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ABSTRACT

Oxygen evolution reaction (OER) plays an important role in many energy conversions and storage technologies, such as water
splitting, rechargeable metal air batteries, renewable fuel cells, and electrocatalytic carbon dioxide reduction and nitrogen
reduction, but its slow kinetics and high overpotential seriously affect the energy efficiency. Fabrication of high-performance and
well-stocked OER catalysts is the key to the large-scale implementation of these energy-related technologies. Two-dimensional
(2D) materials get a lot of attention as OER catalysts due to their large specific surface area, abundant active sites, and
adjustable structures and compositions. Here, an overview is presented for the latest achievements in design and synthesis of
2D materials (including layered double hydroxides, metal-organic frameworks and their derivatives, covalent-organic frameworks,
graphene, and black phosphorus) for the OER, emphasizing novel strategies (including metal/nonmetal doping, defect
engineering, interface engineering, lattice strain, and fabrication of heterojunction) for achieving high electrocatalytic activity.
Peculiarly, the structure—function relationship is analyzed in detail to gain deeper insight into the reaction mechanism, which is
crucial to rational design of more high-performance 2D materials for the OER. Finally, the remaining challenges to improve the

OER performance of 2D electrocatalysts are put forward to indicate possible future development of 2D materials.

KEYWORDS

two-dimensional material, oxygen evolution reaction, layered double hydroxide, metal-organic framework, covalent-

organic framework

1 Introduction

The increasing energy demand and the imminent energy crisis
promote the extensive research of renewable energy production
and storage technologies [1-4]. The development of rich, efficient,
and stable catalysts for oxygen reduction reaction (ORR),
hydrogen evolution reaction (HER), and oxygen evolution
reaction (OER) is the core of renewable energy technologies such
as fuel cells and water splitting [5-14]. Among them,
electrocatalytic water splitting has become an important
sustainable hydrogen production technology. In water splitting,
OER, as the anode reaction, involves a complex proton—electron
coupling process involving four electrons, resulting in slow
dynamics and low energy efficiency [15-21]. Therefore, the
catalytic efficiency of water splitting mainly depends on the OER
process. To reduce the energy loss in energy conversion
equipment as much as possible, it is urgent to develop efficient
OER catalysts to promote OER process, reduce the anode
overpotential, and improve the overall catalytic efficiency [22-24].
Although precious metal oxides (IrO, and RuO,) and two-
dimensional (2D) Rh-based nanosheets can effectively catalyze
OER and reduce energy loss, they cannot meet the requirements
of large-scale commercial application due to their low reserves and
high cost [25-29]. Therefore, it is necessary to develop cheap and
abundant OER catalysts. Due to abundance, cheapness, and
feasibility of large-scale synthesis, transition metal-based 2D

materials show enormous potential in water splitting application.
Since Novoselov et al. peeled graphene from graphite in 2004 [30],
a large amount of research has focused on 2D materials. Large
layered 2D materials have weak van der Waals forces between the
layers, and thin nanostructured materials can be obtained by
stripping technology [31]. With the development of research,
there are many 2D nanomaterials with layered structures, such as
graphene nitride, hexagonal boron nitride (h-BN), graphitic
carbon nitride (g-C;N,), black phosphorus (BP), covalent-organic
frameworks (COFs), layered double hydroxides (LDHs), layered
metal oxides, transition metal dichalcogenides (TMDs), metal-
organic frameworks (MOFs), carbides, nitrides, and carbonitrides
(MXenes) [32-44].

Due to unique geometric configuration and electronic structure
of 2D nanomaterials, they are widely used in many fields, such as
sensors [45-51], catalysis [52-57], energy conversion and storage
[58-62], biomedicine [63-68], electronics, and optoelectronics
[69-74]. Although the electrocatalytic performance of original 2D
materials is poor due to lack of enough surface active sites, they
can show good catalytic activity after adjusting their geometric and
electronic structures. By reducing the thickness of the layered 2D
material, the surface area of the catalyst is increased, exposing
more active sites and enhancing electrical conductivity. By doping
metal/nonmetal atoms on 2D materials, constructing defect sites,
and forming heterojunctions, the local electronic structure can be
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optimized, the interfacial charge transfer and mass transfer rate are
improved, and the reaction energy barrier is reduced [75-78]. In
addition, density functional theory (DFT) was used to calculate
and construct 2D material model to further understand the
relationship between catalyst structure and catalytic performance.

In recent years, the development of synthesis and
characterization of 2D catalysts has provided support for the
design of suitable and efficient OER catalysts. In this review, the
synthesis, characterization, and OER mechanism of 2D materials
(including LDHs, COFs, MOFs, and hybrids) are introduced, and
the catalytic OER performance of 2D materials modified with
different strategies is discussed. Meanwhile, the relationship
between the structure and electrocatalytic performance of 2D
materials is analyzed by theoretical calculations. Finally, the
challenges and future opportunities of 2D materials for the OER
are presented.

2 Synthesis methods

2D OER electrocatalysts can be prepared by a variety of methods,
including top-down and bottom-up processes [79]. The
top-down exfoliation technique is more favorable for the
synthesis of monolayer nanosheets, while the bottom-up
technique is more suitable for the preparation of multilayer
nanosheets [80]. For LDH materials, bulk LDH materials
dispersed in polar solvents will lead to infinite expansion of the
main lattice, resulting in monolayer LDH nanosheets [81]. In the
process of exfoliation, monolayer LDH nanosheets can also be
obtained by intercalation technology. In addition, LDH
nanosheets can also be prepared by liquid exfoliation, and the
main lattice is formed in an appropriate solvent for ultrasonic
exfoliation [82]. 2D COF materials can usually be prepared by
mechanical stripping, solvothermal treatment, ionic heat
treatment, and microwave treatment [83]. The covalent network
would be influenced by thermodynamic equilibrium, reaction
media, and conditions such as temperature, pressure, and
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templates. The reaction media mainly include mixed solvents and
molten metal salt, which can provide suitable reaction conditions
for solvent and ionic heat. COFs can be quickly synthesized by
microwave reaction under solvothermal conditions. MOFs based
on carboxylate are generally synthesized by water/solvothermal
method, microwave heating, and electrochemical deposition,
while MOF derivatives with different structures are usually
synthesized by calcination method [84]. Hybrids are usually
synthesized by atomic layer deposition, self-assembly,
water/solvothermal, and electrochemical intercalation [85]. In the
following sections, we will introduce the synthesis methods of 2D
LDHs, COFs, MOFs, and various hybrid materials, including
hydrothermal/solvothermal, exfoliation, coprecipitation,
electrochemical deposition, wet chemistry, and other synthesis

methods.

2.1 Hydrothermal/solvothermal method

Hydrothermal/solvothermal method is the most common method
to prepare 2D materials. Usually, water or common organic
solvents are used as dispersants to synthesize 2D materials under
high temperature and high pressure [86,87]. The prepared
materials generally possess uniform size, and the reaction
conditions are safe, simple, and economical [88,89]. Li et al
obtained FeOOH/LDH nanocomposites by hydrothermal
synthesis, in which the size of FEOOH nanoparticles (NPs) was
2.0-180 nm (Fig.1(a)). The strong interfacial interaction of
FeOOH NPs can regulate the local electronic structure of Ni-Fe
LDH, and the synergistic effect of FeFOOH/LDH composite on
electrocatalytic OER became stronger with the decrease of the
average size of FeOOH NPs. When the average size of FeOOH
NPs is 2.0 nm, the overpotential (#,,) of FFOOH/LDH in alkaline
solution is 174 mV at 10 mA-cm™ [90]. Xu et al. synthesized
Co/CoO nanoparticles (Co/CoO@COF) on imide COF by
solvothermal method (Fig. 1(b)). In this catalyst, the conjugation
effect between Co/CoO and COF increases the electron cloud
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Figure1 (a) Diagram of FeFOOH/LDH synthesis. Reproduced with permlssion from Ref. [90], © American Chemical Society 2018. (b) Schematic for the preparation
of Co/CoO@COF. Reproduced with permission from Ref. [91], © The Royal Society of Chemistry 2021. (c) The synthesis process of Co,O,/NC.
Reproduced with permission from Ref. [92]. © Elsevier B.V. 2020.
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density of the delocalized large m bond, thus improving the
conductivity of Co/CoO@COF. In addition, the combination of
Co/CoO@COF enhanced the stability and increased catalytic
active sites. Under alkaline condition, Co/CoO@COF catalyzed
OER with an overpotential (17,)) of 278 mV [91]. Yang et al.
synthesized Co;0,/NC with nitrogen doped carbon structure
interconnection by two-step solvothermal and heat treatment
(Fig. 1(c)). The rich pore structure of the Co;0,/NC facilitated
mass and electron transport, which showed excellent catalytic
activity for OER (1, = 235 mV and 7,y = 264 mV). The low Tafel
slope of Co;0,/NC (80 mV-dec) indicated that the catalyst has
fast electron transfer kinetics [92].

2.2 Exfoliation techniques

Exfoliation techniques are commonly used to synthesize single or
several layers of 2D nanomaterials, which can be divided into
mechanical exfoliation, liquid phase exfoliation, plasma-assisted
exfoliation, and chemical lithium imbedding assisted exfoliation
[93-95]. Ultrasound assisted liquid exfoliation is an effective way
to peel materials with van der Waals layer structure. This method
has advantages, such as convenience, economy, and high yield, but
the thickness range of the stripped materials is wide. The stripping
efficiency can be improved by the embedded lithium chemical
auxiliary exfoliation technology [96]. The van der Waals
interaction between layers can be weakened by embedding ions
between layers of layered materials to increase the distance. In
addition, solution pH, reaction temperature, surfactant, and
solution type will affect the morphology and properties of the
peeled materials [97-99].

Liquid phase exfoliation is a typical stripping strategy for the
synthesis of 2D materials [100]. Hu et al. dispersed anionic

Self-assembly
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intercalated NiFe LDH into purified formamide and stirred it
under the protection of inert gas to obtain monolayer LDH [101].
The exfoliated LDH nanosheets showed good electrochemical
OER activity, and the #,, was reduced by 40-54 mV compared
with the original one. However, liquid exfoliation strategies are
often time-consuming, inefficient, and incomplete. Zhao et al.
assembled monolayer NiFe LDH nanosheets (NiFe-LDH-NS) and
graphene oxide nanosheets (GO-NS) into 2D materials by
inserting solid phase exfoliation and breaking interlayer forces.
Then, the two kinds of nanosheets with opposite charges are self-
assembled by electrostatic force to form NiFe-LDH/GO nano-
hybrid, showing an 7, of 273 mV for the OER (Fig. 2(a)) [102].
Zhou et al. obtained layered MOF nanosheets from original
layered MOF crystals by intercalation chemical exfoliation method
(Fig. 2(b)). In addition to liquid phase exfoliation, plasma-assisted
exfoliation can avoid the harm of solvent. Wang et al. synthesized
ultra-thin CoFe LDH with a large number of O, Co, and Fe
vacancies by Ar plasma etching dry stripping technique [103]. The
formation of abundant vacancies makes the base plane have low
coordination number and a large number of dangling bonds,
which greatly enhanced the catalytic OER activity of CoFe LDH
(1110=266 mV).

2.3 Coprecipitation method

Coprecipitation is a simple preparation method. After the
precipitant is added to the solution, the ions are precipitated out
by chemical reaction, which is affected by many factors, such as
the solvent, pH value, and temperature [104, 105]. However, the
materials synthesized by coprecipitation are often irregular and
have poor morphology. Geng et al. designed a controllable co-
reduction and co-oxidation strategy for the synthesis of Ni-Fe
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Figure2 (a) Preparation of NiFe-LDH/GO nanohybrids based on the solid-phase exfoliation-liquid-phase assembly strategy. Reproduced with permission from Ref.
[102], © American Chemical Society 2019. (b) CoFe LDH nanosheets by Ar plasma exfoliation. Reproduced with permission from Ref. [103], © Wiley-VCH Verlag
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LDH nanosheets under mild conditions. During the synthesis
process, the ion concentration in solution is controlled by
changing the ratio of raw materials and the optimal morphology
can be obtained. Compared with common coprecipitation in
alkaline solution, in this synthesis method, ions are firstly reduced
to bimetallic nanoparticles by strong reducing agent and then
oxidized to form LDHs nanosheets with good morphology [106].
Yan et al. synthesized 2D LDHs with monocelled thickness and
abundant surface defects using a simple and rapid precipitation
technique. The ultra-thin LDH had abundant active sites and a
large double-layer capacitance (Cy) value, resulting in high
catalytic OER activity (1,0 = 280 mV). Theoretical calculations
showed that the introduction of Co and Fe can tune the electronic
structure of LDH and improve the conductivity in the OER
process [107]. Gao et al. prepared ultra-thin Ni-Fe-LDH with
inherent oxygen vacancy using co-precipitation strategy, which
showed excellent catalytic OER activity under alkaline conditions
(o = 230 mV). Theoretical calculations showed that the
deprotonation promoted surface reestablishment and the
formation of p-n interface. In this process, the vacancy can adjust
the electron density at the metal site, thus reducing the OER
energy barrier. In addition, the electrocatalytic activity is related to
the surface and bulk of the catalyst [108]. Yan et al. synthesized
CoMn-LDH@g-C;N, composite by in situ coprecipitation at
room temperature and found that the interlayer electron
interaction between CoMn-LDH and g-C;N, improved the
conductivity [109].

