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Abstract: PDMS (polydimethylsiloxane) is an important soft biocompatible material, which has
various applications such as an implantable neural interface, a microfluidic chip, a wearable brain–
computer interface, etc. However, the selective removal of the PDMS encapsulation layer is still a big
challenge due to its chemical inertness and soft mechanical properties. Here, we use an excimer laser
as a cold micro-machining tool for the precise removal of the PDMS encapsulation layer which can
expose the electrode sites in an implantable neural interface. This study investigated and optimized
the effect of excimer laser cutting parameters on the electrochemical impedance of a neural electrode
by using orthogonal experiment design. Electrochemical impedance at the representative frequencies
is discussed, which helps to construct the equivalent circuit model. Furthermore, the parameters
of the equivalent circuit model are fitted, which reveals details about the electrochemical property
of neural electrode using PDMS as an encapsulation layer. Our experimental findings suggest the
promising application of excimer lasers in the micro-machining of implantable neural interface.

Keywords: neural electrode; micro-machining; PDMS; excimer laser; electrochemical impedance;
equivalent circuit model

1. Introduction

Neural electrodes can record neural electrical activity or stimulate the neurons from the
central and the peripheral nervous system, which has been applied to neuroscience research
and clinical applications on different diseases, including spinal cord injury, stroke, sensory
deficits, chronic pain, epileptic seizure, Parkinson’s disease, and functional recovery after
neurotrauma [1–5]. Implantable neural electrode arrays are key interface devices for the
development of intelligent brain–computer fusion systems, providing the possibility of
continuous high-throughput information exchange.

Polydimethylsiloxane (PDMS) elastomers are inexpensive, corrosion-resistant, highly
flexible and optically transparent above 220 nm (therefore compatible with many optical
detection methods). Compared to glass and silicon, PDMS can be easily manufactured
and bonded to other surfaces. The hardness and elasticity of PDMS is close to that of
tissues [6,7] and does not irritate surrounding tissues due to its good biocompatibility [8].
With these ideal properties, PDMS is a good candidate for the manufacture of implantable
flexible neural electrodes and has broad application prospects in the field of chip processing
in biological laboratories [9].
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Guo designed an integrated telescopic microelectrode array (isMEA) based on PDMS
for neural and muscular surface interfaces [10]. As a compliant material with a mechanical
impedance close to that of soft tissues, PDMS has good application value as a substrate
material for neural interfaces. Using PDMS as a soft material, Kim prepared various types
of planar neural electrodes for recording extracellular local field potentials or stimulating
plexuses as contact electrodes [11]. Delivopoulos proposed a compliant neural interface
based on PDMS that can simultaneously record bladder afferents from multiple nerves [12].
PDMS film has been proven to act as an excellent barrier to implantable microelectrodes or
as high-quality dielectrics with minimal resistive power loss [13,14]. As an encapsulation
layer for implantable neural interface, PDMS can increase the flexibility required for the
application and minimize tissue response [15]. Joint research on other materials of PDMS
provides a new idea for the further development of implantable neural interfaces [16]. A
soft neural implant fully based on PDMS as the electronic dura mater was also proposed for
spinal cord injury rehabilitation, which can narrow the mechanical mismatch gap between
soft neural tissues and neural implants [17].

