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A B S T R A C T   

In this work, the kinematics of a symmetrical hexapod parallel manipulator is investigated by 
means of Denavit-Hartenberg method and differential transformation method. When compared 
with a general Gough-Stewart platform, the limbs of the parallel manipulator are connected to the 
mobile and fixed platforms through offset hinges, rather than traditional spherical and universal 
hinges. Because the offset variable of the hinge axis are introduced by the offset hinge, the ki
nematics of the parallel manipulator studied becomes more complicated. The forward and inverse 
displacement analysis are approached by means of the Denavit-Hartenberg method. Then, the 
velocity and acceleration are analyzed using differential transformation method. The concise 
expression is obtained and can be easily translated into computer program. The derivation of 
acceleration analysis of the 6-RR-RP-RR parallel manipulator using the hybrid approach is novel 
in this research field. Finally, a numerical example is given and the numerical results are verified 
via co-simulation.   

1. Introduction 

When compared with the serial manipulator, the parallel manipulator usually has advantages including high precision, high ri
gidity and large bearing capacity, attracting researchers’ extensive interest and promoting the rapid development of parallel ma
nipulators. We need to especially thank Gough and Stewart for their pioneering contributions in the field of parallel manipulators. 
Gough [1,2] designed a tire testing machine in 1947. It has six degrees of freedom and can adjust the position and direction of tires 
installed on the platform. It is the earliest known Hexapod parallel robot. Stewart [3,4] proposed the concept of a six-DOF flight 
simulator motion model in 1965. Although the structures of the devices proposed by them are different, the six-legged parallel ma
nipulators are commonly referred to Gough-Stewart platforms. A typical Gough-Stewart platform, as shown in Fig. 1, consists of a 
mobile platform, a fixed platform and six driving legs of adjustable length. The ends of all legs are connected to the mobile and fixed 
platform through spherical and universal hinges (or both spherical hinges, both universal hinges). In recent decades, there are many 
interesting inventions for parallel robots in many fields, including manufacturing, precision positioning, and motion simulators. 
Moreover, hexapod parallel robots have been used widely, including motion simulators [5–9], vibration isolation systems based on 
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Stewart mechanisms [10–12], parallel mechanisms for precise pointing of telescopes [13–15], six-dimensional force sensors [16–18], 
and cable-driven parallel robots [19,20]. Parallel robots with fewer DOFS have also been applied increasingly, including machine tools 
[21–25], Delta parallel robots achieving high-speed pick-and-place operation [26–29] in the industrial field, and the medical surgery 
[30,31]. 

In recent years, the theoretical research of parallel manipulators has also made great progress, including the forward and inverse 
kinematics. For the parallel manipulator with fewer degrees of freedom, the kinematics is relatively simple because it is partially 
decoupled or completely decoupled, and generally has analytical solutions. Gallardo-Alvarado et al. [32–34] used the screw theory to 
obtain the kinematics analytical solution for 4-DOF CPS-PS-HPS parallel manipulator, 3-DOF SP-SPR-SPS parallel manipulator and 
2SPS-RPS-PS parallel manipulator, respectively. And numerical examples were given for verification. For a general Gough-Stewart 
platform, such as 6-UPS [35], 6-SPS [36] and 6-UCU [37], its kinematics has analytical solutions. Although the forward displace
ment analysis is more complicated, it has been studied widely. When a set of generalized coordinates are given, the mobile platform 
can reach 40 different postures [38,39]. U, P, S, C, R, H denote a universal hinge, a prismatic hinge, a spherical hinge, a cylindrical 
hinge, a revolute hinge, a Hooke hinge, respectively. Rolland [40] introduced an accurate algebraic method to solve the forward 
kinematics problem of hexapod robots, and gave eight real solutions for several different hexapod robots. Gallardo Alvarado [41] 
solved the forward displacement analysis of a general 6-6 parallel manipulator based on generating a closed equation on the unknown 
coordinates of three points embedded in the mobile platform. Gan [42] used Gröbner basis theory to simplify the forward displacement 
problem of the general 6-6 Stewart mechanism into a 40-degree polynomial equation, and constructed Sylvester’s matrix to derive 40 
different positions of the mobile platform. Huang [43] simplified the forward kinematics of a symmetric 6-6 Stewart platform into a 
14-degree univariate polynomial equation using a concise algebraic elimination algorithm, and obtained all closed form solutions of 
forward kinematics. Although the general Gough-Stewart platform has been used successfully, its performances including workspace 
and rigidity are restricted by hinges. Traditional universal hinges and spherical hinges have problems including low rigidity, small 
workspace, and easy to produce manufacturing and installation errors. Therefore, different types of hinges have been studied to 
replace traditional hinges. Hu et al. [44] analyzed the the workspace of an offset 3-RRPRR parallel manipulator. The 3-RRPRR 
configuration with offset hinges has a larger reachable workspace than its similar structure 3-RRPU, 3-RPRU, 3-UPU. Gloess  et al. 
[45] designed an offset universal hinge with rigidity of up to twice that of a conventional universal hinge to meet the high rigidity and 
high load requirements of parallel platforms. The designs of this type of hinge require fewer components and can be manufactured 
more accurately. Großmann et al [46] discussed three possible types of eccentric universal hinges as an alternative to traditional 
universal hinges. Such an eccentric design makes pivoting range of hinge larger. The two hinge axes of the offset universal hinge 
[44–46] are perpendicular to each other but do not intersect, thus it is easy to manufacture, and can provide higher rigidity and larger 
rotation space. However, the offset hinge introduces the offset variable between the hinge axes, making the kinematics more 
complicated than that of the general parallel mechanism using traditional hinges. Moreover, this kind of kinematics is difficult to solve 
effectively and there is no analytical solution. The kinematics methods for the general parallel mechanism are no longer applicable. 
Dalvand and Shirinzadeh [47,48] studied the kinematics of 6-RRCRR parallel manipulators with offset hinges, and proposed a hinge 
constraint algorithm to solve it. Via the same method, Yu [49] studied the kinematics of 6-RR-RP-RR parallel manipulator with similar 
configuration, and Han [50] studied the kinematics of 6-P-RR-R-RR parallel manipulator. And P, C and RP denote an actuated pris
matic joint, an actuated cylindrical joint, and an actuated ball screw pair, respectively. RP joint is similar to C joint. 

