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A B S T R A C T   

Lightweight design is one of the most important concepts in the design of space-borne optical 
remote sensors. Carbon fiber reinforced polymer (CFRP), as one material with high ratio of 
modulus to density, is widely employed to realize the lightweight design. To maximize the 
stiffness and strength of CFRP with prescribed mass, fiber orientation and topology optimization 
are accomplished and optimum design result is acquired in this paper. First, the optimization 
algorithm of fiber orientation is put forward to find the optimal fiber direction and verified by 
theoretical analysis and simulations, illustrating that [90◦/+ 45◦/− 45◦/0◦] fiber orientation and 
symmetrical laminas are indispensable. Furthermore, the topology optimization algorithm 
including the density interpolation method and sensitivity analysis method is brought about to 
find the optimal material distribution. The algorithm is validated to be convergent and can 
provide a conceptual model which offers a reference for the critical design. Finally, acquired in 
the mechanical test is the performance of the optical remote sensor whose first three character
istic frequencies are respectively 66.95 Hz, 70.37 Hz, and 98.84 Hz. The mechanical amplification 
factor is 5.29, which meet the performance requirement of the stiffness and strength for the 
optical remote sensor.   

1. Introduction 

Carbon fiber reinforced polymer (CFRP), as a type of composite materials of fiber reinforcement, has gained a considerable 
reputation and application in lots of industries such as aerospace, automotive and other fields due to its high stiffness and modulus 
even when compared with some metal materials [1–4]. CFRP is a kind of anisotropic materials whose performance is much dependent 
on the fiber orientation. Besides, topology and size design also have a significant influence on the stiffness of a CFRP component. 
Therefore, a large amount of research work has been so far concentrated on the CFRP optimization of fiber orientation, topology and 
size design among scholars and institutes all over the world. 

As to the optimization of fiber orientation, R. Matsuzaki optimized the composite plates with curvilinear fiber orientation in order 
to obtain a unique mechanical property [5]. C. Nguyen and Y. Choi utilized Euler angles to represent the fiber orientation in a rigid 
coordinate system and performed a fiber orientation optimization to enhance the mechanical property of functionally graded 
conformal lattice structures [6]. B. Krour presented a new method to reduce the interfacial stress concentration by taking the effect of 
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fiber orientation into consideration [7]. Z. Rasheva studied the correlation between the mechanical properties and fiber orientation, 
and the results show that the fiber orientation of carbon fibers is playing a critical role in optimizing the mechanical performance of 
CFRP [8]. Usually, there are two common technique employed to conduct the optimization of fiber orientation, namely analytical 
solutions based on laminate theories [9–14] and numerical simulation by finite element modeling in computer-aided engineering 
software [15–20]. Great progress has been made in fiber orientation optimization while little effort has been devoted to the field that 
the effect of fiber orientation on the thermal and mechanical performances can also be investigated by taking into account the 
constitutive tensor of CFRP structure, which is the function of Euler angles [21–24]. 

Topology optimization, a very process of determining the connectivity, shape and location of voids inside a given design domain, 
has become a notably powerful design technique, which has great influence in early conceptual and preliminary design and impacts 
the performance of the final structure [25–30]. In the past few decades, numerous topology modeling methodologies were put forward, 
such as density-based methods [31–33], evolutionary structural optimization method [34,35] and level set method [36,37]. 
Density-based methods are the most widely used due to their intuitive mathematical expressions and physical meaning, among which 
Solid Isotropic Material with Penalization (SIMP) [38–40] and Ramp Approximation of Material Properties (RAMP) [41] are two most 
popular modeling methodologies. Together with modeling methods, optimization algorithms available in topology optimization, 
including Sequential Quadratic Programming (SQP) [42,43], Method of Moving Asymptotes (MMA) [44,45] and Optimization Cri
terion Method (OCM) [46–48], have been under discussions in the recent several years. Nevertheless, too little work has been devoted 
to the application of all the methodologies and algorithms to space-borne optical remote sensors and aircrafts. 

