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Abstract

The spatial and spectral information contained in the hyperspectral image (HSI) make
it widely used in many fields. However, the sharp increase of HSI data brings enor-
mous pressure to the data storage and real-time transmission. The research shows that
hyperspectral compressive sensing (HCS) breaks through the bottleneck of the Nyquist
sampling theorem, which can relieve the massive pressure on data storage and real-time
transmission. Existing HCS methods try to design advanced compression sampling matrix
or reconstruction algorithms, but cannot connect the two through a unified framework.
To further improve the image reconstruction quality, a novel codec space-spectrum joint
dense residual network (CDS2-DResN) is proposed. The CDS2-DResN is divided into
block compression sampling part and reconstruction part. For block compression sam-
pling, coded convolutional layer (CCL) is leveraged to compress and sample HSI. For
measurements reconstruction, deconvolution layer is first leveraged to initially reconstruct
HSI, and then build a space-spectrum joint network to refine the initial reconstructed HSI.
Moreover, the CCL and reconstruction network are optimized via a unified framework,
which can simplify the pre-processing and post-processing process of HCS. Extensive
experiments have shown that CDS2-DResN has an excellent HCS reconstruction effect
at measurement rates 0.25, 0.10, 0.04 and 0.01, respectively.

1 INTRODUCTION

The hyperspectral image (HSI) contains not only the spatial
position information of substance, but also the spectral charac-
teristics of each pixel. Therefore, spatial position information
and spectral characteristic information make it widely used in
mineral exploration, agricultural production, environmental
monitoring, and military reconnaissance [1–4]. However, as
the spatial resolution and spectral resolution of HSI have
increased significantly, the amount acquired data has increased
dramatically. Therefore, to reduce the enormous pressure of
data storage and real-time transmission, HSI compression has
become a research hotspot in recent years.

The traditional compression technology first obtains HSI
data, and then discards redundant information, so as to achieve
the effect of convenient storage and real-time transmission.
However, the theoretical basis of data acquisition in this tech-
nology is Nyquist sampling theorem, which states that the
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underlying analogue signal must be uniformly sampled at a sam-
pling rate no less than twice the signal bandwidth to preserve
the signal information [5]. Therefore, redundant information
can only be discarded in the compression stage, and the com-
pression process after data collection is extremely wasteful.
Compressive sensing (CS) [6] technology breaks through the
bottleneck of Nyquist sampling theorem, which can collect data
at a low sampling rate (much lower than the Nyquist sam-
pling rate). It can complete data compression simultaneously
as data collection. Moreover, the CS reconstruction algorithm
can ideally reconstruct the original data according to the col-
lected sampling data on the premise of sparse original data [7].
Therefore, CS can relieve the massive pressure on data storage
and real-time transmission. Therefore, hyperspectral compres-
sive sensing (HCS) has received more and more attention in the
field of hyperspectral.

Existing HCS methods try to design advanced compres-
sion sampling matrix or reconstruction algorithm, but cannot
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2 XIAO ET AL.

FIGURE 1 Illustration of the overall framework of CDS2-DResN, including four key components: CCL, DeConV, spatial CNN and spectral CNN

connect the two through a unified framework, which limits
the further improvement of image reconstruction quality in
HCS. Therefore, the joint optimization of compression sam-
pling matrix and reconstruction algorithm can further improve
image reconstruction quality.

To further enhances the quality of HSI reconstruction, we
propose a convolutional neural networks (CNN)-based image
reconstruction network, CDS2-DResN. Figure 1 shows the
overall framework of CDS2-DResN. Firstly, since the prede-
fined measurement matrix (PMM), for example, an Orthogonal
Random Gaussian Matrix, ignores the properties of sam-
pled HSI, coded convolutional layer (CCL) without bias or
activation function is introduced for HSI compression and sam-
pling. CCL adaptively generates a learned measurement matrix
(LMM) from training HSI, which allows CS measurements to
retain more spatial and spectral feature information. Secondly,
the deconvolution layer (DeConV) is introduced to initially
reconstruct HSI. Thirdly, since the complexity of HSI spatial
information, a spatial CNN is designed to refine the recon-
structed HSI. Especially, the dense residual block (DRB) is
added to spatial CNN, which can accurately extract the spatial
feature information in initial reconstructed HSI. Fourthly, since
the adjacent spectral bands have strong similarities, a spectral
CNN is designed to refine the spatial refinement HSI. Espe-
cially, the residual block is added to spatial CNN, which can
accurately extract the spectral feature information in spatial
refinement HSI.

Our main contributions are as follows:

1. To depend on CNN to implement the block compression
sampling part in CS, we leverage the CCL to compress and
sample HSI. The LMM, the weight of the learned CCL,
can obtain more useful image reconstruction information
compared to PMM.

2. Consider the extensive correlation of HSI in spatial and spec-
tral dimensions during the reconstruction part, we design
a space-spectrum joint refinement network to refine the
initial reconstructed HSI. DRBs in spatial refinement net-
work can better extract multi-layer feature information. The
information extraction of adjacent spectral bands in spec-
tral refinement network can better extract spectral feature
information.

3. Considering the problem of the difference between adjacent
spectral in the HSI reconstruction process, we add a regular
term of adjacent spectral differences (RTASpeD) based on
Mean Squared Error (MSE), which can significantly improve
the reconstruction index SAM.

4. To simplify the HCS pre-processing and post-processing
process, CDS2-DResN jointly trains the compression sam-
pling part and measurements reconstruction part via con-
necting the CCL and reconstruction network, which can
eliminate the block effect of reconstructed hyperspectral
images (HSIs).