However, the above method has great limitations, and the modeling process is complicated. Moreover, it can only be used for 

Fig. 1. The traditional Gough-Stewart parallel manipulator: (a) The diagram of the mechanism; (b) The UPS kinematic chain.  
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displacement analysis, and cannot analyze the velocity and acceleration of the parallel mechanism. In order to realize the real-time 
tracking of the trajectory and attitude of the spacecraft and other targets, in response to the needs of the large-aperture ground- 
based telescope for the dynamic adjustment of the position and attitude of the secondary mirror and the precise tracking and posi
tioning, the 6-RR-RP-RR six-degree-of-freedom parallel manipulator with high accuracy, high rigidity and large working stroke is 
studied and applied to the secondary mirror adjustment system of the large-aperture ground-based telescope. The secondary mirror 
system requires high precision, high rigidity and large working stroke. The general Gough-Stewart manipulator has the problems of 
limited workspace and low rigidity. To improve these shortcomings, the offset hinges are introduced to improve the workspace and 
rigidity of the parallel manipulator. Because the secondary mirror system needs to realize the dynamic adjustment of position and 
attitude and the precise tracking and positioning, it is necessary to analyze the velocity and acceleration of the parallel manipulator. 
The velocity and acceleration analysis of the Gough-Stewart parallel manipulator using offset hinges has not been reported in previous 
studies. In order to fill this gap, this contribution successfully uses differential transformation method combined with Denavit- Har
tenberg parameter method to solve the velocity and acceleration problems of such parallel manipulator. Hybrid methods overcome the 
limitations of the hinge constraint algorithm, and the modeling process is simple. They lay the foundation for the subsequent dynamic 
analysis. 

In this work, the kinematics of a complex 6-DOF parallel manipulator using offset hinges, known as the 6-RR-RP-RR manipulator, 
was studied by means of a hybrid method, including the analysis of displacement, velocity and acceleration. This paper is organized as 
follows. In Section 2, the parallel manipulator studied is described. And the influence of the offset hinge on workspace is verified by an 
example. In Section 3, the Denavit-Hartenberg parameter method is used for displacement analysis. As far as the authors know, this 
method is practical and efficient for such parallel manipulator. In Section 4, the velocity and acceleration of the studied parallel 
manipulator are analyzed via the differential transformation method. A concise expression of the velocity and acceleration of the 
parallel manipulator was obtained, and this work has not been reported before. In Section 5, a numerical example is given to verify the 
effectiveness of hybrid methods. Finally, Section 6 summarizes the full text. 

2. Description of the mechanism 

2.1. Comparison of two parallel manipulators 

The parallel manipulator under study is shown in Fig. 2. It consists of a mobile platform, a fixed platform and six symmetrical limbs. 
Each limb has two links connected to each other by means of a RP joint, and two offset universal hinges (known as RR-hinge) con
necting the limb to the mobile and fixed platforms. RP joints play the role of active joints. The main distinction from the traditional 
Gough-Stewart parallel manipulator is the different hinges used. The traditional Gough-Stewart manipulator, using the spherical 

Fig. 2. The parallel manipulator under study: (a) The diagram of the mechanism; (b) The RR-RP-RR kinematic chain.  
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hinges, revolute hinges or universal hinges, is relatively simple, with the length of limbs represented in a very simple, intuitive way, as 
shown in Fig. 1. Points Si are the centers of the spherical hinges mounted on the mobile platform and located by position vectors Si. 
Points Ui are the centers of the universal hinges mounted on the fixed platform and located by position vectors Ui. In the remainder of 
the contribution, i=1, 2,…, 6. The length of limbs can be expressed as Li = (Si − Ui) ⋅ (Si − Ui). Obviously vectors Si and Ui are easily 
computed. 

However, the parallel manipulator studied in this paper has a much more complex representation of the limb length because the 
two rotational axes of the offset hinges do not intersect and have a specific offset in space, as shown in Fig. 2. Points Ei and Fi are the 
centers of the two hinge axes directly connected to limbs, respectively. And they are located by position vectors Ei and Fi, respectively. 
The length of limbs can be expressed as Li = (Fi − Ei) ⋅ (Fi − Ei). However, the vectors Ei and Fi, having no fixed positional rela
tionship with the mobile platform and fixed platform, are difficult to solve, so the conventional calculation method of the limb length 
cannot be realized. The solution of its kinematics is a complex task due to offset variable of the offset hinges. We have to find an 
effective method to solve the kinematics problem of the parallel manipulator under study. 

All six limbs are an offset universal + cylindrical + offset universal (RR-C-RR type) kinematic chain. Since the cylindrical joints, 
usually driven using ball screw pairs, provide two degrees of freedom, the RR-C-RR kinematic chain can be expressed as the RR-RP-RR 
kinematic chain. This equivalence is mainly to facilitate kinematic modeling of a single limb. According to a revised version of the 
Kutzbach-Grübuler formula, the manipulator under study possesses six degrees of freedom. 