In this paper, a novel type of space-borne optical remote sensor is demonstrated which works to image the X-rays and extreme 
ultraviolet (EUV) radiated from the sun. The majority of mechanical components of the optical remote sensor are manufactured with 
CFRP material. Therefore, several key factors that have a noticeably positive influence on the enhancement of mechanical performance 
are investigated. To analyze the influence of fiber orientations on mechanical performance, presented is a novel method in which 
constitutive matrix of CFRP and Euler transformation matrix which is the function of fiber orientation are both introduced. 
Furthermore, SIMP, as the most popular modeling method in topology optimization, and sensitivity analysis method are both 
demonstrated. That is a novel application since these two methodologies have up till now received extremely little attention in 
aerospace industry. Moreover, accomplished are numerical simulations including fiber orientation optimization, topology optimiza
tion of a critical mechanical component of the optical remote sensor, and frequency response analysis of the instrument. Finally, the 
results of mechanics test are provided in a close agreement with the numerical simulation, validating the effectiveness of the meth
odologies and algorithms and the correctness of the numerical simulation results. 

The remainder of this paper is organized as follows. A system description about the optical remote sensor including performance 
index and geometrical model is presented in Section 2. In Section 3, the mathematical model of fiber orientation is established and the 
numerical simulation is conducted. In Section 4, the algorithms of topology optimization are demonstrated and the topology opti
mization model of U-frame, one critical mechanical component, is set up in Hypermesh. Furthermore, frequency response analysis of 
the instrument is described in this section including the modal analysis and sinusoidal excitation analysis. The results and discussions 
of mechanics test are presented in Section 5. In Section 6, a conclusion is drawn. 

2. System description 

2.1. Performance index 

In order to forecast the space weather and earth weather, solar corona-X-rays and extreme ultraviolet (EUV) radiated from the sun- 
is needed to be observed. As a result, a novel type of space-borne optical remote sensor is developed to image X-rays and EUV. System 
parameters and performance indices of this optical remote sensor that have an influence on the structural design are presented in  
Table 1. 

2.2. Geometrical model 

According to the system requirement illustrated in Table 1, the optical remote sensor is required to comprise two degrees of 
freedom with large travel range and to be in light weight. After comparing specific stiffness of all the most widely used materials, CFRP 
is found to be with the highest ratio of stiffness to density, so it is the most appropriate material for the majority of mechanical 
components of the imager. 

Table 1 
System parameters and performance indices.  

No. Item Requirement 

1 Travel range Pitch axis: ± 34.5◦

Azimuth axis: − 33.5◦~+ 7◦

2 Total mass ≤ 75 kg 
3 Natural frequency ≥ 50 Hz 
4 Moment of inertia Pitch axis≤ 4 kg⋅m2 

Azimuth axis≤ 3.2 kg⋅m2  
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The critical mechanical components of the optical remote sensor include U-frame, O-frame and some other structures, of which the 
U-frame is the primary component analyzed as an example in this paper. The U-frame includes one base and two side-legs. An optical 
imager, as the core instrument of the optical sensor, is mounted on the O-frame and rotates along the azimuth and pitch axis. The 
imager and the O-frame are both mounted on the U-frame. The geometrical model is shown in Fig. 1. 

3. Fiber orientation optimization 

3.1. Modeling and formulation 

A classical topology optimization problem of CFRP consists of finding the optimum layout of material and the local reinforced 
direction CFRP is oriented to maximize the stiffness of the CFRP component. In this section, the density of component, namely the 
distribution of material, is constant while the local reinforced vector of fiber orientation within a given volume is a optimization 
variable to minimize the compliance, namely the inverse of stiffness in another word. 

The topology optimization problem including material distribution and fiber orientation can be described mathematically in Eq. 
(1). 

Minimize : c
(
ρ, θ
)
= u(ρ, θ)Tf (1)  

Subjectto :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

V(ρ)
V0

≤ frac

K(ρ, θ)u(ρ, θ) = f

ρmin ≤ ρ ≤ 1

−
π
2
≤ θ <

π
2

(2) 

Next, all the parameters in the equations are explained. The compliance c is the objective function in the optimization, as a function 
of density and fiber orientation. u(ρ, θ) is a column vector denoting the displacement of all nodes and f is also a column vector denoting 
the load applied to all the nodes in finite element model. The first constraint in Eq.(2) is imposed on the design volume V(ρ) limiting to 
a prescribed volume fraction frac (0 ≤f≤1). The second constraint imposes equilibrium on the design volume that the stiffness matrix 
K(ρ, θ) and displacement vector u(ρ, θ) are design-independent and it is assumed that the applied load f is not a function of density and 
fiber orientation. Moreover, the third and the fourth constraints included in Eq.(2) are simple bounds on element density and fiber 
orientation, namely the element material angle. The former imposes a lower bound of ρmin on element density to avoid singularity 
issues in the finite element stiffness matrix K(ρ,θ). 