The experimental results on CAVE and Harvard datasets
demonstrate that CDS2-DResN implements excellent HSI
reconstruction performance, proving the feasibility of our
model.

2 RELATED WORKS

In recent years, many HCS reconstruction algorithms have been
proposed. The original traditional reconstruction algorithm was
to reconstruct each spectrum independently. However, this
method only uses the spatial information of HSIs, so the recon-
struction quality is low. To improve the reconstruction quality
of HSIs, traditional HCS reconstruction algorithms are contin-
uously developed, which can be divided into four categories:
HCS based on reference image [8, 9], HCS based on joint
optimization [10–13], HCS based on linear mixture model
[14–17] and HCS based on tensor-CS [18–21].

The HCS based on reference image is more flexible and the
spatial complexity of the method is low. However, it cannot fully
leverage the prior information of the HSIs, so the reconstruc-
tion quality is limited. The HCS based on joint optimization
makes full use of the prior information of HSIs, thus improving
the reconstruction quality. However, it needs to restore all band
images at the same time, so the computational complexity and
spatial complexity of the algorithm are relatively high. The lin-
ear mixture model-based HSI reconstruction reduces the degree
of freedom of the algorithm itself, so the reconstruction qual-
ity is higher. However, if the end member matrix information
in the end member matrix is unknown or cannot be accurately
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XIAO ET AL. 3

estimated, the performance of this method will be significantly
reduced. The sampling matrix used in HCS based on tensor-
CS has a special structure, so the computational complexity and
spatial complexity are very low. However, the compressed mea-
surements corresponding to it has high redundancy. Therefore,
the image reconstruction quality is not high.

Although the above-mentioned traditional HSI reconstruc-
tion algorithms consider the characteristics of HSI in all aspects,
they have common problems. Due to the iterative method to
solve the problem, the computational complexity is high and the
reconstruction quality is poor at low measurement rates (MRs).

Recently, the CNN-based HCS reconstruction algorithm has
become a research hotspot in the field of HCS, which effectively
avoids many calculations in the traditional iterative algorithm
and achieves excellent HCS reconstruction performance with
its strong self-learning ability. Xiong et al. [22] proposed the
HSCNN model, which first reconstructed the initial image
by an interpolation method, and then enhanced the initial
results with CNN to obtain high-quality reconstructed HSI.
Choi et al. [23] proposed the AutoEncoder model, which is
jointly regularized with the sparsity of gradients in the spatial
domain to reconstruct HSI. Wang et al. [24] proposed Hyper-
ReconNet model, which improves the reconstruction quality of
HSI by jointly training the coding aperture and reconstruction
methods. Sun et al. [25] proposed HCS2-Net model, which uti-
lizes the spatial-spectral attention module to capture the joint
spatial-spectral correlation of HSIs to reconstruct HSI. Miao
et al. [26] proposed λ-net model, which reconstructs the HSI
through a two-stage generative adversarial network. It uses a
deeper self-attention U-net in the first stage to obtain the ini-
tial reconstruction, and uses another U-net in the first stage to
improve the reconstruction. Zhang et al. [27] proposed DEIL
model, which mainly utilizes multiple dense residual blocks with
residual channel attention to reconstruct HSIs.

However, refs. [22–27] are intended to be applied to coded
aperture snapshot spectral imaging (CASSI) system, which first
encodes the HSI to obtain measurements, and then leverages
an inverse optimization algorithm to reconstruct the original
HSI. Therefore, they need to consider the coded aperture prob-
lem in the compression measurement process. However, the
work in this paper is not for the compression sampling and
measurements reconstruction of CASSI system.

Hu et al. [28] proposed the HSI reconstruction algorithm,
PRN, based on the residual network, which consists of two
residual CNNs. One is a CS measurements reconstruction net-
work, which preserves spectral correlations well. The other is a
deblocking network for removing block effect, which is caused
by patch-based sampling. Huang et al. [29] proposed a spatial–
spectral residual dense network, SSRDNHIR, which consists of
two CNNs. One is a residual dense network (RDNHIR) for HSI
reconstruction and the other is reconstruction network (SDRN)
for spectral disparity reduction.

However, refs. [28, 29] are to independently improve the per-
formance of the reconstruction algorithm, without considering
the help of the sampling matrix for image reconstruction, that is,
the two are connected through a unified framework to improve
the performance of the reconstruction algorithm.

3 METHODOLOGY

CDS2-DResN is proposed to complete high-quality HSI recon-
struction by connecting to one framework. The overall frame-
work of CDS2-DResN is shown in Figure 1, where CONV
denotes convolution layer and ReLU denotes activation func-
tion, including four key components: (1) Block compression
sampling part: CCL. (2) Initial reconstruction part: DeConV. (3)
Spatial information refinement part: spatial CNN. (4) Spectral
information refinement part: spectral CNN.