PDMS is an important material for biological application including neural inter-
face [18–24], but it is not easy to accurately remove the PDMS encapsulation layer due
to its chemical inertness and mechanical softness. Of course, PDMS film can be easily
mechanically punched with relatively low spatial resolution. For higher resolution, PDMS
film can also be micro-machined by reactive ion etching (RIE) with a maximum etch rate of
20 µm/h [25]. However, the RIE of PDMS usually requires extra mask on PDMS and the
etch rate is relatively slow. Recently, the laser-processing technology of PDMS has emerged,
which can enable fast and maskless fabrication. Many researchers use laser ablation tech-
nology, which works through a linear light absorption mechanism of light intensity to
perform graphic processing on metal, conductor, and polymer surfaces [26,27]. PDMS has
been modified and micromachined by femtosecond laser pulses [28–33], which can process
most polymer and metal materials without regard to the over etching of different layers.
Wolfe et al. used high-intensity light from a Ti: sapphire femtosecond pulse laser to create
patterns on PDMS surface for soft lithography and microfluidics [34]. The bas-relief pattern
required in these applications is usually fabricated by casting the PDMS on a complemen-
tary bas-relief pattern in a photoresist and then manufactured by lithography. These rough,
concave features produced by this process are useful in applications that require a large
surface area-to-volume ratio, and are not suitable for planar machining. Femtosecond laser
processing provides widths as low as 1 µm for 3D channels [35], which is as low in size
as soft lithography. Rather than manufacturing polymer channels, femtosecond lasers are
more suitable for machining channels in harder materials such as quartz [36].

PDMS can also be micromachined by infrared and near-infrared laser [37–39], which
may apply additional heat on the PDMS layer. Lin Qi reported a method of using an
infrared commercial laser engraving machine to write surface wrinkles with the desired
pattern geometry on PDMS [37]. This method is easy to operate, fast, and low-cost, but the
infrared laser creates wrinkles and cracks on the surface of the PDMS, which does not meet
the requirements for precise processing of the PDMS on the surface of the neural electrodes.

The types of laser sources available are diverse and the principles are different, so
the heat-related side effects vary greatly in the laser processing of PDMS. Despite of the
pulse width of the laser, the shorter wavelength can induce less heat during the fabrication
process. PDMS can be micromachined by ultraviolet laser [40–42], which induces less
heat side effect on PDMS. In particular, PDMS are sensitive to ultraviolet light below 230
nm; hence, excimer lasers that, in the lower band of the ultraviolet band, can be used for
precise processing without the need for sensitizers [43–45]. Using excimer lasers as a cold
micromachining tool, it is promising to selectively remove the PDMS encapsulation layer
without damaging the other materials of the devices.

In order to find the optimal laser micro-processing parameters, here we performed
extensive experiments to process the PDMS on the neural electrode surface without dam-
aging the surface metal of the electrode. Firstly, we prepared PDMS-encapsulated neural
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electrodes. Then, excimer laser cutting parameters were designed and selected to pre-
cisely remove the PDMS encapsulation layer which can expose the electrode sites in an
implantable neural interface. The electrochemical impedance spectroscopy (EIS) was an-
alyzed to construct the equivalent circuit models, which can contribute to revealing the
details of the neural electrode.

2. Materials and Methods
2.1. Neural Electrode

The flexible printed circuit (FPC) board is lightweight, small in size, and has good
insulation properties, sealing properties, and radiation resistance. The properties that can be
dynamically bent, curled, and folded give it a good advantage in the preparation of invasive
neural interface devices. Here, we used the single-layer flexible circuit board, and the
structure is shown in Figure 1. The upper and lower sides of the Cu (thickness 18 µm) and
polyimide (thickness 12.5 µm) are glued together with adhesive (thickness 20 µm–25 µm).
The flexible circuit board is then plated with nickel (thickness is 1.78 µm–5.33 µm) and Au
(thickness is 0.044 µm–0.089 µm).
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Figure 1. Soft neural electrode based on FPC technology and PDMS encapsulation layer. The PDMS
layer serves as an intermediate layer which can reduce the mechanical mismatch between the flexible
polyimide layer and neural tissue.