2.2. Workspace difference between two parallel manipulators 

The offset hinges [44,46] are can provide larger rotation space than traditional hinges. In order to more intuitively verify the 
influence of the offset hinges on the workspace of the parallel manipulator, the positional workspace of the parallel manipulator under 
the initial attitude is solved by inverse displacement solution of Section 3.2. The positional workspace refers to the space consisting of 
all the positions that can be reached by the reference point of the mobile platform under the condition of a given attitude of mobile 
platform. The positional workspace of two parallel manipulators 6-RR-RP-RR and 6-SPS is analyzed in the fixed initial attitude, and the 
three-dimensional graphs of the positional workspace are drawn respectively. The two parallel manipulators use the same configu
ration parameters, as shown in Table 2, and their actuator length limits are the same. The rotation angle constraint of the offset hinges 
can be solved by establishing an accurate mathematical model [51]. As can be seen from Figs. 3 and 4, the positional workspace of the 

Fig. 3. The positional workspace of the 6-RR-RP-RR parallel manipulator in the initial attitude: (a) Three-dimensional graph; (b) Workspace 
projection in the X-Y plane; (c) Workspace projection in the X-Z plane;(d) Workspace projection in the Y-Z plane. 
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6-RR-RP-RR parallel manipulator with offset hinges is significantly larger than that of the 6-SPS parallel manipulator with spherical 
hinges. The positional workspace of the 6-SPS parallel manipulator is completely a subspace of the positional workspace of the 
6-RR-RP-RR parallel manipulator. Obviously, the offset hinges has a larger rotation range than the spherical hinges and can increase 
the workspace of the parallel manipulator. Owing to the limitation of space, the singularity analysis will not be presented, and readers 
can use this approach [52] considering motion/force transmissibility for singularity analysis of parallel manipulators to analyze the 
singularities of the parallel manipulator. 

3. Finite kinematics of the parallel manipulator 

In this section the displacement analysis of the parallel manipulator is presented. 

3.1. Kinematics of the ith limb 

Each limb is equivalent to an RR-RP-RR serial manipulator, and the local reference frames established in the limb are depicted in 
Fig. 5. For the convenience of analysis, the two offset universal hinges connected to each limb are taken as the same. Points Pi are the 
centers of the hinge axe connected to the mobile platform and located by position vectors Pi. Points Bi are the centers of the hinge axe 
connected to the fixed platform and located by position vectors Bi. Points Ei and Fi are the centers of the two hinge axes directly 
connected to limbs, located by position vectors Ei and Fi, respectively. The origins of the local reference frames coincide with the above 
four points, respectively. The Denavit-Hartenberg parameters of the ith limb are as shown in Table 1. Uoffset represents the offset 
variables of offset universal hinges, that is, the distance between the hinge axes. L4i represents the limb length, that is, the distance 

Fig. 4. The positional workspace of the 6-SPS parallel manipulator in the initial attitude: (a) Three-dimensional graph; (b) Workspace projection in 
the X-Y plane; (c) Workspace projection in the X-Z plane;(d) Workspace projection in the Y-Z plane. 
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between coordinate axis Z2i and Z5i. 
The transformation matrix between two adjacent local reference frames is: 

nTn+1 = Rot (x, αn) ⋅ Trans (an, 0, 0) ⋅ Rot (z, θn+1) ⋅ Trans (0, 0, dn+1) (1) 

For the ith limb, the homogeneous transformation matrix of joint n to the end joint can be computed: 

nT6=
nTn+1⋅n+1Tn+2⋯5T6 (2)  

3.2. Inverse displacement analysis 

The inverse displacement analysis is to find out the length of each limb for the parallel manipulator, given the position and 
orientation of the mobile platform with respect to the fixed platform. The global reference frame O′

B − X′

BY′

BZ′

B is attached at the fixed 
platform and the body reference frame O′

P − X′

PY′

PZ′

P is attached at the mobile platform, as shown in Fig. 2. In practical application, the 
mobile platform is to drive the load placed on its upper surface to move. In general, from the perspective of the actual manipulator, 
both the mobile and fixed platforms have a certain thickness, and the mobile platform motion refers to the motion of the upper surface 

Fig. 5. The local reference frames of the ith actuator limb of the parallel manipulator.  

Table 1. 
Denavit-Hartenberg parameters of the ith limb.  

Link j  θji(◦)  α(j− 1)i(◦)  dji(m)  a(j− 1)i(m)  

1 θ1i  0 0 0 
2 θ2i  90 0 Uoffset  

3 θ3i  -90 0 0 
4 0 0 L4i  0 
5 θ5i  90 0 0 
6 θ6i  -90 0 Uoffset   

Y. Zhang et al.                                                                                                                                                                                                          



Mechanism and Machine Theory 169 (2022) 104661

7

for the mobile platform relative to the lower surface for the fixed platform. Therefore, it is necessary to establish the general body 
reference frame OP − XPYPZP on the upper surface for the mobile platform and the general global reference frame OB − XBYBZB on the 
lower surface for the fixed platform, see Fig. 5. The distance between the origin of OP − XPYPZP and the origin of O′

P − X′

PY′

PZ′

P is hP, and 
the distance between the origin of OB − XBYBZB and the origin of O′

B − X′

BY′

BZ′

B is hB. The layout of hinge center points Pi and Bi (i=1, 
…,6) are shown in Fig 6. The origin O0i of the local reference frame O0i − X0iY0iZ0i is coincident with point Bi, and the origin O6i of the 
local reference frame O6i − X6iY6iZ6i is coincident with point Pi. The hinge center points Pi and Bi are respectively distributed on a 
symmetrical hexagon. 

In Section 2, the complexity of the parallel manipulator studied in this paper, due to the use of offset universal hinges, is analyzed 
and compared. Therefore, the Denavit-Hartenberg parameter method is used to solve the complex kinematics problem, when the 
conventional methods are ineffective. 