3.1 Overview of CDS2-DResN

To begin with, given a HSI X to obtain the CS measurements Y ,
CCL is leveraged to block compress sampling the HSI X . CCL
without bias or activation function adaptively generates a LMM
from training HSI, which allows CS measurements to retain
more spatial and spectral feature information. This process can
be expressed as:

Y = CCL(X ). (1)

where CCL(⋅) denotes the block compression sampling process.
Secondly, given the CS measurements Y for initial reconstruc-
tion, DeConV is leveraged to initially reconstruct HSI. DeConV
can infer the mapping matrix of image reconstruction. This
process can be expressed as:

S = DeConV (Y ). (2)

where DeConV (⋅) denotes the initial reconstruction process.
Then, given the initial reconstruction HSI S for spatial infor-
mation refinement. To further narrow the spatial information
difference between original HSI and initial reconstruction HSI,
the spatial CNN is leveraged to refine initial reconstruction HSI
S . The spatial CNN includes extracting shallow features, extract-
ing spatial information features, and fusion various features.
This process can be expressed as:

Ŝ = SpaCNN (S ). (3)

where SpaCNN (.) denotes spatial information refinement pro-
cess. Finally, given the spatial refinement HSI Ŝ for spectral
information refinement. To further narrow the spectral infor-
mation difference between original HSI and spatial refinement
HSI, the spectral CNN is leveraged to refine spatial refine-
ment HSI Ŝ . The spectral CNN includes splitting spectral band,
combining adjacent spectral bands, extracting features of spec-
tral bands, and fusion various features. This process can be
expressed as:

∧∧

S = SpeCNN (Ŝ ). (4)

where SpeCNN (.) denotes spectral information refinement
process. Moreover, we jointly train the CCL, DeConV, spatial
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4 XIAO ET AL.

FIGURE 2 Illustration of the compression sampling process, where × denotes elementwise multiplication. (a) The traditional compression sampling process in
CS theory. (b) The block compression sampling process in CDS2-DResN

CNN and spectral CNN by learning all network parameters Θ
in CDS2-DResN. Specifically, the overall framework is trained
using the loss function LossMSE+RTASPeD and all parameters Θ
are updated with Equation (5):

CNNΘ
CDS 2−DResN

= arg min
CN NCDS2−DResN∈CNN

max
Θ

LossMSE+RTASPeD (CN NCDS 2−DResN , Θ). (5)

Especially, after the overall framework is jointly trained, the
weight value in CCL is the measurement matrix in CS the-
ory. The optimized HSI reconstruction model is composed of
DeConV, spatial CNN and spectral CNN.

3.2 HSI block compression sampling part

The compression sampling process in CS theory is a linear
projection process, which linearly projects the original high-
dimensional signal to a lower dimension than the original signal.
In the traditional compression sampling problem in CS the-
ory, firstly, the image needs to meet the sparse condition, and
then the sampling matrix needs to meet the restricted isometry
property (RIP). The traditional compression sampling process
is shown in Figure 2a. Suppose that x ∈ RN×1 is an original
high-dimensional signal, y ∈ RM×1 is the CS measurements, and
Φ ∈ RM×N is a measurement matrix (M << N ). This process
is expressed as:

yM×1 = ΦM×N xN×1. (6)

where M and N denote the dimension size of the CS
measurements and original signal, respectively.

The existing sampling matrix are all signal-independent, and
do not consider the characteristics of the sampled signal so that
more information cannot be retained in measurements. The
CNN-based method can solve the compression sampling prob-
lem in CS more effectively. Moreover, the LMM, the weight

of the learned CCL, can obtain more useful image reconstruc-
tion information compared to PMM, which has been verified in
Section 4.6 1.

To rely on CNN to implement the compression sampling
process in CS, we refer to the compression sampling process
in the related work [30] on CS reconstruction, that is, leverag-
ing the CCL to compress and sample HSI. It is worth noting
that there is no bias or activation function in CCL. And the
weight value of CCL convolution kernel after training is LMM.
Figure 2b shows the detailed block compression sampling pro-
cess in CDS2-DResN. An HSI is divided into wm × hm image

blocks of size B × B × Dp(wm × hm =
W

B
×

H

B
, W and H are

the width and height of the original HSI, respectively. B is the
block size of HSI. Dp is the number of HSI channels). Each
image block can be denoted as xN×1 in Figure 2a. Then, the
CS measurements yM×1 of the image block xN×1 are acquired
using a measurement matrix ΦM×N . Since the number of rows
in the measurement matrix ΦM×N is M , the size of each con-
volution kernel in CCL is also M (M = B × B × Dp), so that
each convolution kernel outputs one measurement. Since the
number of columns in the measurement matrix ΦM×N is N ,
we need N (N = MRs × B × B × Dp, MRs denotes the mea-
surement rates in CS, i.e. the ratio of the data volume of the
measurements to the data volume of the original signal) convo-
lution kernels in CCL to obtain N (N = MRs × B × B × Dp)
measurements. Therefore, the output of each image block from
CCL is composed of N (N = MRs × B × B × Dp) feature
maps.

In conclusion, the block compression sampling process of
HSI convolves N (N = MRs × B × B × Dp) convolution ker-
nels of size M (M = B × B × Dp) over HSI using B × B strides.
This process is expressed as:

Y = CCL(X ,WCCL ) = WCCL ∗ X . (7)

where ∗ denotes the elementwise convolution. WCCL denotes
the weight matrix of the CCL.

Due to our limited computing resources (Titan Xp with
memory 24 G), we choose the maximum stride size 16 × 16
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XIAO ET AL. 5

TABLE 1 The relationship between B × B strides and MRs

B × B MRs

16 × 16 25%, 10%, 4% and 1%

that the current computing resources can support. Since the
number of convolution kernels needs to satisfy the inequalities
MRs × B × B × Dp ≥ 1, the MRs can be any frequency larger

than
1

7936
. To avoid the contingency of scene compression

sampling at a single MR, MRs will be directly taken as 25%,
10%, 4%, and 1% in the research works [31, 32] of CS. There-
fore, the corresponding relationship between B × B strides and
MRs is shown in Table 1. When the data dimension of the
image block is 16 and the MRs is 25%, the scale of the LMM
is 4 × 31 × 16 × 16 (The first 4 is obtained by 16 × 25%, the
second 31 is the depth of the convolution kernel, and 16 × 16
is the size of the convolution kernel).