24 Electrochemical deposition

Electrochemical deposition is a kind of electrochemical
technology, by which catalysts can be directly deposited on the
electrode and the morphology of the deposited materials can be
modulated by adjusting electrodeposition time, electrolyte molar
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ratio, and electrochemical sweep rate. The principle of
electrochemical deposition is to reduce or oxidize metal ions in the
solution onto the electrode by applying potential. Xu et al
synthesized free-standing NiFe layered dihydroxide/nitrogen
doped graphite foam (NiFe LDH/NGF) by electrochemical
deposition [110]. The catalyst exhibited high electrocatalytic OER
activity with an overpotential of 239 mV in alkaline solution. The
high catalytic activity was attributed to the uniform dispersion of
NiFe LDH on NGF, which provided channels for electron
transport and abundant active sites. Cao et al. reported a step-by-
step electrodeposition strategy for the synthesis of ultra-thin NiFe-
hydroxide films, in which nickel-based films were deposited at the
cathode, followed by Fe species integration under the action of
cyclic voltammetry (CV) at the anode (Figs. 3(a) and 3(b)). The
interconnected reticular membrane structure obtained by gradual
deposition is beneficial to mass and charge transfer and improve
the OER activity (1, = 329 mV) [111]. Fischer et al. prepared
NiFe-BDC (BDC = 14-phthalic acid) surface mounted metal-
organic framework (SURMOF) by layer-by-layer deposition,
which was subsequently converted to NiFe-BDC(X)SURMOEFD in
an alkaline electrolyte (Figs. 3(c)-3(f)). The highest OER activity
can be obtained when the Ni/Fe feed ratio was 6:1 and the #,,, was
only about 210 mV [112].

25 Wet chemical method

Wet chemical reaction is the reaction in solution, including
leaching, chemical reduction, and photochemical reaction. Wet
chemical method is relatively simple to operate, and the reaction
conditions are relatively mild, by which a gram scale catalyst can
be synthesized. At the same time, the surface energy of 2D
nanomaterials can be reduced by using end sealers in the synthesis
process, which is conducive to the growth of metal nanocrystals
along a certain crystal orientation. Kundu et al. synthesized
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Figure 3 (a) lllustration of the synthesis of NiFe-SW film by stepwise electrodeposition strategy. (b) Corresponding optical images of the films on indium tin oxide
(ITO). (c) Preparation of NiFe-BDC(X)SURMOFs by layer-by-layer deposition. (d) Grazing incidence XRD (GIXRD) of NiFe-BDC(H)SURMOEF.
() Transformation of NiFe-BDC(X)SURMOFs to NiFe-BDC(X)SURMOEFD:s. (f) GIXRD of NiFe-BDC(H)SURMOFD. (a) and (b) Reproduced with permission from
Ref. [111], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2017. (c)-(f) Reproduced with permission from Ref. [112], © Li, W. . et al. 2020.
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trimetallic NiCoV-LDH by wet chemical method. The catalyst
showed good OER performance with an overpotential of 280 mV
(), and the introduction of trivalent vanadium promoted
electron transfer [113]. Chen et al. synthesized 2D NiFe,O,/NiFe
LDH composite by wet chemical method at low temperature. The
synergistic effect of NiFe LDH and NiFe,O, improved the catalytic
OER activity, and the minimum overpotential was 190 mV (17,
[114]. Kundu et al. prepared three different MOF fiber networks
using wet chemistry and then synthesized the corresponding
nanofibers (zeolitic imidazolate framework (ZIF-67) NFs, Fe-ZIF
NFs, and Fe-incorporated ZIF-67 NFs) using electrostatic
spinning technique. In the bimetal ZIF, the synergistic effect of Co
and Fe promoted the rapid diffusion of intermediates and reduced
the OER energy barrier. When FeOOH was formed in the
reaction process, the reaction rate was improved. Fe-incorporated
ZIF-67 NFs showed a small 7, of 278 mV during OER [115]. The
advantages and disadvantages of the five synthesis methods are
listed in Table 1.

2.6 Other methods

Besides the above methods, chemical vapor deposition (CVD) and
pyrolysis method are also used to synthesized 2D materials. CVD
is a process in which gaseous materials react at gas or gas—solid
interface at a certain temperature to form solid products with few
structural defects [127]. Pyrolysis technology is usually used for
the synthesis of 2D COF and MOF derivatives. The precursors are
synthesized by hydrothermal synthesis or other technologies and
their derivatives are obtained by pyrolysis. Han et al. synthesized S-
doped NiFe-LDH nanosheets (NiFe-LDH-S) on porous carbon
cloth using CVD technology. The catalyst showed excellent
electrocatalytic activity (17,99 = 296 mV) and stability in seawater
[128]. Cao et al. synthesized ultra-thin (~ 1.3 nm) and
mesoporous Co-LDH by CVD method, which showed high
catalytic OER activity (r, = 265 mV) [129]. Guan et al
synthesized NiO microflake@NiFe LDH nanosheets on nickel
foam by two-step hydrothermal synthesis and calcination [130].
Peter et al. synthesized tetrazine-based COF (TZA-COF) on redox
graphene (TZA-COF-RGO) and subsequently obtained Co-
encapsulated nitrogen-doped graphite carbon (Co@NGC-600) by
leaching and annealing. Among them, Co around C-N bond is
the key active site to improve the activity, where Co atoms can
adjust the electronic characteristics of N-doped carbon matrix,
resulting in high activity and high selectivity [131]. By calcination
of ZIF-67/COF composite, Wang et al. obtained highly dispersed
Co;0, nanoparticles (Co;0,/NPC) on N-doped porous carbon
with uniform particle size and high surface area. DFT calculations
showed that the catalytic OER performance of Co;0,/NPC was
due to the geometric and electronic effects on the activation and
adsorption/desorption [132].

3 OER mechanism

Due to four-electron coupled with proton transfer, the sluggish

Table1 Comparison of the advantages and disadvantages of the synthesis methods
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dynamics of OER usually requires a high thermodynamic
potential [133]. With the help of theoretical model, four-step OER
route in acidic or alkaline media is proposed as follows

OER in acidic media:

*+H,0—=*OH+H" +¢ (1)
*OH—*O+H" +e (2)
*0+H,0 — *OOH + H* +e~ (3)
*OOH — *+0,+H" +e” (4)
OER in alkaline media:
OH +* —=*OH+e” (5)
*OH+OH — *O+H,0+e" (6)
HO™ +*0O — *OOH+e~ (7)
*OOH+OH —*+0,+H,0+¢ (8)

where * represents the adsorption site in OER. In acidic media,
H,O is adsorbed on the catalyst surface, and OH* is produced,
which in turn breaks down into O, and then combines with H,O
to form the intermediate *OOH. Finally, oxygen is released.
However, in alkaline media, the OER mechanism is different.
First, the HO™ in the solution is adsorbed to form OH*, which is
then decomposed into O* and H,O. The resulting O* continues to
combine with OH" to form *OOH, which combines with HO™ to
release O, and H,0. In the OER process, the reaction rate is
determined by the highest kinetic energy barrier step, that is, the
rate control step, which determines the performance of the catalyst
[134].

OER is more likely to occur under alkaline conditions, which is
attributed to the fact that under alkaline conditions, the presence
of a large amount of OH is conducive to the formation of
reaction intermediates *O and *OOH, thus facilitating the release
of oxygen. In acidic solution, OH" comes from the decomposition
of H,O, and the concentration is far lower than that in alkaline
solution. In addition, for LDH catalysts, they usually display good
catalytic ability and tolerance in alkaline solution, but they are
inevitably dissolved in acidic solution. OER evolution mechanism
can be divided into two kinds, namely, adsorbent evolution
mechanism (AEM) and lattice oxygen oxidation mechanism
(LOM) (Fig.4) [135]. However, most of the current reports are
based on AEM, that is, the continuous adsorption and desorption
of the reaction intermediates take place at active sites. There are
few reports on LOM, and most are based on LDH catalysts with
cobalt participation.

DFT calculations can be used to study the electrochemical
reaction process at the micro level [136]. At present, the
relationship among catalyst structure and active center needs to be

Synthesis method Advantage Disadvantage References
Exfoliation techniques Mild Cf)ndiFions, simple process, and easyito Uncontroll'flble size, low product‘ion rate, (116-118]
synthesize single or few layers of 2D materials and high energy consumption
Hydrothermal/solvothermal method Suitable for large-scale synthesis Needing §pec1ahzed equipment and hard to [119, 120]
precisely control nanosheet layers
Coprecipitation method Easy to operate, low cost, a.nd low Easyf agg.lomerat.ion and hard. to (109, 121]
temperature synthesis obtain high-quality 2D materials
Ilable mi
Electrochemical deposition Controllable thickness and size and low consumption Uncontro al? e microstructure and [122-124]
formation of byproduct
i i itable fq
Wet chemical method Convenient operation and suitable for Uncontrollable microstructure [125, 126]

large-scale synthesis
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Figure4 OER mechanisms under (a) acid and (b) alkaline conditions.

discussed in detail. The relationship between structure, reaction
and mechanism should be established by combining theory and
experiment. At the same time, the combination is conducive to
studying the mechanism of surface atom interaction and
understanding the electrocatalytic OER process from the
perspective of atoms [137]. Gibbs free energy diagram in DFT
calculations includes thermodynamic state and kinetic state, which
can intuitively judge the reactive site and rate determining step
(RDS) [138,139]. In this section, we will discuss some important
results of DFT calculations for electrocatalytic OER, including
Gibbs free energy diagram, state density, band structure, and
charge analysis.

3.1 Gibbs free energy diagram

Gibbs free energy diagram is one of the most commonly used
activity evaluation criteria for electrocatalysis. In the diagram, the
relative energy of basic steps in the reaction process can be given.
The reaction thermodynamics determines the activation energy
barrier between each step, and they determine the OER
overpotential. Gibbs free energy diagram has been widely used to
compare the intrinsic activity of different catalysts. Figure 5 shows
the 4e mechanism and the four-step Gibbs free energy diagram of
OER on CoFe-LDHs and Ru/CoFe-LDHs [140]. Ru/CoFe-LDHs

*Fe-CoFe-LDHs(100)

8719

were obtained by loading the ruthenium hydroxyl complex on the
(001) crystal plane of CoFe-LDHs, in which Ru atoms are
coordinated with five oxygen atoms. The formation of the *OOH
species from the *O species (step III) in the OER is the RDS. The
Gibbs free energy of RDS at the Ru site on the surface of CoFe-
LDHs is 1.52 eV, which is lower than that of Fe site at the edge of
CoFe-LDHs (1.94 eV) and the overpotential on Ru active site in
Ru/CoFe-LDHs (0.29 eV) is lower than the overpotential on Fe
site in CoFe-LDHs (0.71 V). These results indicated that Ru atom
is the key active site for the OER. The adsorption of reaction
intermediates is closely related to their structure and composition.
The introduction of dopants can change the chemical
environment around the active site and change the activity, thus
producing different energy diagrams. Theoretical calculations
showed that the catalytic OER performance of bimetallic
electrocatalysts is often better than single metallic electrocatalysts.
When Ni was introduced into Co-C system, the interaction
reduced OER energy barrier, which was consistent with the
experimental results [141].