In the ith actuator limb as shown in the section 3.1, the pose vector BiPi
̅̅→ of the end joint for the limb with respect to the reference 

frame O0i − X0iY0iZ0i of the limb can be expressed as the following vector chain: 

BiPi
̅̅→

= BiEi
̅̅→

+ EiFi
̅̅→

+ FiPi
̅̅→

= BiO
′

B
̅̅̅→

+ O′

BO′

P
̅̅̅̅→

+ O′

PPi
̅̅̅→

(3) 

The pose vector BiPi
̅̅→ can be described by the homogeneous transformation matrix 0T6 or the transformation matrix 0iT6i of the end 

joint 6 (coinciding with point Pi) with respect to the reference frame O0i − X0iY0iZ0i. 0T6 can be obtained from equation (2), and 0iT6i 

can be obtained when given the pose of the mobile platform in the reference frame OB − XBYBZB. 
Given the pose vector q = [X,Y,Z, α, β, γ] of the frame OP − XPYPZP in the frame OB − XBYBZB, the homogeneous transformation 

matrix OB TOP of the mobile platform with respect to the fixed platform can be computed as follows: 

OB TOP =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cβcγ − cβsγ sβ X

cαsγ + sαsβcγ cαcγ − sαsβsγ − sαcβ Y

sαsγ − cαsβcγ sαcγ + cαsβsγ cαcβ Z

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4) 

Where, cα = cos(α), sα = sin(α), the expressions of β and γ are similar. 
The homogeneous transformation matrix OB TO0i of the local reference frame O0i − X0iY0iZ0i with respect to the general global 

Fig. 6. Layout of hinge center points connected to the platform.  
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reference frame OB − XBYBZB is as follows: 

OB TO0i =

[
OB RO0i

OB O0i

0 1

]

(5)  

where OB O0i is the position vector of point O0i with respect to the reference frame OB − XBYBZB, and OB RO0i is the rotation matrix of the 
reference frame O0i − X0iY0iZ0i with respect to the reference frame OB − XBYBZB. 

The homogeneous transformation matrix OP TO6i of the local reference frame O6i − X6iY6iZ6i with respect to the general body 
reference frame OP − XPYPZP is as follows: 

OP TO6i =

[
OP RO6i

OP O6i

0 1

]

(6)  

where OP O6i is the position vector of point O6i with respect to the reference frame OP − XPYPZP, and OP RO6i is the rotation matrix of the 
reference frame O6i − X6iY6iZ6i with respect to the reference frame OP − XPYPZP. 

Therefore, the transformation matrix 0iT6i is computed as follows: 

0iT6i =
( OB TO0i

)− 1⋅OB TOP ⋅OP TO6i (7) 

For the convenience of expression, 0iT6i is abbreviated as 

0iT6i =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

nx rx ax px

ny ry ay py

nz rz az pz

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(8) 

According to Eq. (3), it can be concluded that: 

0T6=
0iT6i (9) 

It can be seen from Eq. (9) that corresponding elements in transformation matrix 0T6 and 0iT6i are equal, so kinematic equations can 
be established and shown in the Appendix A. 

The kinematic equations are all nonlinear equations and contain many variables, thus the analytical solutions can not be obtained. 
Therefore, the Newton-Raphson iteration method is constructed to solve for nonlinear equations. 

3.3. Forward displacement analysis 

The forward displacement analysis consists of finding the coordinates of the pose q = [X,Y,Z, α, β, γ] for the mobile platform with 
respect to the fixed platform, given a set of the limb lengths, L4i(i = 1, …, 6). 

The forward displacement analysis of the parallel manipulator is more complex than inverse displacement analysis. There are no 
analytical solutions for the forward displacement analysis and it is solved via numerical methods. The forward displacement analysis 
will be solved on the basis of inverse displacement analysis. 

For a set of the known limb lengthsLk = [L41− k, L42− k,⋯, L46− k]
T, f(q) is obtained as follows: 

f (q) = IPA(q) − Lk (10)  

where, IPA(q) is a set of the limb lengths for the parallel manipulator given the pose q of the mobile platform with respect to the fixed 
platform. 

The Newton-Raphson iteration method can be used to solve Eq. (10). A iterative equation can be obtained as follows 

qn+1 = qn − (∂f (qn)/∂q)− 1 ⋅ f (qn) (11)  

4. Infinitesimal kinematics of the parallel manipulator 

4.1. Velocity analysis 

Fig. 5 shows the RR-RP-RR manipulator, where RR and RP denote an offset universal hinge and a ball screw pair, respectively. The 
ball screw pair contains two movements of rotation and translation, which is equivalent to two joints. Six such manipulators will be 
used as the connector chains of a parallel manipulator, and the ball screw pair in each connector chain will be actuated. The math
ematical tool to approach the infinitesimal kinematics of the parallel manipulator under study is the differential transformation 
method, and the modeling is depicted in Fig. 5. 