3.3 CS measurements reconstruction part

The CS theory shows that if the original high-dimensional signal
x ∈ RN×1 is sparse in a domain Ψ, it is possible for y ∈ RM×1

to be restored to x ∈ RN×1 accurately. The original signal x can
be represented in a sparse domain Ψ, that is,

x∼ = Ψx. (8)

where x∼ is a sparse representation of x relative to the sparse
domain Ψ.

After the signal x ∈ RN×1 is sparsely represented, the sim-
plest formula of CS reconstruction can be expressed as:

min
∼
x

||Ψ ∼
x ||p, s.t . y = ΦΨ−1 ∼

x . (9)

where the subscript p is usually set to 1 or 0, which repre-
sents the sparsity of the vector Ψ. Ψ−1 is the inverse sparse
transformation.

By solving Equation (9), we can obtain the sparse representa-

tion
∼
x of x. Therefore, the reconstructed signal can be expressed

as:

x = Ψ−1 ∼
x . (10)

Since Equations (9) and (10) are over-determined equations, it
has no exact solution. To solve this problem, we estimate a
reconstruction mapping based on CNN, which minimizes the
error between ground HSI and reconstructed HSI. Firstly, we
leverage DeConV to solve Equations (9) and (10). Moreover, it
is essential to consider the spatial and spectral information of
HSI during image reconstruction. Therefore, we introduce the
spatial and spectral information refinement network to further
optimize Equations (9) and (10).

(1) Initial reconstruction
We leverage DeConV to learn a non-linear function that

maps the measurements Y to HSI S . Figure 3 shows the
initial reconstruction process in CDS2-DResN, the output of
each measurement block from the DeConV is composed of
B × B × Dp feature maps. In conclusion, the initial recon-
struction process convolves B × B × Dp convolution kernels of
size B × B × MRsB2Dp over measurements using B × B strides.
The trained DeConV maps the measurements Y into an initial
reconstructed HSI S . This process is expressed as:

S = DeConV (Y ,WDeConV ) = WDeConV ∗ Y . (11)

where WDeConV denotes the weight parameters for the trained
DeConV.

(2) Spatial information refinement
The trained DeConV can only obtain an approximate solu-

tion to the ground HSI X . To further narrow the difference
between S and X , we design a spatial CNN to predict
the spatial information between two HSIs. It is worth not-
ing that spatial CNN referred to the residual dense network
for hyperspectral image reconstruction (RDNHIR) network
in the related work [26]. Moreover, considering the operation
speed and reconstruction quality, we modify the dense resid-
ual module to simplify the operation in the dense residual
block.

Figure 4 shows the spatial CNN architecture for spatial
information refinement. The network consists of three parts:
extracting shallow features, extracting spatial features, and
fusion various features.

The input of the spatial CNN is the initial reconstructed HSI
S . Firstly, we leverage two convolutional layers to extract the
shallow features F−1 and F0. Here, the calculation formulas of
F−1 and F0 can be expressed as:

F−1 = W−1(3×3) ∗ S + B−1(3×3). (12)

F0 = W0(3×3) ∗ F−1 + B0(3×3). (13)

where W−1(3×3) and B−1(3×3) denote the weight and bias values
in the first convolutional layer, respectively. W0(3×3) and B0(3×3)
denote the weight and bias values in the second convolutional
layer, respectively.

Then, we leverage three SpaN units to fully extract the spa-
tial information features F1, F2 and F3. Here, the calculation
formulas of F1, F2 and F3 can be expressed as:

F1 = HSpaN ,1(F0). (14)

F2 = HSpaN ,2(F1). (15)

F3 = HSpaN ,3(F2). (16)

where HSpaN ,1(⋅),, HSpaN ,2(⋅) and HSpaN ,3(⋅) denote spatial
feature extraction operator of the three SpaN, respectively.
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6 XIAO ET AL.

FIGURE 3 Illustration of the initial reconstruction process in CDS2-DResN

FIGURE 4 Illustration of the spatial CNN
architecture for HSI spatial information refinement,
where ✪ denotes elementwise addition, ConCat
denotes feature channel concatenate operation

The structure and paraments of the second SpaN unit in
Figure 4, which has a memory signal mechanism. Considering
the convergence speed and reconstruction accuracy, the spatial
CNN adopts three SpaN units, and each SpaN unit contains
three convolutional layers. It is worth nothing that the feature
maps F2,1, F2,2,F2,3 and F2 are respectively expressed as:

F2,1 = cat(F1, (max((W1(5×5) ∗ F1 + B1(5×5), 0)))). (17)F2,2

= cat(F1,F2,1, (max((W2, 1(5×5) ∗ F2, 1 + B2, 1(5×5), 0)))). (18)

F2,3 = W2,2(1×1) ∗ F2,2 + B2,2(1×1). (19)

F2 = F1 + F2,3. (20)

where cat (⋅) denotes feature channel concatenate operation.
W1(5×5) and B1(5×5) denote the weight and bias values in the
5 × 5 convolutional layer, respectively. W2, 1(5×5) and B2 , 1(5×5)
denote the weight and bias values in the 5 × 5 convolutional
layer, respectively. W2,2(1×1) and B2,2(1×1) denote the weight and
bias values in the 1 × 1 convolutional layer, respectively.