3.2 Density of states (DOS) and band structure

DOS can be used to measure the conductivity of catalysts,
especially those containing similar structures and components.
The smaller the band gap between valence band (VB) and
conduction band (CB), the higher the DOS around the Fermi
level, indicating that the higher the concentration of charge
carriers, the higher the electronic conductivity. Figure 6 shows that
electrons transfer from Ni-MOF to LDH, and the charge density
of Ni atom is reduced. In addition, according to the signal
intensity near Fermi level, VB (1.09 eV) moves to the negative
vacuum level (VB ipy = 1.18 €V) after the formation of Ni-
MOF and LDH heterostructure, which indicates that DOS and
conductivity near Fermi level increase in the Ni-MOF/LDH. In
addition, the d-band center of Ni in the heterogeneous structure
moves upward (—1.33 eV), indicating that Ni-MOF/LDH has
stronger adsorption for intermediates. Compared with LDH and

*Ru-Ru/CoFe-LDHs(001)

@Q@Co@FeOQRIO@CO@O CH
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Figure5 Proposed 4e” mechanism of OER on (a) CoFe-LDHs and (b) Ru/CoFe-LDHs Gibbs free-energy diagram for the OER on (c) CoFe-LDHs and (d) Ru/CoFe-

LDHs. Reproduced with permission from Ref. [140], © Li, P. S. et al. 2019.

www.theNanoResearch.com | www.Springer.com/journal/12274 | Nano Research



8720

()

Ni-MOF
-

Nano Res. 2022, 15(10): 8714-8750

]
|
|
T t
-5 0 5

(ev)

15 —10
Energy

Ni-MOF/LDH

-2.06 eV

Free energy (eV)

- = = -d-band center - = = - d-band center « ==+ d-band center

~—Ni-MOF

LDH
—Ni-MOF/LDH

*OH

DOS

Reaction coordinate

Figure 6 (a) Schematic of the partial electron transfer at the interface. (b) The optimized heterostructure of Ni-MOF/LDH. (c) DOS of Ni-MOF, LDH, and Ni-
MOF/LDH. (d) DOS of Ni 3d orbitals of Ni-MOF, LDH, and Ni-MOF/LDH. (e) Gibbs free energy diagram on the surface of catalysts. Reproduced with permission

from Ref. [142], © Elsevier B.V. 2021.

Ni-MOF, the energy barrier of RDS on Ni-MOF/LDH is lower
(AG=24¢eV) [142).

By tuning the structure of catalysts, the internal band structure
can be adjusted. Luo et al. doped nitrogen into NiFe-MOF to
synthesize N-NiFe-MOF. Under alkaline conditions, H was
removed from the terminal ligand to obtain irreversible structure.
The d-band density (d-DOS) of Fe atoms in NiFe(NO)-MOF is
farther from the Fermi level than that in NiFe(OOH)-MOF, while
the p-DOS of *O adsorbed on NiFe(NO)-MOF moved upward,
indicating that the adsorption capacity of oxygen decreased and
the energy barrier of the rate-control step decreased, which is
beneficial to the OER [143]. Luo et al. calculated the d-DOS of Co
over Co(OH),, Co-MOF, and Co(OH),/Co-MOF (Col and Co2)
and found that the d-band of *Col on Co(OH),/Co-MOF is
farther from the Fermi level than the d-band of *Co on Co(OH),,
indicating that the adsorption of oxygen intermediates on
Co(OH),/Co-MOF is weak. After OH adsorption, the oxygen
density of Co(OH),/Co-MOF is between the other two catalysts,
which indicates that the oxygen intermediate on Co(OH),/Co-
MOF catalyst has the best adsorption free energy [144].

3.3 Charge distribution analysis

The spatial distribution of electron density in catalysts is usually
described by charge density. The charge density of active site
affects the adsorption and desorption of reaction intermediates
during  electrochemical  reactions. The formation of
heterojunction, interface, or new bond can cause charge
rearrangement, and the difference is called charge density
difference. Xuan et al. synthesized FeS,/CoNiSe, heterostructure,
and the different charge densities of the heterostructure indicated
that charge transfer occurred on the heterogeneous interface, and
the electrons showed a transfer trend from CoNiSe, to FeS,. The
charge density of Ni atoms at the interface decreased, and the
chemical state of Ni increased, which was more conducive to the
OER [145].

In addition to the formation of heterostructures, the
introduction of dopants is a common method to adjust the charge
density, which can significantly improve the activity of catalysts in
OER. Zhang et al. supported monatomic gold on NiFe LDH
(‘Au/NiFe LDH), and the OER activity increased by 6 times when
modified by 0.4 wt.% *Au (7, = 0.21 V) [146]. The introduction of
gold resulted in a charge difference of 0.32 e on the catalyst. The
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charge was redistributed from Au to LDH, and electrons were
induced to transfer to the surrounding O, Fe, and Ni atoms. The
optimized charge density promoted the adsorption of OH" and
reduced the adsorption energy of the O* and OOH* intermediates
(Fig. 7(a)). Chen et al. synthesized FEF-MOF array by solution-
recrystallization method. Figures 7(b) and 7(c) show that when
partial nickel was replaced by iron, charge was redistributed and
electrons in the overlapping region of Ni 3d and Fe 3d were
transferred to the surrounding O atoms, which is beneficial to the
adsorption and desorption of reaction intermediates in the OER
[147].

4 Characterization of 2D materials

2D materials have ordered layered structure, strong chemical
bonds between planes, good electrical conductivity, large specific
surface area, and easy to be modified. In theory, the relationship
between structural properties and catalytic properties can be
understood through computational models, but in experiments,
there are still some problems in the in-depth study of reaction
mechanism, which hinders the design and development of high-
performance electrocatalysts. Therefore, it is necessary to clarify
the reaction mechanism of electrocatalysts to obtain efficient 2D
electrocatalysts. At present, various characterization techniques
have been developed to detect the morphology, geometric
configuration, catalytic active site, surface oxidation state, and local
electronic structure of catalysts. In this section, the structural
characterization of 2D electrocatalysts is briefly introduced.

4.1 Structural characterizations

The morphology of 2D materials can be observed by scanning
electron microscopy (SEM) and transmission electron microscopy
(TEM). The spatial resolution and energy resolution of advanced
TEM can reach 0.05 nm and 7 meV, respectively [148-150]. X-ray
photoelectron spectroscopy (XPS) can provide information about
chemical bonding on the surface of 2D materials [151-153]. The
crystal structure of catalysts can be determined by X-ray
diffraction (XRD) [154]. The morphology and lattice can be
detected by high angle annular dark field scanning transmission
electron microscopy (HAADF-STEM). From Figs. 8(a)-8(d), the
lattice fringes of single nanoparticles and core nanocrystals can be
clearly seen [155]. Atomic force microscopy (AFM) can accurately
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Figure7 (a) Differential charge densities of NiFe LDH with and without Au atom. (b) Schematic 3D image of charge density difference of NiFe-MOF. (c) Schematic
2D slice of charge density difference of NiFe-MOF. (a) Reproduced with permission from Ref. [146], © American Chemical Society 2018. (b) and (c) Reproduced with

permission from Ref. [147], © Elsevier B.V. 2021.

reflect the surface structure and properties of catalysts at atomic
scale [156]. In Fig. 8(e), according to the size of the nanosheet, it
can be judged that ultrafine nanoparticles were embedded into the
MOF lattice to form heterogeneous nanosheets [157]. X-ray
absorption fine structure (XAS) can be used to detect the local
structure and electronic configuration of 2D materials. X-ray
absorption near edge structure (XANES) and extended X-ray
absorption fine structure (EXAFS) spectra can provide the
coordination number, atomic spacing, and structural disorder
[146, 158-160]. Compared with the standard NiO, the shift and
rise of the peaks confirmed the positive charge state of Ni in Ni-
COF, and the coordination of Ni atom with two N atoms and two
O atoms in Ni-COF can be obtained from the position and
strength of various characteristic peaks (Figs. 8(f)-8(j)) [161].

4.2 Operando spectroscopic studies

Monitoring the changes of atomic and electronic structures at
active sites during electrocatalytic OER is of great help in
designing catalysts with high catalytic performance. In situ
characterization technology can be used to study the change of
oxidation state and local electronic structure of catalyst surface
under actual working conditions, which can provide information
of the effective active site of the electrocatalyst in OER, catalyst
structure evolution, and reaction mechanism, so as to further
study the relationship between catalyst structure and catalytic
activity. Raman spectroscopy is not easily disturbed by aqueous
solution and is specific to oxides, which shows extremely high
sensitivity at low frequencies. It can be used to measure and
monitor the gradual oxidation, structure evolution, and reaction
intermediates of catalysts under electrochemical conditions [162].
Figure 9(a) shows a schematic diagram of the electrochemical/
Raman spectroscopic system [163]. Using in situ Raman
spectroscopy, Luo et al. demonstrated that the structure of MOF
in alkaline media is a self-reconstruction of the removal of H in
the ligand, followed by oxidation at the metal center or on the
ligand [143].

In situ XAS is a key technique for studying the electronic

structure and local geometric configuration of metal atoms on
catalyst surface under electrochemical working conditions.
XANES can be used determine the valence state of adsorbed
atoms. In addition, the front edge energy has a linear relationship
with the oxidation state of bulk oxides. EXAFS can reflect the
local geometric structure of absorbed atoms by scattering
photoelectrons by the number, distance, and arrangement of
adjacent atoms. Figure 9(b) shows a schematic diagram of the in
situ XAS characterization device [164]. Zhou et al. studied the
catalytic mechanism of NiFe(OH), by using XANES spectroscopy.
By monitoring the unoccupied state of metal 3d orbital in the
OER process, the nickel changed from bivalent to trivalent and up
to +3.6, and the iron increased from trivalent to tetravalent,
showing a highly covalent Fe**~O bond. The transfer of electrons
between Ni and Fe led to the high catalytic activity of NiFe(OH),
[165]. Bell et al. used XAS to obtain the local electronic
environment of Ni and Fe cations in Fe-doped NiO, catalyst
during OER process, and monitored the oxidation and M-O
bond length change with the increase of applied potential. As the
applied potential increased, iron was oxidized to +3, and Ni was
oxidized to +3. It was revealed that Fe™ occupied the octahedral
position in Ni,_,Fe OOH, and the Fe-O bond spacing was very
short, because it shared the edge with the surrounding [NiOg]
octahedron [166].

5 OER application

2D materials have good catalytic performance in electrochemical
field due to their surface physicochemical properties and crystal
structure. 2D materials have ordered layered structure, strong
chemical bonding between planes, and good electrical
conductivity. In addition, 2D materials are easy to be modified
and regulated, and the surface of 2D materials has a high exposure
rate of atoms, while atoms on the surface are prone to escape and
form vacancy defects, providing more active sites for
electrocatalytic reactions. In 2D materials, the electrocatalytic
properties can be improved by optimizing the electronic structure.
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The homogeneity of 2D materials and the small density of
electronic states between the layers provide opportunities for
modification, surface function, and heterostructure construction,
thus providing directional control of the electronic structure and
geometric configuration to improve the catalytic activity of OER.
In this section, we mainly introduce the regulation of the catalytic
activity of four kinds of 2D materials (LDHs, COFs, MOFs, and
hybrids) for OER.

5.1 LDH electrocatalysts
LDHs are a kind of ionic solids with 2D layered structure. They
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are composed of three parts, namely the upper and lower layers
and the interlayer, which are positively charged brucite-like main
layer, negatively charged anion, and neutral solvent particle in the
interlayer region, respectively. Positively charged metal cations,
usually with a +2 or +3 valence, occupy a center surrounded by six
hydroxide ions, forming MO,, which repeats the unit to form a
two-dimensional sheet. The monolayer composed of octahedral
MOy is positively charged and therefore requires a negatively
charged anion to lie between the two layers to keep the whole
LDH electrically neutral [167-170]. Metal cations and anions give
LDHs unique redox properties, big interlamellar areas, and
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adjustable lamellar material properties, which make the OER
catalytic ~ activity ~greater than bulk transition metal
oxides/hydroxides [171]. In addition, there are two layers of
hydroxides between the cation layers of LDH, which can exchange
ions or introduce macroanions or water molecules, allowing
electrolyte ions to move freely between layers.

Amongst non-noble metal LDHs, NiFe-LDHs, due to their
affordable price, rich contents, and unique 2D structure, show
great prospects in catalyzing OER in basic electrolytes [94, 172].
Through the functionalization of NiFe-LDHs, including doping
element, manufacturing defect, and hybridization with other
materials, and changing their surface structure and composition,
the OER catalytic activity of NiFe-LDHs can be greatly improved
[173-175]. In addition, by regulating the electronic structure of
NiFe-LDHs, the optimal active site for the adsorption/desorption
of OER intermediates can be formed, and the energy barrier can
be reduced, which is conducive to the release of oxygen [176].