Since the density of element is constant in this section, Eq.(1) and Eq.(2) can be simplified as follows. 

Minimize : c(θ) = u(θ)TK(θ)u(θ)
(
−

π
2
≤ θ <

π
2

)
(3) 

The stiffness matrix K(θ) is assembled by contributions from each element stiffness matrix ke(θ) as given in Eq.(4). 

K(θ) =
∑N

e=1
ke(θ) (4)  

where N denotes the number of finite elements. Then the Eq.(3) can be written in terms of element stiffness matrix ke(θ) and element 
displacement ue(θ), which simplifies the evaluation of compliance in the optimization calculations by making it an element-by-element 
computation 

Fig. 1. Geometrical model of optical remote sensor.  
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c(θ) =
∑N

e=1
ue(θ)Tke(θ)ue(θ) (5) 

The element stiffness matrix in Eq.(5) is obtained in the usual way where element integrations are performed in the prescribed 
design volume. 

ke =

∫

Ωd

BTQ(θ)BdΩd (6)  

where B is the strain-displacement matrix defined by derivatives of the element shape functions and Q(—)(θ) is denoted as the rotated 
constitutive matrix in terms of original constitutive matrix Q(θ). The calculation of Q(—)(θ) is demonstrated in detail. 

According to the laminate theory, two kinds of coordinate systems are employed to describe the laminate direction and fiber 
direction—the laminate coordinate system where x-axis represents the primary axis and the lamina coordinate system where 1-axis 
represents the fiber orientation. Both are depicted in Fig. 2 and Fig. 3 respectively. 

Since the fiber orientation optimization is simplified to a 2-dimensional problem, the relationship between stress and strain can be 
presented as follows. 

⎡

⎣
σ1
σ1
τ12

⎤

⎦ =

⎡

⎣
Q11 Q12 0
Q12 Q22 0
0 0 Q66

⎤

⎦

⎡

⎣
ε1
ε2
γ12

⎤

⎦ (7)  

Where [D] is the original constitutive matrix in which. 
Q11 = E1

1− ν12ν21
,Q12 = ν12E2

1− ν12ν21
= ν21E1

1− ν12ν21
,Q22 = E2

1− ν12ν21
,Q66 = G12. 

It is known that CFRP is a kind of transversely isotropic materials so the Poisson’s ratio ν12 and ν21 in two directions are not equal to 
each other. 

Particularly, when there is a rotation between laminate and lamina coordinate systems shown in the Fig. 3, the relationship of stress 
and strain in these two frames is Eq.(8) and Eq.(9). 

⎡

⎣
σx
σy
τxy

⎤

⎦ = T

⎡

⎣
σ1
σ1
τ12

⎤

⎦ (8)  

⎡

⎢
⎢
⎢
⎣

εx

εy

γxy

2

⎤

⎥
⎥
⎥
⎦
= T

⎡

⎢
⎢
⎢
⎣

ε1

ε2

γ12

2

⎤

⎥
⎥
⎥
⎦

(9) 

Therefore, the stress and strain in laminate coordinate system and the rotated constitutive matrix can satisfy the following equation 

Fig. 2. Laminate coordinate system.  

Fig. 3. lamina coordinate system.  
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⎡

⎣
σx
σy
τxy

⎤

⎦ = [Q]

⎡

⎣
εx
εy
γxy

⎤

⎦ =

⎡

⎣
Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q66

⎤

⎦

⎡

⎣
εx
εy
γxy

⎤

⎦ (10) 

According to Eq.(11), it can be calculated that 

Q(θ) = T(θ)Q(θ)TT(θ) (11)  

where T(θ) is the transformation matrix in terms of fiber angle and presented as follows. 

T(θ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a2
11 a2

12 a2
13 2a12a13 2a13a11 2a11a12

a2
21 a2

22 a2
23 2a22a23 2a23a21 2a21a22

a2
31 a2

32 a2
33 2a32a33 2a33a31 2a31a32

a12a31 a22a32 a23a33 a22a33 + a23a32 a21a33 + a23a31 a22a31 + a21a32

a31a11 a32a12 a33a13 a12a33 + a13a32 a13a31 + a11a33 a11a32 + a12a31

a11a21 a12a22 a13a23 a12a23 + a13a22 a13a21 + a11a23 a11a22 + a12a21

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12)  

where all the elements aij (i = 1,2,3; j = 1,2,3) are from another rotated matrix T′(θ) which is also with respect to fiber angle. 
Furthermore, without losing generality, it is assumed that the fiber rotation is along 3-axis in lamina coordinate system, then T′(θ) can 
be demonstrated as in Eq.(9). 