Finally, we fuse the various features to get the spatial infor-
mation refinement HSI Ŝ . It is worth noting that we leverage
the 1 × 1 convolutional layer to adaptively cascade the feature
maps at different levels. Here, the calculation formulas can be
expressed as:

F4 = W4(1×1) ∗ (cat (F1,F2,F3)) + B4(1×1). (21)

where W4(1×1) and B4(1×1) denote the weight and bias values
in the 1 × 1 convolutional layer, respectively. Meanwhile, the
global residual feature needs to be utilized to get the final spatial
refinement result, and the calculation formulas can be expressed
as:

Ŝ = F6 = W5(3×3) ∗ (F4 + F−1) + B5(3×3). (22)

where W5(3×3) and B5(3×3) denote the weight and bias values in
the 3 × 3 convolutional layer, respectively.

Spatial refinement network can better extract multi-layer fea-
ture information, which has been verified in Section 4.6 2. In
the following, we design a spectral CNN to reduce the spectral
error through the spectral correlation between adjacent bands,
which can further improve the quality of HSI reconstruction.

(3) Spectral information refinement
The trained spatial CNN can narrow the spatial difference

between Ŝ and X . However, HSI also contains the spectral
characteristics of each pixel. To further narrow the spectral dif-
ference between Ŝ and X , we design a spectral CNN to predict
the spectral information between two HSIs. It is worth noting
that spectral CNN referred to the spectral CNN in the related
work [24]. Moreover, since the residual block can effectively
retain some information of the previous layers, Therefore, we
leverage the residual block to extract features of spectral bands
in spectral CNN.

Figure 5 shows the spectral CNN architecture for HSI
spectral information refinement. The network consists of
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XIAO ET AL. 7

FIGURE 5 Illustration of the spectral CNN architecture for HSI spectral
information refinement, where Split denotes slice operator along the spectral
dimension

four parts: splitting spectral band, combining adjacent spectral
bands, extracting features of spectral bands, and fusion various
features.

The input of the spatial CNN is the spatial refinement
HSI Ŝ . We first split the Ŝ into spectral bands F7,k (k =
1, 2, … ,Dp−1,Dp). Here, spectral bands can be expressed as:

F7,k = Split (Ŝ ). (23)

where Split (⋅) denotes the slice operator along the spectral
dimension. F7,k (k = 1, 2, … ,Dp−1,Dp) denotes the k−th
band in the F7.

Secondly, we obtain Dp spectral bands P7,k by combining
adjacent spectral bands. Two adjacent bands are combined for
the first band P7,1 and last band P7,Dp, and three adjacent bands
are combined for all other bands P7,k (k = 2, 3, … ,Dp− 1).
Here, combined adjacent spectral bands can be expressed as:

P7,1 = cat(F7,1,F7,2)

P7,k = cat(F7,k−1,F7,k,F7,k+1).

P7,Dp = cat(F7,Dp−1,F7,Dp)

(24)

Then, we leverage the designed SpeN to fully extract the fea-
tures of each spectral band P7,k. Here, the calculation formula
of P7,k can be expressed as:

P8,k = HSpeN(P7,k ). (25)

where HSpeN(⋅) denote spectral information feature extraction
operator of the SpeN.

The structure and paraments of the k−th SpeN unit in
Figure 5. It is worth nothing that the feature maps P7,k,1, P7,k,2,
P7,k,3, and P8,k are respectively expressed as:

P7,k,1 = W7,k(3×3) ∗ P7,k + B7,k(3×3). (26)

P7,k,2 = max(W7,k,1(5×5) ∗ P7,k,1 + B7,k,1(5×5), 0). (27)

P7,k,3 = max(W7,k,2(5×5) ∗ P7,k,2 + B7,k,2(5×5), 0). (28)

P8,k = W8,k(3×3) ∗ (P7,k,1 + P7,k,3) + P8,k(3×3). (29)

where W7,k(3×3) and B7,k(3×3) denote the weight and bias val-
ues in the 3 × 3 convolutional layer, respectively. W7,k,1(5×5) and
B7,k,1(5×5) denote the weight and bias values in the 5 × 5 convo-
lutional layer, respectively. W7,k,2(5×5) and B7,k,2(5×5) denote the
weight and bias values in the 5 × 5 convolutional layer, respec-
tively. W8,k(3×3) and B8,k(3×3) denote the weight and bias values
in the 5 × 5 convolutional layer, respectively.

Finally, we get the final reconstructed HSI
∧∧

S through global
dense feature fusion. Here, the calculation formulas can be
expressed as:

∧∧

S = F7 + cat(P8,1, … , P8,k, … , P8,Dp). (30)

Spectral refinement network can better extract spectral feature
information, which has been verified in Section 4.6 2.

3.4 Joint training of HSI compression
sampling part and CS measurements
reconstruction part

Traditional CS reconstruction algorithms all leverage a PMM
to compress and sample the HSI. However, the PMM ignores
the characteristics of the sampled HSI. Therefore, we construct
the sampling network, CCL, to adaptively learn a measurement
matrix from the training HSIs. Furthermore, we jointly train
the CCL, DeConV, spatial CNN, and spectral CNN by learn-
ing all the weights and biases in one framework. All parameters
in CDS2-DResN can be expressed as:

Θ = {WCCL;WDeConV;W(s×s);B(s×s)}. (31)

where W(s×s) and B(s×s) denote the weight and bias values of
convolutional layers in the spatial CNN and spectral CNN,
respectively.