By regulating Ni/Fe ratio in NiFe-LDH, the formation
efficiency and specie of OER intermediates can be affected, and
the catalytic capacity of NiFe-LDH can be improved. Wang et al.
synthesized NiFe-LDHs nanosheets by hydrothermal method, in
which the iron content was adjusted from 0% to 36% [177]. When
the Fe content was 25%, the OER overpotential was the lowest
(1110 = 140 mV), and the evolution of NiFe(OH), to NiFeOOH
occurred during the reaction. Zhou et al. prepared a series of Fe-
Ni hydroxide nanosheets with different Ni/Fe ratios, in which the
1o was 261 mV at 60% Fe content [178]. The excellent OER
performance can be attributed to the enhancement of
electrochemical area of the nanosheet network structure, the
appropriate metal proportion adjusting the electronic structure,
and increased transfer of electrons.

In situ growth is an excellent synthesis method for preparing
2D materials. Ultra-thin Ni-Fe LDH was prepared by Xie et al,
which showed a current density of 284.4 mA-cm™ at overpotential
of 500 mV [179]. Zhou and coworkers studied the influence of
interlayer ions on electrochemical OER activity [180]. A variety of
characterizations revealed that interlayer ions changed the
electronic structure of metal atoms exposed on the surface. As we
all know, anions have a strong reduction ability and tend to
provide more electrons to NiFe layer, which makes the metal
active sites in the outer layer tend to high valence stable state. This
method is a very important strategy to improve OER activity.
Different interlayer ions have different effects on OER activity.

5.1.1 Metal modified NiFe-LDHs

DFT calculations showed that 3d metal oxides can be regulated by
non-3d high-valence metal tungsten to provide optimal
adsorption energy for OER intermediates. Using this property,
Jin et al. synthesized a trimetal NiFeCr layered hydroxide
electrocatalyst. The three metals have a variety of valence states,
which provided the possibility to produce robust electron
interactions inside the catalyst. Moreover, the synergistic
interaction between Ni, Fe, and Cr improved the catalytic activity
of OER. Feng et al. synthesized hybrid Co-NiFe layered
dihydroxide by hydrothermal method [181]. The introduction of
cobalt changed the electronic structure of NiFe-LDH, and the
rapid transfer of electrons and reaction intermediates promoted
the release of O,, thus achieving the purpose of improving the
catalytic performance of OER (77, = 278 mV). Wang et al.
synthesized FeV-doped nickel hydroxide and successfully
introduced them into the lattice, which well-adjusted the local
coordination environment and electronic structure [182]. DFT
calculations showed that vanadium site in the catalyst was the best
site for OER, and the overpotentials (77,, = 200 mV and 7,4y =
264 mV) were lower than those of undoped sample.
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The doping of the third element could transform LDHs into
trimetallic layered hydroxides. Wang et al. prepared ternary
layered LDH by spontaneous ion exchange [183]. Dinh et al
reported the application of ternary layered hydroxide NiFeV in
OER, obtaining the optimal molar ratio of the metal NiFeV [184].
The introduction of the third species can effectively change the
local electronic structure and promote the OER process [185]. The
Pt-NiFe LDH OER electrocatalyst reported by Anantharaj et al.
can reach the current density of 10 mA-cm™ at an overpotential of
230 mV [169].

5.1.2  Defect modified NiFe-LDHs

Defects are easy to be introduced in 2D NiFe-LDHs. Changes in
composition and structure of metal hydroxide in the synthesis
process will produce various defects, and due to low coordination
environment, unsaturated defects are often conducive to structural
reforming [186, 187]. However, in Fe-Ni based hydroxides, the
configuration of vacancy defects is relatively simple, usually Fe* or
Ni** vacancy, which can not only act as active sites but also activate
the surrounding metal sites, thus improving the OER activity
[188]. Kim et al. synthesized NiFe-LDHs with oxygen deficiency
by direct growth method, and the karst morphology and oxygen
deficiency enabled the catalyst to have rich number of active sites
and accelerated mass transfer [189]. Sun et al. used flame etching
to introduce a large number of oxygen vacancies and
nanohexagonal defects in NiFe-LDH [190]. Abundant oxygen
vacancies, electron-rich structures at metal sites, and low
coordination numbers reduced the initial OER potential.
Theoretical calculations showed that the introduction of defects
reduced the reaction energy barrier. In the NiFe-LDH catalyst
with oxygen vacancy, AG of only 0.84 eV was needed to initiate
OER, which was lower than that (0.92 eV) without defects.

The rearrangement of electrons and the change of metal
valence state caused by defects play an important role in the OER
catalysis, and the unsaturated coordination and metal sites have an
important effect on the formation and transformation kinetics of
reaction intermediates. Sun et al. synthesized NiFe LDH with
unsaturated coordination sites by using fluoride precovering
strategy [191]. The unsaturated metal sites could be controlled on
the surface of NiFe LDH, showing a low overpotential (17,, =
243 mV). The catalytic activity for OER was significantly better
than that of the original NiFe LDH catalyst. Zhang et al. prepared
layered NiFe LDH microtubules rich in oxygen vacancies (v-NiFe
LDH) with the help of template assisted strategy [192]. The
catalyst has abundant active sites and good structure stability. The
existence of defects improved the conductivity. The defects
significantly improved the OER activity of the v-NiFe LDH,
showing an overpotential (77,5) as low as 195 mV and almost no
degradation of the catalytic activity after 20 h. DFT calculations
revealed that the iron site was the main active site of OER, and the
oxygen vacancy mainly affected the band gap to improve the
conductivity and improve the reaction kinetics.

The construction of NiFe LDHs with micro-nano structures
rich in defects can provide abundant electrochemical active sites
for the OER. Yan et al. synthesized layered dihydroxide
nanosheets with a thickness of about 1.3 nm by rapid
coprecipitation method, in which the Faraday efficiency of NiFe-
LDH NSs was close to 100% [107]. There are a large number of
defect sites and distorted lattice structure in the catalyst.
Theoretical calculations showed that there is an extremely low
band gap and spin polarization in the NiFe-LDH catalyst, which
can improve the electron migration rate in the OER.

Most of the current reports on NiFe-LDHs focused on the OER
activity, and few studies focused on their stability, which
determines whether they can be used on a large scale in industry.
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Liu et al. revealed that the catalytic OER activity of massive NiFe
LDH decreased gradually [193]. They reported the inactivation
mechanism, that is, the OER activity and proton transfer could be
enhanced in the interlaminar basal plane, while the OER activity
was continuously decreased due to the continuous dissolution of
NiFe LDH in the interlayer. Stripping NiFe LDH into atomic thin
layer can effectively improve the stability of OER. Waterhouse et
al. revealed that the instability of the NiFe-LDH catalyst in alkaline
solution is caused by partial inactivation of the active sites and the
formation of independent NiOOH and FeOOH [175]. They
proposed that cation vacancy constructed on the NiFe-LDH
substrate can effectively improve its OER stability since the
introduction of cationic vacancy greatly slows down the
dissolution of metal cations. Metal cations in NiFe-LDH form
octahedral coordination with oxygen atoms, and the introduction
of divalent metal cations reduces vacancy, while trivalent metal
cations increase vacancy, suggesting that the valence state of nickel
can be adjusted by introducing metal cations with different

Nano Res. 2022, 15(10): 8714-8750

valence states. In the hybridization of Fe 3d-O 2p, increasing
vacancies can enhance the binding energy of iron and oxygen and
reduce the dissolution of ferric irons (Figs. 10(a) and 10(b)). The
metal at the edge site is more soluble than the metal at the base
plane site. However, when the cation vacancy is introduced, the
dissolution of metal atoms at the edge site is significantly
increased, and the dissolution ability of edge and base plane is
basically equal. The dissolution energy of iron ion is higher than
that of nickel ion no matter where it is located (Figs. 10(c) and
10(d)). Fe plays an important role in controlling the stability of
NiFe-LDH catalyst. The vacancy around the iron provides space
for the twisted FeO, octahedron, making the iron in the lattice
insoluble (Figs. 10(e) and 10(f)). To sum up, the principle of
introducing vacancy to inhibit metal dissolution is to enhance the
binding energy between metal and oxygen and release lattice
distortion. From Figs. 10(g)-10(1)), both voltage and vacancy will
affect the OER intermediates. Compared with original NiFe LDH
catalyst, the introduction of trivalent metal ion vacancy makes the
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Figure 10 (a) and (b) X-ray absorption spectra. Calculated dissolution energy of metal atoms in NiFe-LDH with different structural configurations: (c) M** vacancies
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OER process more favorable in thermodynamics. DFT
calculations showed that the deprotonation free energy (1.76 V)
in the NiFe LDH with trivalent metal ion vacancy is lower than
that of the original LDH catalyst (2.34 eV). In the original NiFe
LDH catalyst, the introduction of cation vacancies can also reduce
the maximum reaction free energy (AGpps) of the potential-
determining step. The AGppg of the introduced bivalent cation
vacancy at the nickel site is 0.77 or 0.80 eV, while the AGppg of
trivalent cation vacancy is 0.50 eV, providing higher OER activity.
The introduction of a trivalent metal ion vacancy reduces the
binding of the intermediate at the active site. In conclusion, the
introduction of vacancies not only increases active sites but also
optimizes the binding energy of the reaction intermediates, and
ultimately improves the OER activity and stability.

By reducing the size of catalysts, the vacancies can be increased.
Zhang et al. synthesized ultrafine porous monolayer NiFe-LDH
nanosheets with the thickness less than 3.0 nm by ultrasonic
stripping technology, where there were a large number of metal
and oxygen vacancies, showing an OER overpotential (r,,) of
230 mV [194]. Theoretical calculations showed that the presence
of vacancies greatly enhanced the adsorption of water and
facilitated the bonding of OH* intermediates in the OER. Lang et
al. synthesized porous ultra-thin NiFe LDH with cationic and
anionic vacancies by assisted etching method [195]. The porous
structure, nickel ion vacancy, and oxygen vacancy together
improved the OER performance, and the catalyst had a low
overpotential (7,0 = 170 mV). DFT calculations indicated that the
OER performance was significantly improved because the oxygen
vacancy inhibited the 3d-e, of the nickel site around it and
facilitated the d-band center to move towards the direction of
small electron energy barrier.

Cationic and anion vacancies are usually simple metal and
oxygen vacancies, which can activate surrounding metal sites to
act as new active sites. However, for defects, they are unstable and
can be transformed into other types of vacancy defects, such as
Vaon and Vyop y at certain applied voltages. Li et al. reported that
cation dissolution was made by cation coordination between N,N-
dimethylformamide (DMF) and NiFe-LDH to form NiFe-LDH
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with cation vacancy [196]. In NiFe-LDH, the absence of cations
elongated the Fe-Ni bond, resulting in the formation of highly
oxidizing Fe®?. Under alkaline conditions, the evolution of
cationic defect structure in the OER process is as follows Vy; >
Vmorn > Vmonn (Figs. 11(a) and 11(b)). According to the
formation energy of different defects, the difficulty of their
formation can be obtained, and the energy required for the
formation of Vy; > Vyon > Vyonn defects increases gradually.
Compared with the original NiFe-LDH, the adsorption strength of
oxygen-containing substances on the defective NiFe-LDH was
improved. The negative adsorption energy of the catalysts with
Vwon and Vo vacancies for oxygen species is greater than that
of V). The variation of Gibbs free energy in the four-step OER
reaction shows that the vacancy configuration affects the OER
activity, and the AG; is smaller in the structures with Vo and
Vyorn- The basic steps based on the calculation of the hydrogen
electrode model and the maximum AG show that the
thermodynamic limiting step is related to the oxidation of *OH to
*O (Figs. 11(c)-11(g)).

5.1.3 Hybrid structure of LDHs

LDHs have the structure of transition metal oxides, and due to
their inherent catalytic activity, the catalysis of OER under alkaline
conditions has attracted extensive attention. Layered structure has
good compatibility and flexibility, and many kinds of transition
metal LDHs have been prepared, among which iron group
elements have been widely studied due to their unique interactions
[197]. However, small specific surface area, poor electrical
conductivity, and less active site would affect their applications in
the field of electrocatalysis. To improve the catalytic properties of
LDHs, they can be hybridized with other 2D materials, such as
carbon nanotubes, graphene, MOFs, and COFs, making full use of
the synergy between these materials to improve OER
performance.