The material of the encapsulation layer used here was 184 Silicone Elastomer Kit
of Dow Corning (DOWSIL). First, basic monomer A and curing agent B were mixed
thoroughly in a 10:1 weight ratio. Then, the mixture was put into a vacuum dryer to
remove the bubbles created in the mixing process by using a low-pressure method. The
liquid PDMS was applied on 4-inch glass wafer at a spinning speed of 4000 r/min and cured
in a drying oven at 80 degrees for 3 h, which acted as a substrate to secure the adhesion
of the electrodes to facilitate subsequent processing. Another part of liquid PDMS was
applied evenly to the neural electrode and then suspended vertically for two hours. Finally,
the wafer and the electrodes were baked in a drying oven at 80 degrees for at least 3 h in
order to fully cure. Here, the PDMS encapsulation layer acted as a soft mechanical layer
for the FPC-based flexible neural electrode, which can reduce the mechanical mismatch
between the neural tissue and flexible neural electrode. This strategy can also be applied
to rigid neural electrodes such as Si probes. The flexible circuit board (FPC) technology
we used is flexible but not soft because the Young’s modulus of polyimide is in the order
of GPa (109 Pa). However, PDMS is so intrinsically soft that its Young’s modulus is in
the order of MPa (106 Pa). Therefore, by encapsulating the flexible electrode with a soft
PDMS layer, we want to give the softness to the flexible electrode. This approach has the
potential to narrow the mechanical mismatch gap between soft neural tissues and flexible
neural implants.
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Shown in Figure 1, we used an excimer laser as a cold micro-machining tool for the
precise removal of the PDMS encapsulation layer, which can expose the electrode sites in
an implantable neural interface. The different laser parameters and their combinations
determine whether the PDMS encapsulation layer can be accurately removed and whether
it causes damage to the neural electrodes below. If the laser pulse energy used is too high
or the number of hits is too high, the laser will not only penetrate the PDMS encapsulation
layer but also damage the Au and even the Ni and Cu of the electrode, resulting in a
decrease in the performance of the electrode, including electrochemical impedance and
biocompatibility. The purpose of the optimization is to find the exact state in which PDMS
encapsulation layer can be removed completely without damaging the neural electrodes,
that is, the optimal combination of laser processing parameters.

2.2. Excimer Laser

An excimer pulse laser with a wavelength of 193 nm (filled with an ArF premix gas,
Optec Micro Master device) was used as a laser source in our study to remove PDMS
encapsulation layer which can expose the electrode sites. Excimer lasers output ultraviolet
light, and PDMS can absorb ultraviolet light below 220 nm. The ArF lasers emit 6.4 eV
photons, which are much higher than the bond energy in Si − CH3 (3.2 eV) and Si–O
(4.6 eV). Therefore, PDMS can be decomposed by ArF laser. Because the 193 nm laser can
be fully absorbed by PDMS, it can be processed precisely without thermal effects compared
with other laser processing methods [46].

The cutting parameters of excimer laser we studied included laser pulse energy,
number of processes, and pulse repetition rate. The laser emitted by the laser source was
trimmed through the template in size and shape to form the desired spot. The PDMS
encapsulation layer was micro-machined one by one with the excimer laser to form the
electrode site after aligning the laser beam to the specific position on the neural device. It is
possible that the excimer laser can remove PDMS with sizes of tens of microns. However,
this approach needs a higher precision displacement positioning platform to align the beam
and electrode. Here, we studied and compared the processing of the 200 µm diameter
circular template and the 200 * 450 µm rectangular template.

2.3. Orthogonal Experimental Design

Firstly, we conducted a series of experiments which covered a range of laser pulse en-
ergy 0.5 mJ–8 mJ, laser processing times 1 times–1500 times, and repetition rate 1 Hz–500 Hz.
Parameters that are too small or too large, and the combinations between them, do not yield
satisfactory experimental results. As is shown in Table 1, when using low laser pulse energy
and small number, the impedance is high because the PDMS on the electrode surface is not
penetrated. When using low pulse energy and large number, the PDMS cutting edges are
not neat. When using high laser pulse energy, the impedance is too low because the laser
not only penetrates the PDMS but also damages the Au on the electrodes. With minimal
processing time and energy consumption, we wanted to find just the right state to penetrate
the PDMS without damaging the electrodes.

Table 1. Combinations of parameters too high or too low lead to unsatisfactory experimental results.