The loss function of the CS reconstruction network for
HSI usually adopts the MSE, which can estimate the model
parameter Θ and minimize the loss between the reconstructed

HSI
∧∧

S and the corresponding ground truth HSI X . However,

since there are also adjacent spectral differences between the
∧∧

S
and X , we add a regular term of adjacent spectral differences
(RTASpeD) based on MSE. In section 4.6 3, we have demon-
strated that RTASpeD can significantly improve the reconstruc-
tion index SAM. The expression of the loss function is:

LossMSE+RTASPeD (Θ) =
1
N

N∑
i=1

||∧∧S i Xi ||22
+

1
N

(
N∑

i=1

𝜆

Dp−1∑
j=1

||∧∧S i, j+1 Xi, j+1 + Xi, j−
∧∧

S i, j ||1) . (32)
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8 XIAO ET AL.

HSI dataset

Block compression sampling
based on CCL

Spatial domain refinement 
based on Spatial CNN 

CS measurements

Finally reconstructed HSI

Spectral domain refinement 
based on Spectral CNN 

CS measurements
Deconvolution layre, 

Spatial CNN, and Spectral CNN 
Reconstructed HSI

Training CDS2-DResN

Calculate the loss value 

MSE
+

RTASpeD

A HSI

Trained CCL

Initial reconstruction 
based on deconvolution layer 

Initially reconstructed HSI

Testing 
process

Training 
process

Loss
function

FIGURE 6 Illustration of the flowchart of CDS2-DResN

where N is the number of training dataset. Si,j is the j − th band

image of the i − th ground truth HSI.
∧∧

S i,j is the j − th band
image of the i − th reconstructed HSI. 𝜆 is a hyperparameter,
we take the value 0.25 [29].

3.5 CS procedure

The process of HCS is shown in Figure 6. In the testing process,
given an HSI, we first leverage the trained CCL to directly per-
form convolution coding on HSI to obtain CS measurements,
which leverages CNN to perform the block compression sam-
pling process in CS. Then, the CS measurements are fed into
the DeConV to output the initial reconstructed HSI, which is
finally processed with spatial CNN and spectral CNN to refine
the input initial reconstructed HSI in turn. It is worth noting
that the DeConV, spatial CNN, and spectral CNN constitute
the reconstruction model of HCS.

4 EXPERIMENT

4.1 Dataset

We evaluate our model on two HSI datasets, the CAVE dataset
[33] and Harvard dataset [34]. The CAVE dataset contains 31
HSIs. Especially, each image has 31 bands, ranging from 400
to 700 nm, with an interval of 10 nm and the image size of
each band is 512 × 512 pixels. The Harvard dataset contains
50 HSIs. Especially, each image has 31 bands, ranging from
420 to 720 nm, with an interval of 10 nm and the image size
of each band is 1040 × 1392 pixels. Table 2 shows the dataset
partitioning for the training set, verification set and test set.

TABLE 2 Dataset partitioning

Dataset

Total number

of HSIs

Dataset

division

Number of

HSIs

Number of

block images

CAVE 31 Training set 22 22,528

Validation set 3 3072

Test set 6 6144

Harvard 50 Training set 39 39,936

Validation set 5 5120

Test set 6 6144

TABLE 3 Experimental environment

System Ubuntu 18.04

RAM 64.0 GB

CPU 3.60 GHz Intel(R) Core(TM) i7-6850K

GPU TITAN X, memory 24 G

Framework Keras (backed as TensorFlow)

TABLE 4 CDS2-DResN training parameters

Initialize convolution

Gaussian distribution with standard

deviation of 0.001 [31]

Optimizer Adam [35]

Learn rate 10−4 [29]

Batch size 2

4.2 Implementation details

To effectively train and test CDS2-DResN, we leverage
the experimental environment in Table 3. The experimental
environment dramatically speeds up the calculation speed of the
CNN. Since the size of the image data in the experiment is dif-
ferent, it is uniformly adjusted to 512 × 512 before inputting the
model.

4.3 Implementation parameters

Table 4 shows the training parameter setting for CDS2-DResN
training. It is worth noting that we refer to the research work
[29] in the same field to get a reasonable learning rate 10−4. In
particular, considering the 24G limitation of GPU memory, we
set the batch size to 2.

4.4 Evaluation metrics

Peak signal-to-noise ratio (PSNR) [36] and structural similarity
(SSIM) [37] are calculated on each two-dimensional spatial
image, which show the spatial fidelity between the recon-
structed HSI and the ground truth. The higher the PSNR and
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XIAO ET AL. 9

TABLE 5 Performance comparison on CAVE dataset of different
algorithms

Algorithm MR= 25% MR= 10% MR = 4% MR = 1%

23.3086 22.8070 22.4747 21.7138

PRN 0.6991 0.6453 0.6081 0.4745

0.5337 0.5729 0.5693 0.6009

35.9561 33.7410 30.1976 27.0445

SSRDNHIR 0.9398 0.9185 0.7388 0.6886

0.1304 0.1475 0.2946 0.3255

36.6248 34.5133 30.6564 27.1520

CDS2-DResN 0.9571 0.9360 0.8788 0.7996

0.1039 0.1205 0.1597 0.2130

SSIM values, the better the reconstruction performance of the
algorithm. The PSNR and SSIM are respectively expressed as:

PSNR(X ,
∧∧

S ) = 20 × lg

⎛⎜⎜⎜⎝
255√

MSE (S ,
∧∧

S )

⎞⎟⎟⎟⎠ .. (33)

SSIM (X ,
∧∧

S ) =
(2𝜇X 𝜇∧∧

S
+C1)(2𝜎

X
∧∧
S
+C2)

(𝜇2
X
+ 𝜇2

∧∧
S

+C1)(𝜎2
X
+ 𝜎2

∧∧
S

+C2)
. (34)

where X denotes the ground truth HSI,
∧∧

S denotes the recon-

structed HSI, MSE (X ,
∧∧

S ) denotes the mean square error

between the X and
∧∧

S , 𝜇X and 𝜇∧∧
S

denote the mean values of

the X and
∧∧

S , 𝜎X and 𝜎∧∧
S

denote the variances of theX and
∧∧

S ,

and 𝜎∧∧
S

denotes the covariance of the X and
∧∧

S .