The assembly between hydroxides and graphene can solve the
problems of low specific surface area and low conductivity of
LDHs. Theoretically, graphene has a specific surface area of
2,600 m*g" and a conductivity of ~ 10° S-cm™, which provides a
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platform for charge transfer and mass transfer in catalytic
reactions. Direct interfacial contact between 3d is possible when
the positively charged LDH is alternated with the negatively
charged graphene. Zhou et al. synthesized 3d transition metal
LDH with different Ni/Fe ratios by uniform precipitation.
Subsequently, the Ni-Fe LDH nanosheets were hybridized with
graphene oxide (GO) to form a superlattice heterostructure [198].
In the whole structure, the nanosheets with different charges were
successively arranged to enhance the conductivity of the material.
The presence of GO can effectively prevent the aggregation of
LDH nanosheets and increase the specific surface area of the
material (Figs. 12(a)-12(d)). The assembled catalyst showed good
OER performance with the overpotential (7,,) of 0.21 V. The
combination of LDH and carbon nanotubes can form an
interconnected conduction grid to promote electron transfer
within the catalyst. Gong et al. reported the mechanism when
NiFe-LDH and carbon nanotubes cooperated in the OER [199].
Near the edge of carbon, there was a significant % peak compared
with that without NiFe-LDH in NiFe-LDH/CNT. When M-O-C
was formed inside the catalyst, the carbon atom of carbonyl group
was greatly disturbed (Figs. 12(e)-12(g)).

Hybrid materials show high electrocatalytic OER activity due to
excellent structural characteristics and synergistic effect. The
flawless 2D materials usually show poor OER activity, low
adsorption energy, few active sites, and poor electrical
conductivity. However, their electrocatalytic performance can be
significantly improved by modifying them. Hybrid of LDHs with
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other 2D materials can improve the electrocatalytic performance
significantly. The weak van der Waals forces between layers of 2D
materials make them possible for modifying the active sites. Wang
et al. reported a 2D/2D heterojunction catalyst using lowtoxic
solvent [200], which not only effectively avoided the aggregation
of NiFe, but also promoted the formation of NiFe nanoflakes.
DFT calculations proved that the existence of NiFe increased the
stability of MoS,. From the adsorption diagram, the binding
energy of the Ni atom in the plane is very large. DOS showed that
the catalytic effect of Ni/MoS, on OER was much lower than that
of NiFe/MoS, because the electron mobility in the latter was
greatly increased. Furthermore, the free energy of *OOH on the
NiFe/MoS, was significantly reduced (Figs. 13(a)-13(d)). Jia et al.
prepared NiFe LDH/graphene heterojunction. Theoretical
calculations revealed that the internal electrons were rearranged
during the synthesis of heterojunction catalyst. The electrons in
NiFe LDH aggregated on the graphene, resulting in NiFe LDH
holes, which enhanced the catalytic ability of OER (Figs.
13(e)-13(g)) [201].

Zhao et al. synthesized Co(OH), derived from ZIF-67 by ion
exchange method, and FeCo-LDH/Co(OH), electrocatalyst was
prepared by electrodeposition. FeCo-LDH and Co(OH), layer
acted as transportation hubs for accelerating electron transfer and
material exchange [202]. In addition, bimetallic FeCo alloys can
promote electron transfer at newly formed interfaces and enhance
stability. Chu et al. reported the transfer of the electrochemical
active center from Fe to Ni after ZnO deposition on NiFe-LDH by
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Figure 12 (a) Procedures of hetero-assembling Ni-Fe LDH nanosheets and graphene for water splitting. (b) XRD patterns of superlattice composites of Ni,/;Fe,;-NS
and (i) GO and (ii) reduced graphene oxide (rGO). (c) TEM image. (d) High-resolution TEM (HRTEM) and schematic illustration of alternately stacked LDH
nanosheets and graphene. (e) Schematic showing the hybrid architecture and LDH crystal structure. (f) Polarization curves. (g) C K-edge XANES spectra of NiFe-
LDH/CNT (black) and pure MWCNT (red) without coupling to LDH. (a)-(d) Reproduced with permission from Ref. [198], © American Chemical Society 2015.
(e)-(g) Reproduced with permission from Ref. [199], © American Chemical Society 2013.
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Raman spectra [203]. ZnO nanoparticles were deposited by
plasma sputtering. The advantage of this deposition method is that
the distribution of ZnO nanoparticles in LDH is uniform.
Moreover, ZnO alone has poor OER electrochemical activity,
which confirmed the electrochemical influence of the
heterogeneous structure.

The transfer of electrons from NiTe to NiFeOOH was
confirmed by DFT calculations. Decomposition of the active
intermediate OOH* is a decisive step in OER. Reasonable design
and modification of 2D materials can significantly reduce the
Gibbs free energy and accelerate the OER (Figs. 14(a)-14(c)). The
NiFeOOH/NiTe catalyst showed a low overpotential (17, =
228 mV) due to strong electron coupling and arrival channel
planning, showing excellent OER performance in LDH based
catalysts (Figs. 14(d)-14(f)) [204]. The thickness of LDHs can be
effectively controlled by tuning reaction time, which affects the
catalytic efficiency. The structure of LDHs usually undergoes a
series of phase transitions during the reaction process, and
hydroxides were recognized as the active species [205,206]. The
preparation of FeNi-LDH/Ti;C,-MXene nanohybrid composite
electrocatalyst is based on the co-precipitation of bimetal ions
[206]. During the synthesis process, Al layers were selectively
etched, after which hydrophilic functional groups were
introduced. XPS spectra revealed strong electron interactions
between 2D nanomaterials. The optimized layer spacing calculated
by DFT was 1.74 A, and the binding energy of each cell was
0.36 eV, which indicates that there is a strong interaction between
FeNi-LDH and MXene (Figs. 14(g)-14(1)).

Han et al. used FeOOH to modulate the electronic structure of
NiFe LDH. The modulation of electrons at FeOOH and NiFe
LDH interface was confirmed by various characterization

methods. The size of FeOOH particles had a significant effect on
OER activity [207]. MOFs have been widely studied due to their
structural diversity, electronic adjustability, and large specific
surface area. Chen et al. prepared QD@NC@RGO by pyrolysis of
MOF precursor at low temperature [90]. DFT calculations
revealed that there is a strong electronic interaction between Ni
and H*. Peng studied the active components of NiFe LDH, and
found that when Fe ion occupied the lattice of Ni ion in NiFe
LDH, the activation energy decreased [208]. However, the specific
catalytic mechanism on NiFe LDH catalyst is not clear. They used
acid corrosion technology to maximize the active center.
Theoretical calculations showed that the Fe site at the edge had a
smaller Gibbs free energy and the activity of internal Ni in NiFe
LDH was higher than that of marginal Ni. Cao et al. prepared
EG/Co(OH),/ZIF-67 electrocatalyst with core-shell structure. XPS
spectra showed that the binding energy of pyridine nitrogen in the
composite catalyst moved negatively, which confirmed the strong
coupling between the interface of Co(OH), and ZIF-67. When the
ultra-thin ZIF-67 was coated with Co(OH),, it showed excellent
electrocatalytic OER activity due to the strong coupling between
them [209]. The OER performance of LDH-based catalysts is
summarized in Table 2.

5.2 Covalent organic frameworks

Covalent organic skeleton is composed of organic molecules
connected by strong valence bonds and arranged in a specific
geometry and space. Due to the diversity of organic molecules,
different sizes of connecting units can be used for the precise
design of COFs. In recent years, COFs have been widely studied in
photocatalysis, electrocatalysis, biomedicine, and other fields. The
first 2D COF was synthesized by Yaghi et al. in 2005, and COF-1
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mechanism of OER. (c) Gibbs free energy diagram. (d) Linear sweep voltammetry (LSV) polarization curves. (¢) Overpotential. (f) Tafel plots. (g) Hlustration of the
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Table2 Comparison of OER performance on LDH-based catalysts

Catalyst Loading mass (mg-cm?) Electrolyte n@10 mA-cm™ (mV) Tafel slope (mV-dec™) References
Pt-NiFe LDH 0.205 1 M KOH 230 33 [169]
NiFe LDH/Ni-Te 1.0 1 M KOH — 51.04 [204]
CoNi-LDH/Ti;C,T, — 1 M KOH 257.4 68 [210]
FeOOH/LDH 0.02 1M KOH 174 27 [90]
FeNi-LDH/Ti;C,-MXene 0.2 1 M KOH 298 43 [206]
NiMn LDH/carbon foam 0.425 1 M KOH 220 30 [211]
NiFe LDH/carbon quantum dots 0.2 1 M KOH 235 30 [212]
NiFe-LDH/C 0.28 1 M KOH 210 35 [213]
Fe-Ni hydroxide/GMC 0.147 1 M KOH 320 57 [214]
HPGC@NjiFe 0.285 1 M KOH 265 56 [215]
NiFe-LDH@SWNT 0.272 1 M KOH 250 35 [216]
NaBH,-NiFe LDH — 1 M KOH 280 56 [217]
v-NiFe LDH — 1 M KOH 210 34.8 [218]
L-NiFe LDH — 1 M KOH 150 37.1 [218]
NiFe-LDH/NrGO 0.36 0.1 M KOH 258 63 [219]
NiFe-LDH/Co 0.12 0.1 M KOH 312 60 [220]
nNiFe LDH/NGF 0.25 0.1 M KOH 337 45 [221]
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and COF-5 showed high thermal stability, permanent porosity,
and high surface area [222]. Subsequently, a large number of
studies focused on the construction of COFs with different
morphologies and their functions [223,224]. The ordered
structure of 2D COFs promotes quick carrier transfer in the
stacking direction, which provides a platform for the application
of 2D COFs in electrocatalytic OER.

The modification of 2D COFs for catalytic OER has many
advantages. First, 2D COFs have adjustable porous structures,
which provide a specific surface area for catalytic reactions.
Second, a variety of layered stack structures favor the the transport
of electrons and reaction intermediates. Finally, 2D COFs can be
reasonably designed for different reactions. The skeleton of 2D
COFs is composed of strong covalent bonds with non-metallic
elements, which makes the materials show high stability, low
density, and permanent porosity, exhibiting a foundation for the
applications of electrocatalysis. Zhang et al. performed theoretical
calculations of COFs [225], and pointed out that COFs containing
C and N have excellent electrochemical activity. The advantage of
covalent connection mode was that it can not only significantly
improve the stability of the catalyst, but also give nitrogen a
particular position and stoichiometric number. Moreover, the
relationships among C,\N stoichiometry, pore size, and activity
were compared. Smaller band gaps have stronger adsorption
capacity for H* and OOH* and can significantly reduce the OER
overpotential [226]. The reaction paths on catalysts with different
configurations are significantly different. At present, many 2D
COFs have been used as electrocatalysts to promote OER. Here we
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e —
briefly summarize the application of modified 2D COFs in OER.

5.2.1 Doping active metals

Due to the lack of active sites, 2D COFs showed poor catalytic
OER activity. The OER activity can be improved by introducing
reactive metals into the COFs. Thomas et al. synthesized a
crystalline COF with uniformly distributed inherent micropores
and adjustable macroporous structure by using template assisted
strategy (Figs. 15(a) and 15(b)) [227]. They synthesized cobalt-
coordinated bipyridyl COF to catalyze OER and demonstrated
rapid ion transport in the layered COF structure. Spectral analysis
showed that cobalt jons were coordinated with pyridine nitrogen
in the COF, and Co-N bond existed in the TPBpy-Co sample
(Figs. 15(c)-15(f)). Macroine-tpbpy-co showed better OER
catalytic performance (15, = 430 mV) than cobalt-coordinated
microporous COF, which 1is attributed to the transport
characteristics of graded porous COF and the proximity of Co*-
bipyridine active site.