Low Pulse Energy (<3 mJ) High Pulse Energy (>5 mJ)

small number (<400 times) PDMS is not penetrated electrode is damaged
large number (>600 times) PDMS cutting edges are not neat electrode is damaged

After determining the parameter range, we performed a combinatorial experiment on
these parameters. One optimization method is the method of factorial, that is, each level of
each factor is tested at each level of each other factor. This approach increases the possibility
of finding an exact optimal value for each factor, but it is too cumbersome. Another method,
such as the orthogonal experimental design created by Taguchi, is based on the fractional
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principle of factorial design, using an orthogonal table derived from combination theory.
The optimum levels for many different parameters can be simultaneously discovered,
which can greatly reduce the time and cost [47,48]. To find the optimal excimer laser cutting
parameters, the experiment was designed using the Orthogonal Test Design Assistant
software. Nine sets of experiments were performed by setting three different levels of three
factors: (A) laser pulse energy, (B) the number of laser pulses used to process the sample,
and (C) repetition rate of laser pulses. Each set of experiments was repeated 6 times. In the
orthogonal experiment, the pulse energy of (A) was 3 mJ, 4 mJ, and 5 mJ; the number of
laser processing was 400 times, 500 times, and 600 times; and the repetition rate was 100 Hz,
200 Hz, and 300 Hz. The values and the labels of the three factors and three levels is shown
in Table 2. This experiment is a 3-factor, 3-level experiment, so the type of orthogonal table
is L9

(
33), as shown in Table 3.

Table 2. The values and the labels of the three factors and three levels. For example, 3 mJ is labeled
as A1.

Level (A) Pulse Energy (mJ) (B) Number (Times) (C) Repetition Rate (Hz)

1 3 400 100
2 4 500 200
3 5 600 300

Table 3. Nine sets of laser parameter combinations. The combinations are: A1B1C1, A1B2C2, A1B3C3,
A2B1C2, A2B2C3, A2B3C1, A3B1C3, A3B2C1, and A3B3C2.

Experimental Label (A) Pulse Energy (mJ) (B) Number (Times) (C) Repetition Rate (Hz)

1 3 400 100
2 3 500 200
3 3 600 300
4 4 400 200
5 4 500 300
6 4 600 100
7 5 400 300
8 5 500 100
9 5 600 200

2.4. Electrochemical Impedance Measurement and Analysis

The electrochemical impedance, as a key factor for neural electrodes, is very important
for neural recording and electrical stimulation, which is the main function of neural elec-
trodes. The electrochemical measurements were taken in the saline (0.9% NaCl) at room
temperature with a standard three-electrode system, using an Ag/AgCl reference electrode
and a titanium (Ti) wire (1 mm in diameter) counter electrode. Electrochemical impedance
spectroscopy (EIS) measurements were performed by using a voltage sinewave of 10 mV
amplitude, within the frequency range from 1 Hz to 100 kHz. We optimized the electro-
chemical impedance by combining laser processing parameters, which is the evaluation
quality index of laser processing performance on the electrode. Neural electrodes were
connected to a 4 mm banana adaptor plate by a reverse flexible printed circuit (FPC).

The EIS data were analyzed and the equivalent circuit models were also built and
fitted by the ZView software (North Carolina, 3.10 Version). Electrochemical impedance at
the representative frequencies were analyzed to help construct equivalent circuit models.
The impedance at 1 kHz is widely referred to evaluate neural electrode. In addition,
the impedance of electrodes at high frequency (100 kHz) describes the characteristics
of capacitance components, while the impedance at low frequency (1 Hz) describes the
characteristics of other components, such as resistance.
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3. Results and Discussion
3.1. Orthogonal Experimental Analysis of EIS
3.1.1. Range Analysis

Range analysis is also called intuitive analysis. By calculating the range of each factor,
we can find the main factors and secondary factors that affect the experimental results; that
is, we can arrange the order of the factors affecting the indicator. The greater the extreme
difference, the greater the influence of each factor on the experimental results. We analyze
the average of the results of six replicated experiments for each set of experiments. The
calculation of the range of the three factors of the nine experimental groups is shown in
Tables 4 and 5. Based on the impedance and the size of the presented design, it is too big
for neural spike detection. The proposed soft neural electrode based on FPC technology
and PDMS can be used for neural recording of ECoG and neural stimulation of the cerebral
cortex or spinal cord in larger animal models, such as pigs and monkeys.