Spectral angle mapping (SAM) [38] is calculated on a
one-dimensional spectral vector, which shows the spectral
fidelity between the reconstructed HSI and the ground truth.
The smaller the SAM value, the better the reconstruction
performance of the algorithm. The SAM is expressed as:

SAM (x,
∧∧

S ) = cos−1
⎛⎜⎜⎝

∧∧

S T x|| ∧∧
s ||||x||

⎞⎟⎟⎠ . (35)

where
∧∧
s denotes the reconstructed HSI spectrum vector and x

denotes the ground truth HSI spectrum vector.

4.5 Comparison with state-of-the-art
methods

In this section, to verify the performance of the proposed algo-
rithm, we compare it with the best CNN-based HCS algorithm,
that is, PRN [28] and SSRDNHIR [29]. The results are summa-
rized in Tables 5 and 6, where the best results are highlighted

TABLE 6 Performance comparison on Harvard dataset of different
algorithms

Algorithm MR= 25% MR= 10% MR = 4% MR = 1%

24.9320 23.7021 22.5562 21.7529

PRN 0.6633 0.5911 0.5449 0.5182

0.2143 0.2150 0.2112 0.2111

32.6837 31.0404 29.2457 27.0140

SSRDNHIR 0.8527 0.8331 0.8059 0.7666

0.1248 0.1341 0.1433 0.1483

33.0465 31.0818 29.7624 27.3830

CDS2-DResN 0.8529 0.8335 0.8132 0.7716

0.1225 0.1326 0.1372 0.1404

in bold. It is worth noting that the results are the average of
the evaluation metrics of all reconstructed HSIs in the test set.
As shown in Table 5, our CDS2-DResN outperforms PNR
and SSRDNHIR on CAVE dataset. The PSNR, SSIM, and
SSIM values of the CDS2-DResN are higher than PNR and
SSRDNHIR for the cases that MRs = 0.25, 0.10, 0.04 and 0.01.
As shown in Table 6, Our CDS2-DResN outperforms PNR
and SSRDNHIR on Harvard dataset. The PSNR, SSIM and
SSIM values of the CDS2-DResN are also higher than PNR and
SSRDNHIR for the cases that MRs = 0.25, 0.10, 0.04 and 0.01.

To verify the visual quality of the proposed algorithm,
Figures 7–10 show a representative reconstructed HSI from the
test set on the CAVE and Harvard datasets. Figure 7 shows the
16th band image visualization results of an HSI in CAVE test
set. Figure 8 shows the 30th band image visualization results
of an HSI in Harvard test set. Figure 9 shows the pseudo
colour image visualization results of three channels of HSI in
the CAVE test set (the three channels are the 25th, 15th and
5th channels respectively). Figure 10 shows the pseudo colour
image visualization results of three channels of HSI in the Har-
vard test set (the three channels are the 25th, 15th and 5th
channels respectively). A partial magnification of the recon-
structed image is shown in the upper left corner. As shown in
Figures 7–10, the reconstructed HSIs of CDS2-DResN have no
block effect, and CDS2-DResN has more HSI details compared
to PNR and SSRDNHIR at MRs of 0.25, 0.10, 0.04 and 0.01.

5 DISCUSSION

5.1 Analysis of PMM or LMM

In this subsection, we analyse the properties of the LMM and
PMM in the time and frequency domains. Figure 11 provides
the visualize the results of LMM and PMM on CAVE dataset
for CDS2-DResN. We select four rows from each of LMM and
PMM for visualization, which are the 1th, 4th, 8th and 16th
row, respectively. To obtain a better visual effect, the spatial
visualization is the result of multiplying each value by 255 to
the base 10 logarithm and frequency visualization is the result
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10 XIAO ET AL.

FIGURE 7 Visual quality comparison on CAVE test set (the 16th band image of the HSI)

of the Fourier transform of each row of the measurement
matrix. Especially, Figure 11a shows the spatial domain and
frequency domain of LMM when MRs = 25%, Figure 11b
shows the spatial domain and frequency domain of LMM when
MRs = 4%, Figure 11c shows the spatial domain and frequency
domain of PMM (Orthogonal Random Gaussian Matrix) when
MRs = 25%, and Figure 11d shows the spatial domain and
frequency domain of PMM (Orthogonal Random Gaussian
Matrix) when MRs = 4%.

From the spatial domain of LMM and PMM, we can find
that the LMM is anisotropic, that is, LMM has stronger con-
tent adaptive ability. From the frequency domain of LMM and
PMM, we can find that the frequency of the PMM is randomly
distributed, while the LMM pays more attention to the low-

frequency information of the image, which can obtain more use-
ful image reconstruction information. Moreover, the frequency
distribution of the LMM at MRs = 4% is narrower than that
of the LMM at MRs = 25%. As the MRs increases, the LMM
gradually pays attention to more high-frequency information,
see Figure 11.