The poor tolerance of COFs in OER leads to leaching and
decreased catalytic activity in the long-time reaction. By
constructing appropriate topologies and structural units in COFs,
they are judiciously tailored to precisely regulate the properties,
density, and spatial configuration of the active center. The catalytic
activity and stability of COFs in OER can be improved by
regulation of the electronic structure. Schiff base modified COFs
can undergo proton tautomerism and are chemically stable [228].
Banerjee et al. developed a cobalt-ion modified bipyridine COF
(Co-TpBpy), in which the bipyridine N atoms in the framework
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Figure 15 (a) Schematic of macro-TpBpy fabrication. (b) Powder X-Ray diffraction (PXRD) patterns. (c) Schematic of the synthesis of macro-TpBpy-Co. (d) High-
resolution N 1s spectra of macro-TpBpy and macro-TpBpy-Co. (¢) Normalized Co K-edge XAS spectra. (f) HAADF-STEM images. Reproduced with permission

from Ref. [227], © American Chemical Society 2019.
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coordinate with Co ions [229]. The modified catalyst had little
change in surface area (450 m*g™) and still retained a strong COF
framework. Under neutral conditions, after CV for 1,000 cycles
and operation for 24 h, the 7, was 400 mV (Figs. 16(a)-16(f)).
The high stability is attributed to the interaction of porosity and
active coordination units in the COF. Chen et al. developed a
metal porphyrin-based GDY analogue (Co-PDY) with unique 7
conjugated structure by Glaser-Hay coupling reaction on
bubbling copper [230]. The stable Co-N, in the 2D Co-PDY plane
acts as the highly active center of OER, and the conjugation
structure in the structure favors electron transfer and maintains
continuous OER activity. The increase of aperture is beneficial to
mass transfer in vertical direction (Figs. 16(g)-16(k)).

The introduction of metal elements in COFs as catalytic active
centers can be combined to the porphyrin unit in COFs, showing
good electrocatalytic activity. From the perspective of structure,
strong 77t interaction around the porphyrin ring would reduce
the utilization rate of metal atoms. Luo et al. designed a simple
cation exchange method to synthesize COF electrocatalyst with
high utilization rate based on the tunability of organic structural
units [231]. DFT calculations showed that oxygen formed
coordination bonds with metal in ~SO;™ unit of COF, and the
improvement of OER activity indicated that the cation exchange
strategy improved the atom utilization. The synthesized
Niy sFe, s@COF-SO; catalyst had a high turnover frequency (TOF)
(0.14 s) at 300 mV. In addition, theoretical calculations showed
that the introduction of bimetal has electron interaction, which
further improves the catalytic activity of the active site.
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5.2.2 Introducing active molecules

Another strategy is to introduce reactive molecules into the
skeleton of COF to adjust the structure to achieve high OER
performance. The OER performance of nonmetallic
electrocatalysts can be improved by introducing metal ions and
regulating N position in COF structure. 2D-COFs with phenazine
bonds show good stability and nitrogen rich characteristics
because of their rigid structure and the uniform hexagonal holes.
Zhang et al. prepared COF-C,N by solvothermal reaction method,
which showed ordered crystal structure with highly conjugate
basis plane [225]. The periodic monolayer model of COF-C,N was
established by DFT calculations. The pore size order is h-C;N, >
COF-C,N > h-G)N, and the band gap decreases with the increase
of pore size. The smaller the band gap is, the stronger the
adsorption of OH* and OOH* in OER is. The calculation results
showed that OOH* adsorption is a rate-limiting step in all three
structures. The N coordination in the catalyst has an important
effect on the OER activity. The larger band gap of h-C,N made the
adsorption of the intermediate weak, which is amorphous and
unstable under alkaline conditions. In addition, the electron was
transfered from N atom to C atom, and the hole was transfered
from C atom to N atom. Therefore, the C site on the surface of
COF-CN should be the active site (Figs. 17(a)-17(f)). COF-C,N
with the pore size of about 10.9 A showed good catalytic OER
performance with small overpotential (77, = 349 mV). Bhaumik
et al. synthesized an imide linked thiadiazole group crystal COF
(C4-SHz COF) with high specific surface area and crystalline
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Figure 16 (a) XRD patterns, (b) N, adsorption isotherms, and (c) ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy spectra. (d) XPS N 1s spectra of the
cobalt-impregnated TpBpy. (e) Co 2p XPS spectra. (f) SEM and TEM images of Co-TpBpy. (g) Synthetic route of Co-PDY. (h) Structure of Co-PDY. (i) Calculated
density of states. TEM images of (j) Co-PDY and (k) PDY. (a)-(f) Reproduced with permission from Ref. [229], © American Chemical Society 2016. (g)-(k)

Reproduced with permission from Ref. [230], © The Royal Society of Chemistry 2019.
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nonmetallic organic skeleton structure by solvothermal synthesis decomposition, the pores of MOF can be partially preserved to
[232]. Nitrogen-rich thiadiazole enhanced the catalytic produce porous carbon carriers with high surface area, to expose
performance of OER (Figs. 17(g)-17(i)). Theoretical calculations more active sites, and to accelerate the OER process. The nitrogen
showed that there are multiple adsorption sites for OH™ on the atoms in the ligands can be partially contained and evenly
surface of C4-CSHz, and the interaction with N3 and § sites is dispersed in the whole carbon matrix, so as to adjust the charge
very weak, and therefore, OH" is mainly adsorbed on C2 site. density and spin density of the surrounding carbon, thus
According to the Gibbs free energy, OOH* adsorption is the OER improving the OER activity. In recent years, 2D ultra-thin MOFs
rate-determining step (Fig. 17(j)-17(m)). and their derivatives were prepared for the OER. The ultra-thin
layered structure of 2D MOFs is conducive to the rapid transfer of

5.3 MOF-based electrocatalysts electrons, accelerating the reaction kinetics. Most MOF derivatives

MOFs are one category of porous materials formed by have hollow or reticular structure, which significantly increases the
coordination of inorganic metal ions and organic ligands. MOFs number of active sites [233]. Moreover, unsaturated metal ions on
have the characteristics of structural diversity, metal ion the surface of MOF derivatives interact with other substances to
coordination uniformity, and high specific surface area. In general, accelerate the reaction kinetics [234].

large coordination number of metal sites would make them 531 MOFsas the clectrocatalst
difficult to react with reactants. Therefore, MOF-derived materials e s as the electrocataiysts

can be used as effective OER catalysts. After high temperature MOFs have a porous network and are self-assembled using
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[232], © American Chemical Society 2020.
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inorganic metal ions and organic ligands. Due to high surface
area, they have been widely used in molecular separation, catalysis,
and chemical sensing. However, most MOFs do not conduct
electricity well, and the active sites encapsulated by organic ligands
lead to poor electrocatalytic performance. To improve the
conductivity of MOFs, the covalent bond of the coordination
polymer can be extended to achieve high charge transfer, and non-
covalent interaction can be used to provide charge transfer
pathway by n—m stacking between organic ligands. Although many
MOFs have been studied in electrochemical applications, these
strategies are often not ideal due to the complicated synthesis of
MOFs with three-dimensional (3D) network structure. Therefore,
2D MOFs have been fabricated. The nanometer thickness is
conducive to the rapid transfer of reaction intermediates and
electrons, and the exposure of a large number of surface active
metal sites. In addition, the unsaturated coordination of surface
metal sites promotes the interaction with the reaction
intermediates [233-235].

2D MOFs can not only provide a large number of metal active
sites, but also react with other substances to accelerate the reaction
kinetics. Thereinto, 2D NiFe-MOFs possess many advantages,
including abundant active sites, ultra-thin structure that improves
electron transfer rate, interaction between Fe and Ni sites, and
unique coordination environment of the active sites [151,236,
237]. In addition, compared with commercial Ir-based catalysts,
2D NiFe-MOFs exhibited higher catalytic activity and stability in
alkaline media, and are superior to other MOF-based catalysts
[238]. In NiFe-MOFs, the introduction of Fe can increase the
valence of Ni. The high-valence Ni exhibits stronger electron
acceptability and thus significantly improves OER activity. Wang
et al. prepared a MOF electrocatalyst with uniform size [239].
Since the synergistic action between unsaturated metal active sites
on the surface of MOF, they showed excellent electrochemical
activity (Figs. 18(a)-18(c)). The presence of iron can improve the
valence state of nickel and optimize the e, orbit, and thus the
electrocatalytic activity can be significantly enhanced [240]. The
excellent electrochemical activity of NiFe-UMNs was mainly due
to the strengthened adsorption of OH" in the AG(i) step, which is
conducive to the formation of intermediates. The addition of Fe
improved the valence state of Ni, and the high valence state of Ni
had stronger electron acceptance ability in the OER, which is
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particularly advantageous in charge transfer between the catalyst
and OH [241]. In addition, Ni(II) possesses e,*-orbit, while Fe(II)
possesses e,-orbit, and the difference between them can effectively
adjust the e,-orbit. Therefore, the increased OER activity of Fe-Ni
electrocatalyst has been explained by Gibbs free energy, orbital
theory, and valence state theory (Figs. 18(d) and 18(e)).

To improve the catalytic activity of MOFs, introduction of
metal elements in the structure and forming heterojunction or
adjusting the structure of MOFs can be adopted, in which strain
strategy is an effective way to adjust the MOF structure since the
distance between atoms would be changed by lattice strain,
thereby modulating the geometry and electronic structure of
active sites and improving catalytic OER activity. The lattice strain
is easily introduced when organic joints break. Non-bridging
ligands partially replace the bridging ligands, while the
interlaminar expansion is caused by weak interlaminar interaction
at the replaced joint. Yan et al. induced lattice strain in MOF by
replacing the multi-coordination bridge connector with a non-
bridging ligand using the method of joint fracture [242]. When
there was a strain of 6% lattice expansion in the NiFe-MOF, the
OER catalytic performance was good under alkaline conditions,
and the overpotential (17,,) decreased from 320 mV on strain-free
NiFe-MOF to 230 mV. The lattice strain did not change the
strength of the nearby Ni-O, but weakened the strength of the
Fe-O, because the disorder degree increased due to the fracture of
the bonding group, while the coordination number and bond
length did not change. Therefore, lattice strain did not change the
octahedral coordination of the metal, but slightly deformed the
configuration of Fe. The strain is often caused by the dangling
bonds around the octahedron of FeO, The electrons were
transferred from O 2p to Fe 3d t,, in Fe 3d-O 2p hybridization
according to the change in peak intensity. To maintain the charge
balance, O acts as a linker between Ni and Fe, enhancing the
interaction between Ni and Fe. The lattice strain brought by the
interaction of Ni-O-Fe will change the valence band structure of
MOF. The lattice strain increased the number of vacant orbitals in
Ni 3d e, level and the number of electrons in Fe 3d t,, level. The
optimization of electron structure improved the catalytic
performance of NiFe-MOFs for the OER (Figs. 19(a)-19(f)).
Different cutting sites will increase the layer spacing, and the
occupancy rate of Ni 3d e, orbital is low after lattice strain. Ni was
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Figure 18 (a) Crystal structure of NiFe-UMN:s. (b) Coordination mode of metal atoms. (c) Atomic arrangements of NiFe-UMNs. (d) Reaction steps of the OER
processes. (e) Gibbs free energy diagrams. Reproduced with permission from Ref. [239], © Elsevier Ltd. 2017.
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the favorable active site, and the formation of *OOH was the rate-
determining step. The introduction of lattice strain reduced the
theoretical overpotential by 0.148 V (Figs. 19(g) and 19(h)).

In order to increase the porosity, conductivity, and catalytic
activity, Zhao et al. synthesized nickel-iron nanosheet arrays with
organic frameworks using a similar solution-crystallization
mechanism (Fig.20(a)) [243]. The NiFe-MOF material has
abundant large pore sizes ranging from 200 to 400 um. On the
surface of the thin film, clear nanosheets with an interval of about
10 nm were grown vertically. Lattice fringes can be clearly
observed in the MOF nanosheets, with lattice spacing of about
1.4 nm, and the thickness of nanocrystals obtained by atomic force
microscopy (AFM) is about 3.5 nm (Figs. 20(b)-20(d)). The ultra-
thin MOF nanosheets showed excellent catalytic performance for
OER, and the overpotential (1) was 240 mV. The excellent
electrocatalytic performance is attributed to the ultra-thin
nanosheets allowing more active sites to be exposed, as well as
improving the combination of conductivity and fractional
porosity. Tang et al. synthesized ultra-thin nickel-cobalt
organometallic nanosheets, which showed good OER catalytic
performance under alkaline conditions with an overpotential (r7,)
of 250 mV, and the #,, was as low as 189 mV when the catalyst
was loaded on copper foam. Theoretical calculations showed that
there existed unsaturated coordination on the MOF surface, in
which coordination unsaturated metal atoms acted as the main
active centers, and the interaction between metal atoms Ni and Co
enhanced OER activity [234].