Table 4. The range analysis data for 200 * 450 µm rectangular template.

200 * 450 µm 1 Hz (Ω) 100 Hz (Ω) 1 KHz (Ω) 10 KHz (Ω) 100 KHz (Ω)

(A) Pulse energy 51,247.3 25,884.9 14,031.7 7414.3 2230.9
(B) Number 50,614.4 20,682.5 12,419.0 6670.6 2506.1

(C) Repetition rate 34,187.2 10,744.1 6065.7 3012.6 609.6
Dominant factor A > B > C A > B > C A > B > C A > B > C B > A > C

Table 5. The range analysis data for 200-diameter circular template.

200 µm 1 Hz (Ω) 100 Hz (Ω) 1 KHz (Ω) 10 KHz (Ω) 100 KHz (Ω)

(A) Pulse energy 338,858.1 165,371.1 69,091.4 29,252.6 9197.4
(B) Number 71,222.3 33,870.8 12,170.4 5193.7 2462.5

(C) Repetition rate 140,860.4 63,946.0 29,342.0 11,636.4 4932.8
Dominant factor A > C > B A > C > B A > C > B A > C > B A > C > B

By optimizing the range of electrochemical impedances, the main factors affecting
electrode performance at different frequencies are found. At 1 kHz, impedance is widely
used to evaluate neural electrodes, and in the 200 * 450 µm rectangular template, factor A
(pulse energy) > factor B (number) > factor C (repetition rate). That is, the order of factors
affecting the impedance of the laser processing electrode is A > B> C. In the 200-diameter
circular template, factor A (pulse energy) > factor C (repetition rate) > factor B (number).
That is, the order of factors affecting the impedance of the laser processing electrode is
A > C > B. Moreover, the difference between factor A (pulse energy) is significantly greater
than the difference between factor B (number) and factor C (repetition rate), indicating that
laser pulse energy are the main factors affecting the impedance of the electrode. Further
demonstrating the phenomenon shown in Table 1, when the laser pulse energy is small,
even if the number of laser strikes is large, the edges of the pattern are also not sharp. It
makes sense to find the optimal laser processing parameters to precisely remove the PDMS
encapsulation layer by optimizing the electrochemical impedance.

3.1.2. Mean Analysis

The mean calculations of the nine group experiments are shown in Tables 6 and 7. We
analyze the average of the results of six replicated experiments for each set of experiments.
By optimizing the mean of the electrochemical impedance, the optimal combinations of
parameters at different frequencies are found. As shown in Tables 6 and 7, for the two
templates, the best combination parameter is A3B3C3, in which the pulse energy is 5 mJ,
the number is 600 times, and the repetition rate is 300 Hz at 1 kHz. Figures 2 and 3 present
the mean results of different factors at their respective levels in orthogonal experiments
in a more intuitive way, which can further validate the conclusions of the above optimal
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combination of parameters. Under the same template, it is observed that the higher the
laser pulse energy, the smaller the electrode impedance. Meanwhile, it is that the greater
the number of laser hits, the smaller the impedance of the electrode.

Table 6. Mean value data for 200 * 450 µm rectangular template.

200 * 450 µm 1 Hz (Ω) 100 Hz (Ω) 1 KHz (Ω) 10 KHz (Ω) 100 KHz (Ω)

(A1) 3 mJ 89,721.5 41,472.2 22,061.0 11,808.7 4986.2
(A2) 4 mJ 58,563.3 24,742.0 12,327.4 5561.9 2755.3
(A3) 5 mJ 38,474.2 15,587.3 8029.3 4394.4 2809.0

(B1) 400 times 87,945.6 36,177.0 19,685.7 10,300.0 4647.5
(B2) 500 times 61,482.2 30,129.9 15,465.4 7835.6 3761.4
(B3) 600 times 37,331.2 15,494.5 7266.7 3629.4 2141.5
(C1) 100 Hz 83,848.9 33,829.2 17,694.1 8859.4 3818.6
(C2) 200 Hz 49,661.7 24,887.2 13,095.2 7058.7 3522.8
(C3) 300 Hz 53,248.3 23,085.1 11,628.4 5846.9 3209.0

Best combination A3B3C2 A3B3C3 A3B3C3 A3B3C3 A2B3C3

Table 7. Mean value data for 200-diameter circular template.