The linear mapping relationship between the velocity of manipulator operation space and the velocity of joints is called Jacobi 
matrix, also known as the first-order influence coefficient matrix. Before studying Jacobi matrix, the differential motion relationship 
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between two reference frames is analyzed. 
Given the reference frame {T}, its differential motion in the base reference frame is expressed asM = [d, δ]T, where the differ

ential translation vector is d = [dx, dy, dz]
T and the differential rotation vector is δ = [δx, δy, δz]

T. 
The differential motion transformation of {T} with respect to the base reference frame can be described as follows: 

T + dTB = Trans
(
dx, dy, dz

)
• Rot(f, dθ) • T (12)  

where, Trans(dx, dy, dz) represents the differential translation transformation in the base reference frame; 
Rot(f, dθ) is the differential rotation transformation for differential rotation dθ around vector f in the base reference frame. 
The differential transformation dTB = [Trans(dx, dy, dz) • Rot(f, dθ) − I] • T can be obtained from equation (12). 
The differential transformation operator is expressed as Δ = Trans(dx, dy, dz) • Rot(f, dθ) − I, then the differential transformation 

dTB can be written as follows: 

dTB = Δ ⋅ T (13) 

Similarly, the differential motion of the reference frame {T} with respect to its own reference frame is TM = [Td, Tδ]T, where the 
differential translation vector is Td = [Tdx,

Tdy,
Tdz]

T and the differential rotation vector is Tδ = [Tδx,
Tδy,

Tδz]
T. 

The differential motion transformation of {T} with respect to its own reference frame is given by: 

dTO = T •
[
Trans

( T dx,
T dy,

T dz
)
• Rot

( T f, dθT
)
− I

]
(14) 

The differential transformation operator is described as TΔ = Trans(Tdx,
Tdy,

Tdz) • Rot(Tf, dθT) − I, then the differential trans
formation dTO can be written as follows: 

dTO = T ⋅ T Δ (15) 

The derivation of the differential transformation operator Δ is given in the Appendix B, composed of elements in differential motion 
M, and it can be calculated as follows: 

Δ =

⎡

⎢
⎢
⎣

0 − δz δy dx
δz 0 − δx dy

− δy δx 0 dz
0 0 0 0

⎤

⎥
⎥
⎦ (16) 

Similarly, the expression of TΔ can be obtained: 

T Δ =

⎡

⎢
⎢
⎣

0 − T δz
T δy

T dx
T δz 0 − T δx

T dy
− T δy

T δx 0 T dz
0 0 0 0

⎤

⎥
⎥
⎦ (17) 

When differential transformation dTB of {T} with respect to the base reference frame is equivalent to differential transformation 
dTO of {T} with respect to its own reference frame, the equation Δ ⋅ T = T ⋅ TΔ can be obtained. Then the transformation between two 
differential operators follows that T− 1 ⋅ Δ ⋅ T = TΔ. 

The reference frame {T} can be written as follows: 

T =

⎡

⎢
⎢
⎣

nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

⎤

⎥
⎥
⎦ (18) 

Where, n, o, a, p are the four column vectors of T, such as n = [nx, ny, nz]
T. 

From equations (18) and (B.3), it can be concluded that: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T dx = n ⋅ ((δ × p) + d)
T dy = o ⋅ ((δ × p) + d)
T dy = a ⋅ ((δ × p) + d)

T δx = n ⋅ δ
T δy = o ⋅ δ
T δz = a ⋅ δ

(19) 

The above equations can be extended to the transformation of differential motion between any two reference frames: 

T M=
T MJM ⋅ M (20)  

where,TMJM is shown in the Appendix C, and the reference frame {T} is the transformation matrix between the two reference frames. 
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Next, the Jacobi matrix of RR-RP-RR manipulator is analyzed. The motion equation x = x(q) of the manipulator shows the 
displacement relationship between the end space x and the joint space q of the manipulator. The differential motion of x is M =
[d, δ]T, where d is the differential translation vector and δ is the differential rotation vector. The above motion equation is derived 
from time t, that is x⋅ = J(q)q⋅ , where x⋅ is the generalized velocity for the end of manipulator, q⋅ is the joint velocity, and J(q) is the 
Jacobi matrix of the manipulator. The generalized velocity x⋅ consists of translation velocity v and angular velocity ω: 

[v, ω] = J(q)[q̇1, ⋯, q̇6]
T (21) 

Obviously, J(q) is a 6×6 square matrix, where J(q) (1, :), J(q) (2, :) andJ(q) (3, :) show the linear transformation of the translation 
velocity v, J(q) (4, :),J(q) (5, :) and J(q) (6, :) show the linear transformation of the angular velocity ω. 

Therefore, the Jacobi matrix J(q) can be written as follows: 

J(q) =

[
Jd1 Jd2 ⋯ Jd6

Jδ1 Jδ2 ⋯ Jδ6

]

(22)  

where, each column vectorJ(q) (:, i) = [Jdi Jδi]
T represents the mapping relationship between joint velocity q̇i and the generalized 

velocity for the end of manipulator, 
(i = 1,⋯,6). 
The Jacobi matrix J(q) is solved using the differential transformation method. 
The expression of the generalized velocity x⋅ is as follows: 

x⋅ = lim
Δt→0

1
Δt

[
d

δ

]

=

[
v

ω

]

(23) 

The above equation can be transformed into: 

M =

[
d

δ

]

= lim
Δt→0

x⋅ Δt (24) 

Substituting equation x⋅ = J(q) q̇ into equation (24), it follows that 

M = J(q) dq (25) 

As shown in Figure 5, the axis zi of the reference frames at each joint is along the direction of the joint axis. When the Jacobi matrix 
is constructed, the influence of the rotating joint and the translational joint is different. 

The rotating joint k makes differential rotation dθk around the axis zk, then the differential motion of joint k is obtained: M =
[0 0 0 0 0 dθk]

T. 
It can be determined by means of equation (B.3) : 

T M =
[
(p × n)z (p × o)z (p × a)z nz oz az

]T ⋅ dθk (26) 

Where [(p × n)z (p × o)z (p × a)z nz oz az]
T is column k of J(q) . 

The translational joint j makes differential translation ddj around the axis zj, then the differential motion of joint j is obtained: M =
[0 0 ddj 0 0 0]T . 