T’(θ) =

⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦ (13) 

Consequently, T(θ) is simplified as follows in Eq.(10). 

T(θ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos2θ sin2θ 0 0 0 − 2 sin θ cos θ
sin2θ cos2θ 0 0 0 2 sin θ cos θ

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0

sin θ cos θ − sin θ cos θ 0 0 0 cos2θ − sin2θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(14)  

which can be as well simplified further to a 3 × 3 matrix since the fiber orientation optimization is a 2-dimensional problem. 
Therefore, [T] is transformed as follows. 

T(θ) =

⎡

⎣
cos2θ sin2θ − 2 sin θ cos θ
sin2θ cos2θ 2 sin θ cos θ

sin θ cos θ − sin θ cos θ cos2θ − sin2θ

⎤

⎦ (15) 

Based on the equations from Eq.(10) to Eq.(15), the constitutive matrix of a rotated carbon fiber can be acquired as follows. 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Q11 = Q11cos4θ +
(
2Q12 + 4Q66

)
sin2θcos2θ + Q22sin4θ

Q12 =
(
Q11 + Q22 − 4Q66

)
sin2θcos2θ + Q12

(
sin4θ + cos4θ

)

Q16 =
(
Q11cos2θ + Q22sin2θ + Q12 − 2Q66 cos 2θ

)
sin θ cos θ

Q22 = Q11sin4θ +
(
2Q12 + 4Q66

)
sin2θcos2θ + Q22cos4θ

Q26 =
(
Q11sin2θ + Q22cos2θ − Q12 cos 2θ + 2Q66 cos 2θ

)
sin θ cos θ

Q66 =
(
Q11 + Q22 − 2Q12

)
sin2θcos2θ + Q66cos22θ

(16) 

The relationship between stress and strain in the lamina coordinate system has been discussed in detail. In addition, the relationship 
between stress and strain in the laminate coordinate system also needs to be demonstrated. 

According to the relationship between stress and strain in laminate theory, the total strain in the laminate coordinate system is 

⎡

⎣
εx
εy
γxy

⎤

⎦ =

⎡

⎢
⎢
⎢
⎣

ε0
x

ε0
y

γ0
xy

⎤

⎥
⎥
⎥
⎦
+Z

⎡

⎣
kx
ky
kxy

⎤

⎦ (17)  

where. 
[εx, εy, εz]T denotes the strain in an arbitrary lamina;. 
[ε0

x, ε0
y, ε0

z]T the strain in the neutral lamina;. 
[kx, ky, kz]T the curvature of the arbitrary lamina;. 
Z the distance from the arbitrary lamina to the neutral lamina. 
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By combining the Eq.(10) and Eq.(17), the relationship between stress and strain in the laminate coordinate system can be acquired 
as follows. 

⎡

⎣
σx
σy
τxy

⎤

⎦ =

⎡

⎣
Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q66

⎤

⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎣

ε0
x

ε0
y

γ0
xy

⎤

⎥
⎥
⎥
⎦
+Z

⎡

⎣
kx
ky
kxy

⎤

⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(18) 

Moreover, the relationship between the strain and the external loads including forces and moments in the laminate is 
{

N
M

}

=

[
A B
B D

]{
ε0

k0

}

(19)  

where. 
N denotes the external tensile and shear force per unit length [Nx, Ny, Nxy]T with unit [N/m];. 
M denotes the external bending moment and torque per unit length [Mx, My, Mxy]T with unit [N]. 
Matrix A, B and D, called respectively tensile stiffness matrix, coupling stiffness matrix and bending stiffness matrix, are three 

important matrices that influence the property and performance of CFRP depending on the parameter design, the definitions of which 
are 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =
∑n

k=1

(
Qij
)

k

(

Zk − Zk− 1

)

B = −
1
2
∑n

k=1

(
Qij
)

k

(

Z2
k − Z2

k− 1

)

D =
1
3
∑n

k=1

(
Qij
)

k

(

Z3
k − Z3

k− 1

)

(20)  

where Zk denotes the coordinate of the top face of the kth lamina on the z-axis in the laminate coordinate system whose origin and O-XY 
plane lie in the middle surface. 

