的 PI 控制器,本文提出的自抗 扰电压外环控制器具备更强的鲁棒性,能有效抑制 负载突变引起的中间电压波动,缩短负载突变工况 中间电压的恢复时间。对解决负载突变导致的过压 问题具有一定的理论分析和工程应用价值。

参考文献

- [1] 申瑞源. 我国机车车辆技术的发展与展望[J]. 铁道学报, 2019, 41(1): 42-48.
- [2] 何平. 交流传动电力机车主电路保护技术分析[J]. 铁道机车 车辆, 2021, 41(1): 76-79.
- [3] 韩京清. 自抗扰控制技术[J]. 前沿科学, 2007(1): 25-32.
- [4] 周蓉,韩文杰,谭文.线性自抗扰控制的适用性及整定[J].控 制理论与应用,2018,35(11):111-119.

- [5] Gao Z. Scaling and Bandwidth-parameterization Based Controller Tuning [C]. Proceedings of the American control conference. 2006: 4989-4996.
- [6] 刘鉴, 诸德宏, 费城. 基于转矩补偿的永磁同步电机自抗扰控 制研究[J]. 微电机, 2020, 53(10): 42-45.
- [7] 李寅生,陈永军.变增益策略在 PMSM 自抗扰控制中的应用与 研究[J].微电机,2020,53(4):82-87.
- [8] 朱明祥,孙红艳,姚伟星.无轴承异步电机自抗扰控制系统 [J].微电机,2018,51(3):43-46.
- [9] 杨林,曾江,马文杰,等.基于改进二阶线性自抗扰技术的微 网逆变器电压控制[J].电力系统自动化,2019,43(4): 146-153.
- [10] 刘俊杰,高强,孙明玮,等.四旋翼直升机的线性自抗扰与非 线性 H2/H∞混合控制[J].中南大学学报(自然科学版), 2019,50(4):127-134.
- [11] Li J, He Y, H Li. Research on Linear Active Disturbance Rejection Control of Linear Motor XY Motion Platform [C]. 21st International Conference on Electronic Packaging Technology (ICEPT). Electronics 2020: 1249.
- [12] Liu C, Luo G, Chen Z, et al. A Linear ADRC-based Robust Highdynamic Double-loop Servo System for Aircraft Electro-mechanical Actuators[J]. Aeronautics, 2019, 32(9). 1-8.
- [13] Guo B, Bacha S, Alamir M, et al. LADRC Appliedto Variable Speed Micro-hydro Plants: Experimental Validation [J]. Control Engineering Practice, 2019, 85(APR.): 290-298.
- [14] 范声芳, 熊健, 张凯, 等. 大功率机车牵引四象限变流器解耦 控制方案[J]. 中国电机工程学报, 2012 32(21): 63-70.
- [15] 刘诗慧,林飞,杨中平,等.抑制电气化铁路低频振荡的四象 限变流器控制方法[J].电工技术学报,2016(S2):76-83.
- [16] 林飞, 连巧娜, 杨中平, 等. 交流传动电力机车车网电压低频 振荡分析[J]. 铁道学报, 2016, 38(4): 32-38.
- [17] 杨凯,李辉,郭东山,等. 基于 dSPACE 的 PMSM 控制器快速开 发平台设计与实现[J]. 微电机, 2015(4):75-79.

(上接第27页)

- [5] 李和明,张健,罗应力,等.考虑交叉饱和影响的永磁同步电机 稳态参数有限元分析[J].中国电机工程学报,2012,32(12): 104-110.
- [6] 李和明,张健,刘明基,等.基于时步有限元的永磁同步电机稳态参数改进计算方法[J].电工技术学报,2012,27(4):35-41.
- [7] 郑萍,王勃,吴帆,等.电动汽车用双三相永磁同步电机饱和电感特性分析及计算方法[J].电工技术学报,2013,28(7):19-25.
- [8] 符荣,窦满峰.电动汽车驱动用内置式永磁同步电机直交轴电 感参数计算与实验研究[J].电工技术学报,2014,29(11):30-37.
- [9] Stumberger B, Stumberger G, Dolinar D, et al. Evaluation of Saturation and Cross-magnetization Effects in Interior Permanent-magnet

Synchronous Motor [J]. IEEE Transactions on Industry Applications, 2003, 39(5): 1264-1271.

- [10] 李景灿, 廖勇.考虑饱和及转子磁场谐波的永磁同步电机模型[J].中国电机工程学报, 2011, 31(3): 60-66.
- [11] George T, Bozhidar S. Saturation Effects on the Parameters of Interior Permanent Magnet Synchronous Motors with Different Rotor Configuration [J]. Materials Science Forum, 2016, 856: 257-262.
- [12] Nasiri-zarandi R, Mirsalim M. Finite-element Analysis of an Axial Flux Hysteresis Motor Based on a Complex Permeability Concept Considering the Saturation of the Hysteresis Loop[J]. IEEE Transactions on Industry Applications, 2016, 52(2): 1390-1397.
- [13]朱龙飞,朱建国,佟文明,等. 非晶合金永磁同步电机空载损耗[J].电机与控制学报,2015,19(7):21-26.