It can be determined by means of equation (B.3) : 

T M = [nz oz az 0 0 0]T ⋅ ddj (27) 

Where [nz oz az 0 0 0]T is column j of J(q) . 
For the RR-RP-RR manipulator, the transformation matrices 1

6T, 2
6T, 3

6T, 4
6T, 5

6T and 6
6T from each joint to the end joint are 

calculated according to the transformation matrixn
n− 1T(n = 1,⋯, 6) between adjacent joints. The column elements of J(q) can be 

computed by means of equations (26) and (27), that is, J(q) (:, i) can be obtained from the elements of matrix i6T(i = 1,⋯, 6). Because 
i
6T is only related to the configuration of the parallel manipulator, the expressions derived in this contribution for solving the velocity 
analysis do not require the calculation of the values of the passive joint velocity of the studied parallel manipulator. 

The Jacobi matrix of the RR-RP-RR manipulator is solved above, and the mapping relationship between the velocity for each joint 
of the limb and the end joint velocity of the limb is obtained. Finally, what needs to be solved is the mapping relationship between the 
generalized velocity for the mobile platform of parallel manipulator and the velocity for the active joint of the limb, that is, the Jacobi 
matrix of the whole manipulator. Next, the relationship between the generalized velocity of the mobile platform and the velocity at the 
end of the limb needs to be solved. 

The pose of the mobile platform is represented as the vector q = [pT, tT]
T, while p = [X, Y, Z]T represents the position vector and t 

= [φ, θ, ψ ]T represents the posture vector. 
The generalized velocity q⋅ of the mobile platform in the general global reference frame is given as follows: 
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q⋅ =
[
p⋅

T
, ωT]T (28) 

In equation (28), obviously the angular velocity vector ω is not equal to ṫ, that is, q⋅ ∕= q⋅ t = [p⋅
T
, t

⋅T
]
T.And ω can be represented via 

the angular velocity vector ωP in the general body reference frame: 

ω = R ⋅ ωP (29) 

Where, R = Rot(x,φ) ⋅ Rot(y,θ) ⋅ Rot(z,ψ). 
The following relationship exists between ωP and ṫ 

ωp = E ⋅ t
⋅

(30) 

Where, 

E =

⎡

⎣
cθ cψ sψ 0
− cθ sψ cψ 0
sθ 0 1

⎤

⎦

Therefore, ω can be represented using ṫ: 

ω = R ⋅ E ⋅ t
⋅

(31) 

Equation(28) can be expressed as: 

q⋅ =q
⋅

Jq
⋅
t

[
p⋅

ṫ

]

(32) 

Where, q
⋅
Jq⋅ t

=

[
I3×3 0
0 RE

]

. 

The relationship between the differential motion for the end joint of the RR-RP-RR manipulator and the generalized differential 
motion of the mobile platform satisfies the equation (19). Therefore, if the generalized velocity q⋅ of the mobile platform is known, the 
velocity q⋅ h of hinge points Pi can be obtained according to equation (20), as follows: 

q⋅ h=
q⋅ h Jq⋅ ⋅ q⋅ (33) 

q⋅ h Jq⋅ is determined by means of the transformation matrix Op TO6i between two reference frames. 
Combining equations (26), (27), (33), the Jacobi matrix from the velocity for each limb joint to the generalized velocity of the 

mobile platform can be obtained: 

q⋅ = JF ⋅ q⋅ j (34)  

where, JF=
q⋅ h Jq⋅

− 1 ⋅ J(q), q⋅ j = [θ̇1, θ̇2, θ̇3, L̇4, θ̇5, θ̇6]
T. 

Because the active joint of the RR-RP-RR manipulator is the prismatic joint, the Jacobi matrix for the parallel manipulator rep
resents the mapping relationship between the generalized velocity of the mobile platform and the velocity for active joints of the six 
limbs. 

q⋅ j(4) = J− 1
F (4) ⋅ q⋅ (35) 

Therefore, it can be computed: 

L
⋅
= JI ⋅ q̇ (36) 

Where L
⋅
= [L̇41, L̇42, L̇43, L̇44, L̇45, L̇46]

T, 
JI = [J− 1

F1 (4), J− 1
F2 (4), J− 1

F3 (4), J− 1
F4 (4), J− 1

F5 (4), J− 1
F6 (4)]

T. 

From equation (36), q⋅ = J ⋅ L
⋅ 

can be obtained, and the Jacobi matrix of the whole manipulator is as follows: 

J = J− 1
I (37)  

4.2. Acceleration analysis 

In this section, the acceleration analysis of the parallel manipulator is carried out by means of the differential transformation 
method. The inverse acceleration analysis consists of computing the joint acceleration vector of the manipulator given the generalized 
acceleration of the mobile platform with respect to the fixed platform. 

The generalized acceleration q̈ of the mobile platform in the general global reference frame is given as follows: 
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q̈ =
[
p̈T

, ω̇T]T (38)  

where, obviously the linear acceleration vector p̈ can be obtained easily, but the angular acceleration vector ω⋅ is not equal to ẗ. 
After the time derivative of Eq. (29) is obtained, the angular acceleration vector ω⋅ is computed as follows: 

ω⋅
= R

⋅
⋅ ωP + R ⋅ ω̇P (39)  

where R
⋅
= R ⋅ ω̃P, ω∼P is the skew symmetric matrix of ωP. 

The angular acceleration vector ω⋅ P in the general body reference frame is then obtained using Eq. (30): 

ω⋅
p = E

⋅
⋅ ṫ + E ⋅ ẗ (40) 

Combining equations (36), (38), (39), the relationship between the acceleration for the active joint of the limb and the generalized 
acceleration of the mobile platform can be obtained: 

L̈ = J
⋅

I ⋅ q̇ + JI ⋅ q̈ (41) 

By means of equations (36) and (37), the generalized acceleration of the mobile platform is computed: 

q̈ = J
⋅

⋅ L̇ + J ⋅ L̈ (42)  

Table 2. 
Parameters of the parallel manipulator.  