200 µm 1 Hz (Ω) 100 Hz (Ω) 1 KHz (Ω) 10 KHz (Ω) 100 KHz (Ω)

(A1) 3 mJ 479,222.6 231,745.8 97,450.9 39,149.3 12,563.4
(A2) 4 mJ 232,688.2 144,667.0 56,782.2 16,139.2 4769.2
(A3) 5 mJ 140,364.5 66,374.7 28,359.5 9896.7 3366.0

(B1) 400 times 279,028.0 168,608.7 65,751.1 20,443.0 5756.0
(B2) 500 times 322,234.8 139,440.8 63,260.8 24,967.9 8218.4
(B3) 600 times 251,012.5 134,737.9 53,580.7 19,774.3 6724.2
(C1) 100 Hz 255,215.3 143,257.6 56,096.1 16,784.8 4376.9
(C2) 200 Hz 368,960.2 181,737.9 77,919.2 28,421.2 9309.7
(C3) 300 Hz 228,099.8 117,792.0 48,577.3 19,979.1 7011.9

Best combination A3B3C3 A3B3C3 A3B3C3 A3B3C1 A3B1C1
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At low frequencies, the characteristics of the resistance, impedance, and phase angle
are described as having a strong correlation with the electrode area. At high frequencies,
the characteristics of the capacitor, impedance, and phase angle are described independent
of the electrode area [49–51]. As shown in Table 8, the total average impedance at low
frequencies is significantly greater than at high frequencies in the two templates. That is,
the total average at 1 Hz and 100 Hz are significantly higher than the averages at 10 kHz
and 100 kHz. The experimental results obtained are consistent with the theory.

Table 8. Total average data for the corresponding frequency.

1 Hz (Ω) 100 Hz (Ω) 10 kHz (Ω) 100 kHz (Ω)

Total average 173,172.4 87,431.5 14,491.7 5208.2

3.2. Orthogonal Experimental Analysis Based on Equivalent Circuit Model

By fitting the experimental electrochemical impedance data to an appropriate equiv-
alent circuit model, the evolution of the characteristics of the electrode system in vitro
can be further understood. The first step in this process requires the design and selection
of a sufficient circuit model that can satisfactorily fit the data while achieving a physical
interpretation of the parameters.

3.2.1. Construction of Equivalent Circuit Model

By adding a non-ideal capacitor in parallel to the modified Randles circuit, the equiva-
lent circuit model established is shown as the inserted diagram in Figure 4. Five different
components describe this equivalent circuit. R1 is the pure resistance of the electrode,
including the Cu wire, NaCl solution, the wire of the electrode, etc. CPE2 characterizes
the non-ideal capacitive nature of the electrode interface as a constant phase element. R2
is the charge transfer resistance. The Warburg element (W1) states that the interface is
mixed controlled by the charge transfer and diffusion process. CPE1 is a non-ideal parasitic
capacitance which is used to consider the capacitive characteristics of the polyimide and
PDMS layer. The role of the parasitic capacitor is not very prominent at low frequencies, but
at high frequencies, its equivalent value increases. As displayed in Figure 4, the equivalent
circuit model provides fairly good fitting to the measured EIS data. An electrochemical in-
terface was created by the selective removal of PDMS soft encapsulation layer. Implantable



Micromachines 2022, 13, 1484 9 of 13

neural electrodes do not reach the 100 kHz frequency when actually performing neural
recording. However, it should be noticed that the capacitance of the neural electrode
may lead to the leakage of stimulation current. It increases the necessity of building the
equivalent circuit model and giving a detailed analysis of each component.
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3.2.2. Range Analysis