5.3.2 MOF derivatives

MOFs can be used precursors to prepare MOF-derived catalysts
with good catalytic activity by virtue of controllable morphology
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and structure, high porosity, and favourable compatibility with
various metal ions. The neatly distributed metal nodes and organic
ligands in MOFs are transformed into more complex structures in
their derivatives that provide more catalytic active sites. Generally,
two kinds of MOF derivatives can be obtained according to
different synthesis strategies, namely, single atom-based
derivatives and nanoparticle-based derivatives [244]. In MOF
derivatives, the kind and content of metal ions can be adjusted,
and heteroatom doping can improve the electrical conductivity. In
addition, the heteroatom doping broke the complete carbon
structure and produced defect structure, further improving the
catalytic activity. The morphology and pore structure of MOF
derivatives can be obtained by designing the synthesis process of
MOF precursors or by selecting appropriate synthesis strategies,
such as etching treatment, annealing, and secondary growth
strategies [245, 246]. In this section, the regulation of the catalytic
performance of single atom-based MOF derivatives and
nanoparticle-based MOF derivatives by different strategies is
discussed.

5.3.2.1 Single-atom MOF derivatives

Single-atom MOF derivatives can be usually synthesized via three
strategies. (i) Metal ions are introduced in MOF precursors, and
then annealing treatment is performed. The metal ions can be
fixed into the pore structure of porous carbon materials, and the
organic ligands can be used as sources of heteroatoms. (ii) Porous
carbon materials are obtained by calcination of MOF precursors,
which are used to capture metal ions. (iii) Metal salts are mixed
with MOF precursors, which are annealed to dope metal into the
porous carbon materials. Atom-dispersed active sites in MOF
derivatives can improve the catalytic activity [247-250]. In this
section, three strategies are proposed for improving the OER
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performance of monatomic MOF derivatives, namely, adjusting
the coordination environment of central metal ions, constructing
bimetal monatomic sites, and modifying carbon structures.

53.2.1.1 Adjusting the coordination environment of central metal
ions

In single-atom MOF derivatives, the active sites are usually made
of metal and heteroatomic ligands. By adjusting the number and
type of heteroatoms, the electronic structure and the geometric
configuration of active sites can be optimized, which will affect the
adsorption of reaction intermediates and improve OER activity. In
MOF derivatives, N atoms with lone pair electrons can activate 7
electrons of adjacent carbon atoms, which can delocalize the
charge of carbon atoms and promote the catalytic OER activity
[251,252]. In addition, the abundance of covalent and metallic
bonds in single-atom MOF derivatives can accelerate the
formation of OER intermediates and oxygen adsorption.

Lei et al. assembled 2D MOF using alternate strategy and
synthesized hollow well-defined Co-N-C nanoleaf (HP-CON-L)
[253]. Figures 21(a)-21(c) show the synthesis of HP-CoNC-L, NC-
Co-L, and Co-NC-L. The difference between OER (E;_ ;,) and
ORR (E,;,) (AE) was used to evaluate the overall oxygen activity.
The smaller the AE is, the better the activity is. The AE of HP-
CoNC-L was 0.64 V, which was much lower than most catalysts
(Fig. 21(d)). The stratification and interconnection of the pores
ensured rapid mass transfer and provided a shorter ion transport
path. From Fig. 21(e), the pyridine nitrogen with electron-
withdrawing property can accept electrons from neighboring
carbon atoms, which facilitated the adsorption of OH* and OOH*
and increased the kinetics of OER.

5.3.2.1.2 Constructing bimetal monatomic sites

By introducing a second metal atom into the catalyst and
constructing bimetal single-atom sites, the number of active sites
can be increased and the synergy between the adjacent two kinds

of metals is an important factor to improve the catalytic activity
[237,254]. The construction of bimetallic sites is helpful for the
OER application of MOF derivatives. Non-noble metals Fe and
Co, which have the advantages of high reserves and variable
structure, have been widely concerned in electrochemical OER.
Li et al. synthesized iron and cobalt co-doped nanosheets
(Fe-Co,N@N-C) derived from MOF precursors on carbon cloth,
which exhibited bifunctionality [255]. There is a strong
coordination effect between Fe-Co,N and N-C, in which M-N acts
as the active site. The enriched single cobalt sites can promote
charge transfer and the formation of key intermediates in OER,
and reduce the charge transfer resistance (Fig.22). Feng et al.
synthesized FeCo fluoride catalyst derived from ZIF-FeCo MOFs
using MOF derivatization and fluorination strategies, and found
that bimetals have synergistic effects [256]. Compared with mono-
metal MOF derivatized fluoride, the kinetics, charge transfer
capacity, and active site efficiency of the FeCo fluoride catalyst
were improved, which may be attributed to higher chemical
surface area, more active site exposure, and improved electrical
conductivity produced by fluorination etching.

5.3.2.1.3 Modifying carbon structures

Although single metal atom is the active site, the structure of
carbon substrate has an influence on the electronic structure of the
active site. In addition, the carbon base plane also affects charge
transfer and mass transfer. The introduction of heteroatoms on
the carbon base plane or the manufacture of defects can modify
the carbon structure. It is important to design suitable strategy to
construct carbon base to obtain high catalytic performance.
Xu et al. constructed abundant defects in the structure by using
thermally decomposed MOF materials. The vacancy defect
structure was conducive to in situ derivatization and uniform
formation of vacancy interfaces along the skeleton. Through
controlled heat treatment, metal phosphide was combined with
defect MOF to generate CoP hybrid structure with high activity.
The presence of defects can provide more active sites and regulate
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the electronic structure while preserving the structure, while
phosphating further enhances the catalytic activity of the mixed
material. The defects of the substrate material and the unique
hybrid structure provide large electrochemical active surface area
and fast electron transfer rate together promote the OER activity
of the catalyst [257].

5.3.2.2 Nanoparticle-based MOF derivatives
Besides single-atom MOF derivatives, there is another kind of

electrocatalysts with metal nanoparticles in MOF derivatives,
which can also show good electrocatalytic OER activity after
reasonable regulation. The structure can be optimized by
introducing different metal elements, constructing heterogeneous
structures, and constructing functional composite materials.
MOFs and MOF-derived materials with mesoporous
nanostructures usually have a large active surface area, which can
provide more active sites for electrocatalytic reactions. In addition,
the internal pore structure can reduce ion transport onto the
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active site and accelerate the kinetic OER process [258,259]. In
addition, the diffusion of ions towards active sites in MOF
derivatives can be reduced by reducing the size of the catalyst, thus
increasing the utilization rate of active sites and improving the
reaction kinetics [260]. The metal nodes of MOFs can be changed
and the MOFs with mixed metal nodes can be synthesized. The
mixed metals can interact to adjust the electrocatalytic activity
[261]. Compared with single-metal MOF-derived materials,
bimetallic MOF derivatives usually have better electrocatalytic
activity [262]. In addition to the construction of heterojunction,
the construction of composite materials can reduce the inherent
defects and improve the electrocatalytic activity.

Ultra-thin 2D MOFs allow them to maximize the exposure of
active sites, and the relationship between structure and
performance can be obtained. An electrolyte-assisted technology
for stripping MOF was reported by Zhang et al. [263]. In the
process of synthesis, the catalyst consists of bimetallic Ni and Ce as
the metal center and water molecules as the ligands. The anion
moves near the cation under the drive of applied voltage. The
electrolyte and solvent tend to enter into the interlayer and expand
the hydrogen bond to break (Figs. 23(a) and 23(b)). Therefore,
appropriate electrolytes can effectively improve the stripping
effect. From Figs. 23(c)-23(e), the highest occupied molecular
orbital (HOMO) is occupied by Ni and therefore, Ni is the active
site for the OER.

The electrocatalytic activity of MOF derivatives can be
improved by constructing heterojunction and functional

L
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composite materials. Wei et al. prepared a MOF derivative
(Co;0,@C-N NSA/NIF) by electrochemical deposition method
and high-temperature inert gas treatment method (Fig. 24) [264].
The synergistic effect of 2D nanosheets with ultra-thin and large
specific surface and Co;O, NPs dispersed uniformly on the
nanosheets resulted in the synthesis of C0;0,@C-N NSA/NiF
catalyst with abundant active sites and good OER activity, with 7,5
of 245 mV. The electron transfer between Co and Ni ions was
analyzed by XPS measurement. The Co* in the hybrid material
accepted the electrons from Ni*, which increased the stability. The
OER performance of MOFs and MOF derivatives is summarized
in Table 3.

54 Hybrid electrocatalysts

Hybrid composite materials show excellent catalytic performance
due to synergistic effect between different conponents. For
example, the low conductivity of LDH materials and the
agglomeration can be overcome by constructing conductive
framework [277]. Graphene, carbon nanotubes, MXenes, and
black phosphorus can act as conductive substrates to construct
hybrid catalysts with excellent properties [278-280]. In addition to
binary heterozygotes, ternary heterozygotes can also be fabricated.
Li et al. in situ synthesized layered ZIF-67/CoNiAl-LDH/NF
electrocatalyst by combining the properties of LDH, MOF, and
nickel foam. The lamellar structure, large electrochemical surface
area, porous skeleton, and interfacial coupling effect of the
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Figure23 (a) Top and side views of the 2D cationic layer of 2D-Ni,Ce. (b) Left: packing diagram of 2D cationic layers along a axis. Right: the interlayer hydrogen
bonds between the adjacent 2D cationic layers. Interlayer forces of 2D-Ni,Ce. (c) Four elementary OER steps. (d) HOMO of the Ni-Ln cluster model. (e) Standard free
energy diagrams. Reproduced with permission from Ref. [263], © American Chemical Society 2020.
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catalyst together determined the electrocatalytic OER performance
(70 = 303 mV) [281]. Heumann et al. synthesized a layered
composite material (COTFBDC/EG) by using graphite with good
electrical conductivity and MOF with chemical regularity. In the
composite material, hydroxyl cobalt fluoride nanoparticles were
immobilized on graphite nanomaterials by thermal decomposition
of 2D cobalt tetrafluorobenate MOF nanocrystals, which showed
good OER performance with an initial overpotential of 310 mV
[282]. Electron paramagnetic resonance (EPR) showed that the
introduction of cobalt increased the electron spin relaxation rate,
indicating that there is an effective electron contact at the junction
of the two materials. Stacked graphene nanosheets provided a
pathway for mass transfer without big gap between the two
materials.

Table 3 Comparison of OER performance on 2D MOFs and MOF-derived catalysts

Qiu et al. prepared Fe-CoOOH/G with graphene as support
(Fig. 25(a)) [283]. The metal ions were combined with graphene
by electrostatic action, and then the surface of the metal ions was
refluxed to form LDH. DFT calculations pointed out that Co was
the active center of OER without Fe doping. When Co was
partially replaced by Fe, the structure of CoOOOH/G surface was
changed. Moreover, the Fe-O bond of Co-O bond were distorted,
leading to increased adsorption energy and decreased Gibbs free
energy (Fig.25(b)). Sun et al. prepared bimetallic NiFe(II, III)-
LDH with a few Fe** by hydrothermal method, showing excellent
OER activity (17,0 = 140 mV) [284]. Metal ions are easy to
precipitate by adding urea due to hydrolysis, while fluoride ions
improve the adhesion between the carbon carrier and the
generated hydroxide. The formation mechanism of bilayer

Catalyst Loading mass (mg-cm™) Electrolyte n@10 mA-cm™ (mV) Tafel slope (mV-dec™) References
Ni-MOF@Fe-MOF 0.2 1M KOH 265 82 [265]
NiFe-BDC — 1 M KOH 223 37.3 (266]
NiFe-MOF/OM-NFH 0.4 1 M KOH 270 123 [120]
Fe,Ni;-BDC 0.255 1 M KOH 260 35 [267]
Ni-Fe-MOF NSs — 1 M KOH 221 56 [238]
NFN-MOF 0.6 1 M KOH 240 58.8 [268]
Ni@NC 0.31 1 M KOH 280 45 [269]
Co-Mo,N 0.7077 1M KOH 302 90 [270]
Fe,Co,-P/C — 1 M KOH 360 50.1 [271]
Fe-CoP 4.2 1 M KOH 190 36 [272]
Co,Ni,P 0.19 1 M KOH 245 61 [273]
Zn,,Coy3sOOH 0.204 1 M KOH 235 34.7 [274]
NiFe-MOF 0.3 0.1 M KOH 240 34 [243]
FeCo-MNS 0.36 0.1 M KOH 298 21.6 [275]
NCNTFs 0.2 0.1 M KOH 370 93 [276]
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hydroxides is based on the redox reaction of Ni(II) and Fe(III),
where partial Fe(II) will be oxidized to Fe(Ill) by oxygen (Figs.
25(c) and 25(d)). Wang et al. prepared 2D/2D NiS/graphene
heterojunction electrocatalyst using pyrolysis and vulcanization
processes, exhibiting ultra-thin lamellar structure [285]. The
unique 2D heterostructure provided more electron interactions for
NiS and graphene, thus showing good OER and HER activity
under alkaline conditions. The rapid transfer of electrons between
heterojunction layers effectively promoted the OER process.
Compared with NiS and graphene alone, the Gibbs free energy of
the heterojunction was significantly reduced. Ishihara et al.
prepared Ni-Fe nitride/nitrogen-doped graphene hybrid by
calcination of Ni-Fe LDH/GO hybrid. There is a strong coupling
between metal-doped nitride nanosheets and graphene. During
the hybridization of the two materials, the electronic structure of
the nitride changed, which made the catalyst have good OER
activity with an initial overpotential of 150 mV [286].