RP = 0.125m, RB = 0.160m  
θP = 24∘ , θB = 96∘  

Uoffset = 0.01m  
h = 0.295m, hP = 0.026m, hB = 0.027m  
L1 = 0.2899+ 0.008 ⋅ sin(0.25πt) ⋅ cos(0.25πt)
L2 = 0.2899+ 0.018 ⋅ sin(0.25πt) ⋅ cos(0.25πt)
L3 = 0.2899+ 0.004 ⋅ sin(0.25πt)
L4 = 0.2899+ 0.013 ⋅ sin(0.25πt)
L5 = 0.2899 − 0.03 ⋅ sin(0.25πt)
L6 = 0.2899+ 0.02 ⋅ sin(0.25πt), 0 ≤ t ≤ 8   

Fig. 7. Time history of the velocity of the center of the mobile platform.  
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5. Case study 

In order to verify the effectiveness of the method presented in this research to solve the kinematics of 6-RR-RP-RR parallel 
manipulator, a numerical example is given in this section. Table 2 shows the configuration parameters. Numerical analysis needs to 
calculate the forward kinematics analysis by giving six limbs lengths. Therefore, the generalized coordinates Li (i= 1, 2,⋯, 6) of six 
limbs lengths are given in Table 2, and the velocity, angular velocity, acceleration and angular acceleration of the mobile platform with 
respect to the fixed platform are calculated. 

The generalized coordinates of the limb lengths are controlled by periodical functions, and the unit is meter. The parallel 
manipulator begins its motion from the zero position at the time t = 0 and returns to its original configuration after 8 s. The time history 
of the velocity and acceleration of the mobile platform with respect to the fixed platform is shown in Figs. 7 -10. Finally, in order to 
verify the kinematics formula of the parallel manipulator based on the differential transformation method and D-H parameter method, 

Fig. 8. Time history of the angular velocity of the mobile platform.  

Fig. 9. Time history of the acceleration of the center of the mobile platform.  
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the simulation software ADAMS is used to determine the velocity and acceleration of the mobile platform. The ADAMS model for the 
studied parallel manipulator is shown in Fig. 11. The simulation results obtained are provided in Figs. 7 - 10. Referring to the results in 
Figs. 7 - 10, the numerical solutions obtained via the differential transformation method are in excellent agreement with the results 
obtained using the simulation model in ADAMS, proving the efficacy of the proposed method. 

6. Conclusion 

In this work, the displacement, velocity and acceleration of a Gough-Stewart parallel manipulator with special structure, known as 

Fig. 10. Time history of the angular acceleration of the mobile platform.  

Fig. 11. The ADAMS model for the studied parallel manipulator.  
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6-RR-RP-RR parallel manipulator, are analyzed by means of Denavit-Hartenberg method and differential transformation method. 
Limited workspace is a drawback of a general Gough-Stewart platform, and offset hinges can improve its workspace. The positive 
impact of the offset hinge on the workspace is verified by an example. The 6-RR-RP-RR parallel manipulator studied in this article, in 
addition to the application in the secondary mirror or the third-mirror adjustment system of large-aperture telescopes, has potential 
applications including precision positioning of surgical manipulators and pointing devices, dynamic tracking of targeting systems. 
Compared with a general Gough-Stewart platform, the limbs of the manipulator are connected to the mobile and fixed platforms 
through offset hinges. Meanwhile, the introduction of hinge offset variable makes its kinematics more complicated and difficult to 
solve effectively. The traditional kinematics modeling method for parallel manipulator can not be used to analyze the kinematics of the 
parallel manipulator studied. The hinge constraint algorithm proposed in reference [47–49] has great limitations, and can only solve 
the displacement relationship through the complex modeling process. In this contribution, the kinematics of 6-RR-RP-RR parallel 
manipulator with offset hinges is approached successfully by the means of the hybrid method combining Denavit-Hartenberg method 
and differential transformation method. As far as the authors are aware, the velocity and acceleration analysis of the 6-RR-RP-RR 
parallel manipulator using offset hinges has not been reported in previous work. The derivation of acceleration analysis of the 
6-RR-RP-RR parallel manipulator using the hybrid approach is novel in this research field. As an intermediate step, this contribution 
also provides the forward and inverse displacement analysis. Simple and compact expressions of velocity and acceleration can be easily 
translated into computer programs. The expressions derived in this contribution for solving the acceleration analysis do not require the 
calculation of the values of the passive joint acceleration of the studied parallel manipulator. In order to prove the versatility of the 
expressions obtained by the hybrid method in solving the kinematics of the parallel manipulator, up to the acceleration analysis, a 
numerical example was provided and verified with the help of the simulation software. According to the Figs. 7 - 10, the numerical 
solutions obtained via the hybrid method are in excellent agreement with the results obtained using the simulation model in ADAMS, 
proving the efficacy of the proposed method. 

The hybrid method and formulas derived in this study are general, universal and continuous. They can be applied to kinematic 
analysis for other complex parallel manipulators as well. Based on the velocity and acceleration expressions, future work will focus on 
the dynamics and control strategy of such parallel manipulator. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgments 

This work was supported by the National Natural Science Foundation of China [Grant No. 52005478] and Jilin Scientific and 
Technological Development Program [20200404204YY]. 