As shown in Tables 9 and 10, respectively, at 1 kHz, the rectangular template of 200 *
450 µm and the circular template of 200 µm diameter fit the data for each component of the
equivalent circuit model. By optimizing the difference in the electrochemical impedance,
the dominant factors affecting the fitting effect of each component are found. As shown in
Table 9, in the rectangular template of 200 * 450 µm, for R2 (charge transfer resistance) and
R1 (resistance of the solution), factor A (pulse energy) > B (number) > factor C (repetition
rate); that is, the order of laser processing factors that affect the impedance of the electrode
is A > B > C. For CPE1 (parasitic capacitance), CPE2 (characterizing non-ideal constant
phase elements), and Warburg components, factor B (number) is the dominant factor. As
shown in Table 10, for R1 (solution resistance), R2 (charge transfer resistance), and Warburg
components, factor A (pulse energy) is the dominant factor.

Table 9. The range analysis data for 200 * 450 µm rectangular template from the key components of
equivalent circuit model.

200 * 450 µm R1(×104) (Ω) R2 (×104) (Ω) CPE1 (×10−10) (F) CPE2 (×10−8) (F) W (×105) (F)

(A) Pulse energy 0.72 2.53 1.13 1.98 0.60
(B) Number 0.63 1.90 1.14 2.97 0.94

(C) Repetition rate 0.18 0.80 0.27 1.43 0.78
Dominant factor A > B > C A > B > C B > A > C B > A > C B> A > C

Table 10. The range analysis data for 200-diameter circular template from the key components of
equivalent circuit model.

200 µm R1 (×104) (Ω) R2(×104) (Ω) CPE1 (×10−10) (F) CPE2 (×10−9) (F) W (×105) (F)

(A) Pulse energy 4.18 22.43 2.10 2.97 3.27
(B) Number 0.20 3.07 0.94 3.50 1.50

(C) Repetition rate 1.02 5.13 3.31 1.43 2.07
Dominant factor A > B > C A > C > B C > A > B B > A > C A > C > B
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As shown in Table 9, for R2 (charge transfer resistance) at 200 * 450 µm rectangular tem-
plate, factor A (pulse energy) > B (number) > factor C (repetition rate). This phenomenon is
the same as the dominant factor analysis results of the two templates in Table 4 at 1 kHz,
which further proves the reliability of the experimental results.

3.2.3. Mean Analysis

The total optimal combinations of each component parameters are shown in Tables 11
and 12. Based on different components or their parameters, the optimal combinations
vary from each other, which can contribute to revealing the detailed effect of the laser
micro-machining of PDMS as an encapsulation layer. The optimal combinations of laser
parameters based on the equivalent circuit model are different from that of EIS. It should
be also noted that size of the electrode also impacts the combination of laser parameters.
For R2 as the charge transfer resistance, the 200 * 450 µm rectangular size requires more
pulse energy than that of the 200-diameter circular size. In the equivalent circuit model,
the smaller the Warburg element, the better it will behave as a neural interface. Here, we
focus on the discussion of W-R as the diffusion resistance. By optimizing the mean of
the electrochemical impedance of each fitted component, the combinations of parameters
that can achieve the best fit are found. As shown in Table 11, for W at the 200 * 450 µm
rectangular template fitted, the optimal combination of parameters is A3B3C2; that is, the
pulse energy is 5 mJ, the number is 600 times, and the repetition rate is 200 Hz. Moreover,
for W at the 200-diameter circular template fitted, the optimal combination of parameters is
A3B3C3; that is, the pulse energy is 5 mJ, the number is 600 times, and the repetition rate is
300 Hz.

Table 11. Mean analysis data for 200 * 450 µm rectangular template from the key components of
equivalent circuit model.