5.2 Analysis of ablation studies

In this subsection, we conduct ablation studies on the model
on the CAVE dataset to verify the effect of spatial CNN and
spectral CNN in CDS2-DResN. The results are summarized in
Tables 7–10, with the best results highlighted in bold.
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XIAO ET AL. 11

FIGURE 8 Visual quality comparison on Harvard test set (the 30th band image of the HSI)

To study the effect of spatial CNN, we conduct abla-
tion experiments on spatial CNN, and the corresponding
experimental results are shown in the first and third rows of
Tables 7–10. It can be seen that the values of PSNR and SSIM
both increase and the value of SAM decreases when the space
CNN is added. Therefore, spatial CNN can achieve better
detection accuracy. This is because DRBs in spatial CNN can
extract multi-layer feature information, thereby improving the
image quality of HCS.

To study the performance of spectral CNN, we conduct
ablation experiments on spectral CNN, and the corresponding
experimental results are shown in the second and third rows
of Tables 7–10. It can be seen that the values of PSNR and

SSIM both increase and the value of SAM decreases when the
spectral CNN is added. Therefore, spectral CNN can achieve
better detection accuracy. This is because the spectral extraction
of each spectral band can fully extract the spectral feature infor-
mation of HSI, thereby improving the image reconstruction
quality of HCS.

5.3 Analysis of MSE or MSE-RTASpeD

In this subsection, we compare the effects of the MSE and
MSE-RTASpeD loss function on the reconstruction quality
of HSIs. The results are summarized in Table 11, with the
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12 XIAO ET AL.

FIGURE 9 Visual quality comparison on CAVE test set (Pseudo colour with 25th,15th and 5th channels)

best results highlighted in bold. It can be seen that RTASpeD
can improve three reconstruction indicators, especially for the
improvement of SAM indicator.

The MSE loss function mainly considers the spatial infor-
mation between the reconstructed HSI and the ground truth
HSI, that is, does not fully consider the adjacent spectral dif-
ferences between the two. However, the reconstruction method
with MSE-RTASpeD loss function solves this problem, which
adds an RTASpeD based on MSE. Therefore, it considers both
the spatial information between the reconstructed HSI and

the ground truth HSI as well as the adjacent spectral differ-
ences between the two, which makes the difference between the
reconstructed HSI and the ground truth HSI smaller.

5.4 Analysis of computational complexity

In this subsection, we analyse the computational complexity of
the model. The results are summarized in Table 12. It can be
seen that the parameter size of the model and the HSI recon-
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XIAO ET AL. 13

FIGURE 10 Visual quality comparison on Harvard test set (Pseudo colour with 25th,15th and 5th channels)

struction time are decreasing with the decrease of MRs. This is
because the data volume of HCS measurements is decreasing.
However, the reconstruction time of the model is relatively long
under the four MRs. This is because the space-spectrum joint
refinement network has a complex network structure.

6 CONCLUSION

In this paper, we leverage the self-learning ability of CNN
to connect HSI compression sampling and measurements

reconstruction are connected in one framework, which can
improve HSI reconstruction quality. From compression sam-
pling part, the entities of the compression sampling matrix
in CS are treated as the CCL weights for optimization train-
ing. From measurements reconstruction part, the DeConV is
used to initially reconstruct HSI. Additionally, spatial CNN
and spectral CNN are designed to refine spatial information
and spectral information in the initial HSI, respectively. The
experimental results show that CDS2-DResN has excellent HCS
reconstruction effect in terms of quantitative index and visual
quality.
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14 XIAO ET AL.

FIGURE 11 The time domain and frequency domain of the measurement matrix
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XIAO ET AL. 15

TABLE 7 Reconstruction results with different modification models on
the CAVE dataset at MRs = 25%

Model

Spatial

CNN

Spectral

CNN PSNR SSIM SAM

CDS2-DResN × √ 30.0355 0.8460 0.1801

√ × 34.3008 0.9149 0.1581

√ √ 36.6248 0.9571 0.1039

TABLE 8 Reconstruction results with different modification models on
the CAVE dataset at MRs = 10%

Model

Spatial

CNN

Spectral

CNN PSNR SSIM SAM

CDS2-DResN × √ 30.2947 0.8685 0.1546

√ × 33.4419 0.9103 0.1501

√ √ 34.5133 0.9360 0.1205

TABLE 9 Reconstruction results with different modification models on
the CAVE dataset at MRs = 4%

Model

Spatial

CNN

Spectral

CNN PSNR SSIM SAM

CDS2-DResN × √ 27.3378 0.8417 0.2544

√ × 29.9044 0.8004 0.2529

√ √ 30.6564 0.8788 0.1597

TABLE 10 Reconstruction results with different modification models on
the CAVE dataset at MRs = 1%

Model

Spatial

CNN

Spectral

CNN PSNR SSIM SAM

CDS2-DResN × √ 24.4720 0.7389 0.2771

√ × 25.9110 0.7515 0.2801

√ √ 27.1520 0.7996 0.2130

TABLE 11 Performance comparison on CAVE dataset of different
algorithms

Algorithm MR= 25% MR= 10% MR = 4% MR = 1%

36.5479 33.6902 30.3275 26.5537

CDS2-DResN+MSE 0.9521 0.9273 0.8773 0.7809

0.1294 0.1426 0.2313 0.2759

36.6248 34.5133 30.6564 27.1520

CDS2-DResN

+MSE+RTASpeD

0.9571 0.9360 0.8788 0.7996

0.1039 0.1205 0.1597 0.2130

TABLE 12 The parameter size of the model and GPU runtime of
reconstruction results on the CAVE dataset

MRs 25% 10% 4% 1%

Total params 2,657,023 2,053,887 1,799,935 1,688,831

Time (s) 1.1053 1.0563 1.0442 1.0266
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