Appendix A 

The kinematic equations can be established via Eq. (9): 

nx = − c6 ⋅ (c5 ⋅ (s1 ⋅ s3 − c1 ⋅ c2 ⋅ c3) + c1 ⋅ s2 ⋅ s5) − s6 ⋅ (s1 ⋅ c3 + c1 ⋅ c2 ⋅ s3)
ny = c6 ⋅ (c5 ⋅ (c1 ⋅ s3 + s1 ⋅ c2 ⋅ c3) − s1 ⋅ s2 ⋅ s5) + s6 ⋅ (c1 ⋅ c3 − s1 ⋅ c2 ⋅ s3)
nz = c6 ⋅ (c2 ⋅ c5 + s2 ⋅ c3 ⋅ c5) − s2 ⋅ s3 ⋅ s6
rx = s6 ⋅ (c5 ⋅ (s1 ⋅ s3 − c1 ⋅ c2 ⋅ c3) + c1 ⋅ s2 ⋅ s5) − c6 ⋅ (s1 ⋅ c3 + c1 ⋅ c2 ⋅ s3)
ry = c6 ⋅ (c1 ⋅ c3 − s1 ⋅ c2 ⋅ s3) − s6 ⋅ (c5 ⋅ (c1 ⋅ s3 + s1 ⋅ c2 ⋅ c3) − s1 ⋅ s2 ⋅ s5)
rz = − s6 ⋅ (c2 ⋅ s5 + s2 ⋅ c3 ⋅ c5) − s2 ⋅ s3 ⋅ c6
ax = s5 ⋅ (s1 ⋅ s3 − c1 ⋅ c2 ⋅ c3) − c1 ⋅ s2 ⋅ c5
ay = − s5 ⋅ (c1 ⋅ s3 + s1 ⋅ c2 ⋅ c3) − s1 ⋅ s2 ⋅ c5
az = c2 ⋅ c5 − s2 ⋅ c3 ⋅ s5
px = Uoffset ⋅ c1 − Uoffset ⋅ (c5 ⋅ (s1 ⋅ s3 − c1 ⋅ c2 ⋅ c3) + c1 ⋅ s2 ⋅ s5) − L4i⋅c1 ⋅ s2)
py = Uoffset ⋅ s1 + Uoffset ⋅ (c5 ⋅ (c1 ⋅ s3 + s1 ⋅ c2 ⋅ c3) − s1 ⋅ s2 ⋅ s5) − L4i⋅s1 ⋅ s2)
pz = Uoffset ⋅ (c2 ⋅ s5 + s2 ⋅ c3 ⋅ c5) + L4i⋅c2)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where, c(m) = cos(θmi), s(m) = sin(θmi), (m = 1, 2, 3, 5, 6). 

Appendix B 

The rotation transformation matrix when any reference frame rotates angle θ around any vector f starting from the origin is as 
follows: 
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Rot(f, θ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

fxfxversθ + cθ fyfxversθ − fzsθ fzfxversθ + fysθ 0

fxfyversθ + fzsθ fyfyversθ + cθ fzfyversθ − fxsθ 0

fxfzversθ − fysθ fyfzversθ + fxsθ fzfzversθ + cθ 0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(B.1) 

where, sθ = sin(θ), cθ = cos(θ), versθ = 1 − cos(θ),fx, fy, fz are the components of vector f on the three coordinate axes of the reference 
frame. 

For the differential motion dθ, substituting lim
θ→0

sθ = dθ, lim
θ→0

cθ = 1, lim
θ→0

versθ = 0 into equation (B.1), it can be obtained that: 

Rot(f, dθ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 − fzdθ fydθ 0

fzdθ 1 − fxdθ 0

− fydθ fxdθ 1 0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(B.2) 

Substituting fxdθ = δx, fydθ = δy, fzdθ = δz into Δ = Trans(dx,dy,dz)Rot(f, dθ) − I, the differential transformation operator Δ may be 
expressed as follows: 

Δ =

⎡

⎢
⎢
⎣

1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1

⎤

⎥
⎥
⎦ •

⎡

⎢
⎢
⎣

1 − δz δy 0
δz 1 − δx 0
− δy δx 1 0

0 0 0 1

⎤

⎥
⎥
⎦ −

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 − δz δy dx
δz 0 − δx dx
− δy δx 0 dx

0 0 0 0

⎤

⎥
⎥
⎦ (B.3)  

Appendix C 

When differential motions of the two reference frames are equal, the equation Δ ⋅ T = T ⋅ TΔ can be obtained. It is evident that: 

T− 1 ⋅ Δ ⋅ T=T Δ (C.1) 

The left side of equation (C.1) can be expressed as follows: 

T− 1 ⋅ Δ ⋅ T =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

− 1

•

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 − δz δy dx

δz 0 − δx dy

− δy δx 0 dz

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

•

⎡

⎢
⎢
⎢
⎢
⎢
⎣

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(C.2) 

It follows that: 

T Δ =

⎡

⎢
⎢
⎣

0 − δ ⋅ a δ ⋅ o δ ⋅ (p × n) + d ⋅ n
δ ⋅ a 0 − δ ⋅ n δ ⋅ (p × o) + d ⋅ o
− δ ⋅ o δ ⋅ n 0 δ ⋅ (p × a) + d ⋅ a

0 0 0 0

⎤

⎥
⎥
⎦ (C.3) 

Therefore, via the equivalence between equation (13) and equation (15), the relationship between two differential motions TM and 
M can be obtained: 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T dx

T dy

T dz

T δx

T δy

T δz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
T MJM •

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dx

dy

dz

δx

δy

δz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(C.4)  

where, TMJM =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

nx ny nz (p × n)x (p × n)y (p × n)z
ox oy oz (p × o)x (p × o)y (p × o)z
ax ay az (p × a)x (p × a)y (p × a)z

0 0 0 nx ny nz
0 0 0 ox oy oz
0 0 0 ax ay az

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
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