200 * 450 µm R1 (×104) (Ω) R2 (×104) (Ω) CPE1 (×10−10) (F) CPE2 (×10−8) (F) W (×105) (F)

(A1) 3 mJ 1.10 3.43 3.33 3.43 1.39
(A2) 4 mJ 0.53 2.40 3.83 1.45 1.13
(A3) 5 mJ 0.38 0.90 2.70 3.23 0.79

(B1) 400 times 0.93 2.37 2.63 1.53 1.63
(B2) 500 times 0.78 3.13 3.47 2.09 0.99
(B3) 600 times 0.30 1.23 3.77 4.50 0.69
(C1) 100 Hz 0.78 2.33 3.17 1.93 1.57
(C2) 200 Hz 0.63 1.80 3.27 3.37 0.79
(C3) 300 Hz 0.60 2.60 3.43 2.82 0.96

Best combination A3B3C3 A3B3C2 A3B1C1 A2B1C1 A3B3C2

Table 12. Mean analysis data for 200-diameter circular template from the key components of equiva-
lent circuit model.

200 µm R1 (×104) (Ω) R2(×104) (Ω) CPE1 (×10−10) (F) CPE2 (×10−9) (F) W (×105) (F)

(A1) 3 mJ 5.47 28.37 2.46 6.47 5.77
(A2) 4 mJ 2.30 14.13 4.55 7.77 3.17
(A3) 5 mJ 1.28 5.93 4.30 9.43 2.50

(B1) 400 times 2.93 17.77 4.30 6.40 3.47
(B2) 500 times 3.13 14.70 3.36 7.37 4.73
(B3) 600 times 2.98 15.97 3.66 9.90 3.23
(C1) 100 Hz 2.83 15.03 5.66 7.33 3.57
(C2) 200 Hz 3.62 19.27 2.35 7.57 4.97
(C3) 300 Hz 2.60 14.13 3.30 8.77 2.90

Best combination A3B1C3 A3B2C3 A1B2C2 A1B1C1 A3B3C3

PDMS has important application value in the areas of implants, including the neural
interfaces, yet selective removal of the PDMS encapsulation layer is still a big challenge.
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In the paper, we proposed and successfully prepared a soft electrode based on the FPC
technology and PDMS encapsulation layer by using an excimer laser as a cold microma-
chining tool. The influence of orthogonal laser cutting parameters on the electrochemical
impedance of neural electrodes was investigated and optimized. Our experimental results
show that excimer lasers can be applied in the micromachining of implantable neural
interfaces, which can remove the PDMS with high selectivity and cause no damage to the
other materials of neural electrode. Furthermore, The Young’s modulus of flexible electrode
that is made of polyimide or parylene is in the order of GPa (109 Pa). Meanwhile, PDMS
is so intrinsically soft that its Young’s modulus is in the order of MPa (106 Pa). Using the
soft PDMS layer to encapsulate the flexible electrode will improve the mechanical contact
between the soft neural tissue and flexible electrode materials, which has the potential to
reduce the mechanically induced foreign body reaction. It should also be mentioned that
the Young’s modulus of rigid electrode that is made of silicon or metal is in the order of
hundreds GPa (1011 Pa), and the rigid electrode could also benefit from this approach.

4. Conclusions

We demonstrated the soft neural electrode based on FPC technology and a PDMS
encapsulation layer. Using an excimer laser as a cold micro-machining tool, the PDMS
encapsulation layer that exposes the electrode sites in the implantable neural interface
is precisely removed. The effect of the laser cutting parameters on the electrochemical
impedance of neural electrodes was studied and optimized. The analysis on electrode
impedance data at different frequencies helps to find the optimal combination of excimer
laser cutting parameters, including range analysis and mean analysis. In addition, the
optimal combinations of laser parameters based on the equivalent circuit model are different
from that of EIS, which can reveal the details of the electrochemical properties of neural
electrodes with PDMS as an encapsulation layer. Suitable laser cutting parameters allow
the precise cutting of the PDMS of implantable neural electrodes without compromising
electrode performance. Combined with the softness and biocompatibility of PDMS, this
cold micromachining approach is expected to improve the soft mechanical properties of
flexible and rigid implantable neural electrodes.
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