As is mentioned, matrix B is the coupling stiffness between the tensile stiffness and bending stiffness and matrix B is supposed to be 

Table 2 
Characteristic parameters.  

Symbol Characteristic parameter Theoretical value 

E1 Longitudinal modulus (GPa)  290 
E2 Transversal modulus (GPa)  9 
G Shear modulus (GPa)  5 
ν12 Poisson’ ratio  0.3  

Fig. 4. Q(—)11 and fiber angle.  
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Fig. 5. Q(—)12 and fiber angle.  

Fig. 6. Q(—)16 and fiber angle.  

Fig. 7. Q(—)22 and fiber angle.  
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designed to be a zero matrix such that there is no coupling between normal strain and shear strain. Hence, the laminate is supposed to 
be symmetric about its middle surface. As a result, the strain vector in Eq.(19) can be expressed as in Eq.(21). 

[
ε0

k0

]

=

[
A− 1 0

0 D− 1

][
N
M

]

(21)  

3.2. Numerical simulation 

In the design of this space-borne optical remote sensor, some kind of CFRP with ultra high elastic modulus is employed, whose 
characteristic parameters are listed in Table2. 

Based on Table2 and Eq.(7), it can be known that Q11 = 290 GPa, Q12 = 2.7 GPa, Q22 = 9 GPa, Q66 = 5 GPa. Therefore, the function 
curve of Q(—)ij(θ) with respect to θ can be gained as shown from Figs. 4–9. Q(—)11 and Q(—)22 are responsible for the normal stiffness 
of x-axis and y-axis and Q(—)66 is responsible for the shear stiffness in the 0-xy plane in the laminate coordinate system. The other 
three items are coupling components between normal strain and shear strain. The former three components are the critical factors in 
the process of fiber orientation optimization. 

The results in the figures imply that the maximums of Q(—)11 and Q(—)22 happen when the orientation is respectively 0◦and 
90◦while the maximum of Q(—)66 happens when the orientation is ± 45◦. So the fiber orientation of laminas is optimized to 0◦, 

± 45◦and 90◦, which is in accordance with the most widely employed orientation of CFRP design. 
Based on the aforementioned conclusions and in the Section 3.1, the fiber orientations should be 0◦, ± 45◦and 90◦, and they are 

supposed to be symmetric about the neutral layer. Consequently, one kind of CFRP material with [90◦/+ 45◦/− 45◦/0◦/− 45◦/+ 45◦/ 

Fig. 8. Q(—)26 and fiber angle.  

Fig. 9. Q(—)66 and fiber angle.  
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90◦] fiber orientation is analyzed with its finite element model established in Hypermesh. Its performance on every direction is also 
simulated in Hypermesh and compared with the analytical result. 

Without losing generality, the thickness of each lamina is assumed to be 0.3 mm and the matrix A and D can be acquired according 
to Eq.(20). 

A =

⎡

⎣
189.7200 82.0125 0
82.0125 274.0200 0

0 0 92.5800

⎤

⎦GPa ·mm (22)  

D =

⎡

⎣
83.0817 57.2037 36.9846
57.2037 494.6765 36.3285
36.9846 36.3285 68.8270

⎤

⎦GPa ·mm3 (23) 

Then the strain vector under the unit force and moment is depicted in Eq.(24). 

[
ε0

k0

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0.0061 − 0.0018 0

− 0.0018 0.0042 0

0 0 0.0108

0

0

0.0166 − 0.0013 − 0.0082

− 0.0013 0.0022 − 0.0005

− 0.0082 − 0.0005 0.0192

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1

1

0

1

1

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0.0043μ

0.0024μ

0

0.0153μ

0.0009μ

0.0089μ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(24) 

Furthermore, the finite element model of this kind of CFRP material is established in Hypermesh. The fiber orientation and the 
thickness of each lamina is set in Fig. 10. 

The finite element model of the laminate with seven laminas is shown in Fig. 11, together with the orientation of each lamina with 

Fig. 10. Thickness and orientation of each lamina.  