2D MZXene family mainly includes transition metal carbides,
nitrides, and carbonitrides. In general, MXene is prepared by
selectively etching of element A from the MAX phase by strong
acid and stripping. The weaker hydrogen bonds of OH, O, or F
can replace the relatively strong metallic bonds between M and A
in the MAX phase by using aqueous hydrofluoric acid (HF) as an
etching agent. MXene has unique properties such as high electrical
conductivity, high surface area, large layer spacing, excellent
thermal stability, and easy to adjust structure [287-290]. Some
MXenes showed excellent electrocatalytic performance on both
their edge and basal planes due to abundant metal and functional
group sites. However, MXenes usually exhibit poor OER activity
due to the lack of active metal sites. In addition, the metallic
properties, poor conductivity, and poor stability of MXenes greatly
limit their direct application in the OER. MXene can be combined
with other materials to significantly improve their electrical
conductivity. The excellent electrochemical activity of MXenes is

e o+
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due to the strong coordination between cations and anions in
electrolyte. Zhu et al. developed S-NiFe,0,@Ti;C,@NF by
thiourea assisted electrodeposition and low temperature
calcination treatment [291], which exhibited good OER
performance with 7,y of 270 mV. The thin substrate and network
structure of Ti;C, facilitated rapid electron transport, while S-
NiFe,O, nanosheets provided abundant active sites. Hu et al.
synthesized a hybrid catalyst (CoFe-LDH/MXene) by growing
CoFe-LDH on the surface of Ti;C, MXene nanosheets, covering
the MXene plane with a densely arranged array of very small CoFe-
LDH nanosheets (Figs. 26(a)-26(c)) [292]. The #,, of the catalyst
was 319 mV for the OER, and the improvement of catalytic
performance may be due to the interaction between the
antioxidant capacity of CoFe-LDH and good conductivity of
Ti;C,. DFT calculations showed that the oxidized iron and cobalt
ions in the CoFe-LDH/MXene system acted as electrophilic
centers during OER. High electron density at the interface of LDH
reduced the resistance, effectively improved the conductivity, and
promoted the electron transfer between the two materials (Figs.
26(d)-26(f)).

Similar to graphene, MXenes are excellent catalyst carrier [293],
which can be used to improve the stability of other 2D catalysts.
As mentioned above, MOF materials can adjust the electronic
structure and surface structure of their derivatives. However, these
derivatives often accumulate during the formation process, which
not only reduces the active area but also affects the electron
transfer rate. As a unique electronic structure and geometric
configuration, MXene can be used to solve the problems faced by
MOF derivatives. Ultra-thin MXene nanosheets have large active
surface area, high electrical conductivity, and strong coupling at
the interface, and therefore, the combination of MOF derivatives
and MXene to construct the hybrid shows high catalytic activity.
For example, Fan et al. reported loaded MOF on MZXene to
stabilize it [294]. Although 2D MOFs have adjustable structure
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Figure 25 (a) Schematic fabrication process for Fe-CoOOH nanoparticles assembled on graphene. (b) Structures and adsorption energies. (c) and (d) XPS spectra Ni
2p and Fe 2p of NiFe(ILIII)-LDH, O-NiFe(ILIII)-LDH, and H-NiFe(ILIII)-LDH, respectively. (a) and (b) Reproduced with permission from Ref. [283], © WILEY-
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and abundant channels, their conductivity is poor. MXenes are a
kind of 2D materials with high conductivity. The MXene/MOF
heterostructure electrocatalyst was constructed by a special
interdiffusion assisted method [295]. 2D MXenes nanosheets not
only have large specific surface area and fast electron transfer rate,
but also have strong hydrophilicity [296]. As electrocatalysts with
ultra-low electronegativity surface, MXenes are expected to change
the active center of composite electrocatalysts, so as to effectively
adjust the electronic structure and change their electrocatalytic
performance [297, 298].

Hybridization of MXenes and metal oxide nanoparticles is an
effective way to achieve high-performance OER activity. Routa
et al. decorated 2D Ti;C, nanosheets with spinel NiFe,O,
nanoparticles (NiFe,0,/Ti;C,) using one-pot hydrothermal
technique [299]. The composite showed superior OER catalytic
activity with an 7, of 266 mV. DFT calculations showed that the
interaction between the spinel NiFe,O, and 2D MXene contained
not only the van der Waals force but also the chemical interaction.
The charge transfer between NiFe,O, and MXene enhanced the
electronic states near the Fermi level due to the interaction
between the Ni and Fe 3d orbitals and the C 2p orbitals. A large
number of experiments have shown that the enhanced OER
activity is mainly due to the increased surface area and strong
interface interaction between MXenes and hybrid nanomaterials,
which is conducive to promoting gas diffusion and electron
conduction. In addition, the electrostatic interaction between
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MXenes and hybrid nanomaterials can attract more anionic
intermediates and accelerate the OER kinetics [292, 299-302].

In interface engineering, reasonable heterogeneous structure
design is an important strategy to improve electrocatalytic OER
performance. Composite catalysts can be reasonably constructed
by integrating black phosphorus (BP) and graphene. Xu et al.
supported red phosphorus (RP) and BP on expanded graphite
(EG) using ball milling technique [303]. Under the action of high
temperature and shear force during the synthesis process, part of
the RP can be converted into chemically active BP, and the RP-BP
heterostructure was obtained. EG was treated to produce defect-
rich graphene nanosheets. The hybridization of RP-BP
heterojunctions with EG provided a large number of active sites
and increased the electrical conductivity, showing a good OER
activity (#,0 = 328 mV). Low cost, adjustable electronic structure,
and excellent electrical conductivity make BP/graphene composite
receive much attention in OER. Dai et al. used an exudation
technique to couple ultra-thin and low-layer exudated black
phosphorus (EBP) nanosheets with N-doped graphene (NG) at
high Fermi levels to obtain metal-free 2D/2D heterostructures
(EBP@NG) (Figs. 27(a)-27(e)) [304]. The catalyst exhibited
unique interfacial structure and electronic structure. Direct contact
on all sides and large interface area are conducive to charge
separation and transfer. The Fermi energy level of the two hybrid
materials is different. NG is higher than EBP, and the electron
interaction can promote the transfer from NG to EBP, which
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Figure 26 (a) Scheme of the formation process of CoFe-LDH/MXene. SEM images of (b) MXene and (c) CoFe-LDH/MXene nanohybrids. (d) Top view and (e) side
view of model structure of CoFe-LDH/MXene hybrid system. (f) Projected density of states (PDOS) of CoFe-LDH and CoFe-LDH/MXene. Reproduced with

permission from Ref. [292], © Elsevier Ltd. 2019.
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adjusted the adsorption energy of OER intermediates and
optimized H adsorption and desorption, making the reaction
easier (Figs. 27(f)-27(h)).

6 Conclusions and outlook

In the face of the continuous reduction of global non-renewable
energy, hydrogen as a green and clean energy has attracted much
attention in recent years, and electrocatalytic OER plays a key role
in the large-scale production of hydrogen. Therefore, it is urgent
to develop efficient, cheap, and abundant OER electrocatalysts.
Although 2D materials have made good progress in
electrocatalytic OER, there are still great challenges in designing
low-cost catalysts for industrial applications. This review
systematically summarizes the synthesis strategies of 2D materials
in recent years, including hydrothermal/solvothermal, exfoliation,
coprecipitation, electrochemical deposition, wet chemistry, and
other synthesis methods. OER mechanism under acidic and
alkaline conditions and characterization techniques of 2D
materials are summarized and theoretical studies on Gibbs free
energy diagram, state density, band structure, and charge analysis
are introduced. The modification and regulation of LDHs, COFs,
MOFs, and hybrids by different strategies to improve the OER
performance are emphasized, including metal/nonmetal doping,
defect engineering, interface engineering, lattice strain, and
fabrication of heterojunction. The relationship between 2D
structure and OER performance is discussed by theoretical
analysis.

Compared with other materials, 2D materials have many

EBP
EtOH/H,0 _ __ _
Sonication — y S—
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characteristics, for example, LDHs have the advantages of low
cost, simple synthesis process, plasticity of metal ions in the
substrate, and tunability of interlayer anions. COFs have excellent
physical and chemical stability, easy synthesis method, controllable
structure, and functionalization. MOFs have abundant nanopores
and channels, and the metal distribution are relatively uniform
and exhibit good stability. Hybrids can be designed with the
required structure and properties according to various properties
of 2D materials. For 2D materials with ordered layered atomic
structure, the strong chemical bonds in the plane are conducive to
charge transfer. The ultra-thin nanosheets are favorable for surface
modification the formation of surface defects caused by atomic
doping and escaping, and the improvement of conductivity. The
modification of the surface structure of 2D materials provides
more effective active sites, which can optimize the adsorption
energy and reduce the gibbs free energy, thus improving OER
activity.

Although many synthesis strategies of 2D materials have been
developed, the high cost of precursors, high temperature
treatment, and complex synthesis limit their larce-scale
acquirement of high-quality 2D materials. Therefore, more
economical, efficient, and green synthesis strategies need to be
developed. In addition, there is still a long way to go for the
surface optimization of 2D materials. The surface area can be
increased and more edged active sites will be generated by
reducing the thickness of 2D nanosheets, but the nanosheets in the
current research are mainly limited at the nanoscale. Reducing the
thickness of 2D nanosheets to atomic level will be more conducive
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HER/OER catalyst

—NG
BP-NG OOH*
Rate determing step R

For NG: 0.51 eV
For BP-NG: 0.43 eV

Side view H*+e

Top view
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Figure 27 (a) Schematic for the liquid exfoliation of bulk BP and construction of EBP@NG. (b) Photograph of an EBP dispersion. (c) TEM image (50 nm) and (d)
HRTEM image of EBP (1 nm). (e) Bright-field TEM image of EBP@NG (1:8) (500 nm). (f) Illustration of the differential charge density of NG and EBP. Calculated
free energy diagrams of (g) the HER on BP and BP-NG and (h) OER on NG and BP-NG at the potential of 1.23 V. Reproduced with permission from Ref. [304], ©

American Chemical Society 2019.
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to the application of 2D materials in the field of electrocatalysis.
Doping strategy and defect engineering are often used in surface
modification. However, there are still some problems in accurately
doping and controlling the location and content of defects.
Theoretical study is the current main means for predicting OER
mechanism, adsorption behavior on active sites, electron transfer
path, and the change of the structure during OER. It is needed
to develop in situ characterization techniques for accurately
capturing reaction intermediates for a better understanding of
OER process. In addition, most of the studies focused on alkaline
solutions, and the stability of 2D materials in OER under acidic
conditions has not been thoroughly studied. In theoretical
calculations, the OER catalytic performance can be analyzed from
multiple dimensions, which prodive guidance for researchers to
seek appropriate catalysts and optimize them according to the
volcanic peaks. Although theoretical calculations provide a bridge
for the relationship between catalyst structure and performance,
the calculation models are relatively simple, which are different
from the actual complicated system, resulting in some inaccuracy.

In situ XAS can provide effective dynamic information for
understanding the structure change of catalysts during OER. For
example, transition metal oxide radicals can be obtained by the
change of the valence state of metal ions at the active sites.
However, XAS is a volume sensitive characterization instrument,
which reflects the average valence state of the catalyst body and the
surface, and cannot monitor the change of specified active sites.
Moreover, many researchers face difficulties due to equipment
cost constraints and complicated operation. Therefore, there is an
urgent need to develop more easy-to-use in situ techniques to
better understand the relationship between structure and activity.
Despite all the difficulties, controllable synthesis of atomic 2D
materials with excellent OER performance is hortative in the
future work.
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