Fig. 11. Finite element model of the laminate.  
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respect to the laminate coordinate system. 
Once the finite element model is obtained, a unit force array and a unit moment array are applied on the model to acquire the strain 

on each direction. The analysis results are illustrated in Fig. 12. 
According to the deformation results, the displacement of x-direction is 1.19e-4 mm with the strain 0.0056μ and the displacement 

of y-direction is 6.057e-5 with the strain 0.0028μ, which are both in accordance with the theoretical calculations. Therefore, the 
correctness of the optimization model of carbon fiber orientation is validated by the calculation and simulation. 

4. Topology optimization 

4.1. Mathematical model 

The goal of topology optimization is to find the optimal distribution of material to maximize the stiffness of a component and 
several algorithms with respect to topology optimization are presented including finite element modeling and sensitivity analysis. 

4.1.1. SIMP 
According to Eq.(1), it is known that there are two design variables in the CFRP topology optimization, the material distribution 

and fiber orientation. Since the optimal fiber orientation can be obtained, it is required that the optimal material distribution be found. 
In order to determine that an element is solid or void, a critical aspect is the selection of an appropriate density interpolation 

function and penalization technique to express the physical quantities of the problem as a function of continuous design variables. 
Solid Isotropic Material with Penalization (SIMP), one of most popular finite element modeling algorithms, is a power function in terms 
of density with a constant penalty factor p as follows. The interpolation and penalization scheme of SIMP is shown in Fig. 13. 

Fig. 12. Deformation analysis results.  

Fig. 13. Scheme of SIMP interpolation function.  
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η(ρ) = ρp (25) 

After bringing in the SIMP density interpolation function, the objective function of topology optimization in Eq.(5) can be modified 
as follows. 

c(ρ) =
∑N

e=1
ue(ρ)T[ρpke(ρ)

]
ue(ρ) (26)  

4.1.2. Sensitivity analysis 
Sensitivity analysis is one necessary and critical step in topology optimization because it helps figure out which part of material 

distribution the objective function is sensitive to, thus accelerating the convergence process. To calculate the sensitivity of compliance, 
the well-known adjoint method is adopted and the adjoint function is constructed firstly as follows. 

c = uTf − sT(Ku − f
)

(27)  

where s is an arbitrary real vector then the sensitivity of compliance to design variable is 

∂c
∂ρe

=

(

fT − sTK
)

∂u
∂ρe

− sT∂K
∂ρe

u (28) 

In Eq.(28), vector s is assumed to be equal to u since s is arbitrary then the sensitivity of compliance can be simplified as follows. 

∂c
∂ρe

= − uT∂K
∂ρe

u (29) 

In Eq.(29), K denotes the global stiffness matrix of mechanical component and it can be described with respect to element stiffness 
matrix which is relative to element geometry matrix B and elasticity matrix Q 

K =
∑Nele

i=1

∫

Vele
BTQBdVele (30)  

then 

∂K
∂ρe

=
∑Nele

i=1
pρp− 1

e

∫

Vele
BTQ0BdVele (31)  

where Q0 denotes the original elastic matrix and p is a penalty factor which can be assigned according to the analysis requirement. 
Therefore, the derivative of K with respect to element density ρe can be acquired by summation of each element. 

The sensitivity of natural frequency can be derived by directly differentiating the characteristic equation with respect to design 
variable. Given the characteristic equation in Eq.(30), the sensitivity expression is Eq.(31). 

(
K − λjM

)
Φj = 0 (32)  

(

K − λjM
)

∂Φj

∂ρe
=

∂λj

∂ρe
MΦj + λj

∂M
∂ρe

Φj −
∂K
∂ρe

Φj (33)  

where M denotes the global mass matrix and Φj denotes the jth eigenvector with respect to the jth eigenvalue λj. It is known that 
Φj

TMΦj = 1 after the orthogonal normalization of mass matrix so Eq.(32) can be obtained by pre-multiplying Φj
T on both sides of Eq. 

(31), 

Φj
T
(

K − λjM
)

∂Φj

∂ρe
=

∂λj

∂ρe
Φj

TMΦj + λjΦj
T∂M

∂ρe
Φj − Φj

T∂K
∂ρe

Φj (34) 

Consequently, the sensitivity of natural frequency can be expressed as follows after simplification as 

∂λj

∂ρe
= Φj

T
(

∂K
∂ρe

− λj
∂M
∂ρe

)

Φj (35) 

As to fiber orientation optimization, the mass M is a constant and the derivative of M with respect to element density is equal to 
zero. Then the Eq.(35) can be calculated according to Eq.(31). 

∂λj

∂ρe
= Φj

T∂K
∂ρe

Φj (36) 

Additionally in the topology optimization, the derivative of M with respect to element density is 
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∂M
∂ρe

=
∑Nele

i=1
Vi (37) 

Hence, Eq.(35) can be calculated with simultaneous equations of Eq.(31) and Eq.(37) and the sensitivity of compliance and natural 
frequency are acquired. 

Fig. 14. Conceptual structure of the U-frame.  

Fig. 15. Finite element model of the base.  

Fig. 16. Finite element model of the side-leg.  
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4.2. Numerical simulation 

In this section, the U-frame, as an example, is optimized with the aforementioned topology optimization algorithms and the finite 
element model is established in Hypermesh. To simplify the numerical analysis process, CFRP in this section is viewed as isotropic 
material and this simplification has little influence on the final analysis results. 

Fig. 17. Optimization result of the base.  

Fig. 18. Optimization result of the side-leg.  

Fig. 19. Design result of U-frame.  
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The U-frame comprises two parts, the base and the side-leg. The conceptual structure model is given in Fig. 14. 
The topology optimization models of the base and the side-leg are created and the element size is 5 mm. The optimization con

straints include the static displacement of one critical node, the base frequency, and volume fraction. The static displacement of one 
critical node represents the shaft stiffness, the characteristic frequency of the remote sensor in another word, which is one of the most 
important performances of the instrument. The optimization objective is the minimum of the compliance of the whole component, the 
maximum of the stiffness in another word. The finite element models of the two components are respectively shown in Fig. 15 and  
Fig. 16. 

As to the load case of the model in Fig. 15, fixed support is placed on 12 mounting holes and the nodes of two mounting surfaces are 
coupled with one critical node which represents the displacement of side-legs. Then design region and non-design region are intro
duced. Finally, the static and modal analysis are conducted. 

In Fig. 16, the side-leg is a symmetrical component so the analysis calculation is simplified by extracting the neutral surface. As to 
the load case, the fixed support is placed on 8 mounting holes and the nodes of bearing mounting place are coupled with one critical 
node that represents the displacement of the shaft and bearings. Other analysis procedure is the same as the model in Fig. 15. 

After several optimization iterations, the objective value is converged and the feasible design is acquired, and topology optimi
zation results of these two components are depicted in Fig. 17 and Fig. 18. 

Therefore, the structural design of the U-frame is determined based on the optimization results, in which the elements that 
contribute more to the stiffness of the structure are retained and the else are removed. The final design results are illustrated in Fig. 19. 

4.3. Frequency response analysis 

After the process of optimization design, the whole structure of the optical remote sensor is determinate. Frequency response 
analysis is a critical procedure to make sure that the stiffness and the strength of the structure can meet the performance requirement, 
validating the effectiveness of the optimization algorithm at the same time. This section of work includes two parts, modal analysis and 
sinusoidal excitation analysis. 

4.3.1. Modal analysis 
Modal analysis is employed to ensure that the stiffness of the optical remote sensor is enough such that the coupled vibration with 

the satellite will not happen for the instrument. The finite element model in modal analysis comprises all the crucial mechanical 
components, such as base, U-frame, and O-frame, as shown in Fig. 20. 

The characteristic frequency and the color nephogram are listed in Table 3. It can be seen from the results that the first charac
teristic frequency is 92.6 Hz—a local mode, demonstrating that the stiffness of the instrument can meet the performance requirement. 

4.3.2. Sinusoidal excitation 
Sinusoidal excitation is the other critical work to make sure that the strength of all the materials used in the remote sensor can meet 

the requirement. The deformation results are depicted in Table 4 and the deformation color nephograms are presented in Table 5. 
According to the result, the deformation on X-direction is 0.387 mm with 1.5 g acceleration, Y-direction 1.419 mm with 1.5 g ac
celeration, and Z-direction 0.088 mm with 2.5 g acceleration. Hence, it can be calculated that the mechanical amplification factors on 
each direction are respectively. 

Moreover, the maximum longitudinal stress, transverse stress and shear stress are 329.6 MPa, 9.2 MPa, and 3.1 MPa, respectively, 
which are all within the strength of the CFRP employed in the structure. 

5. Results and discussion 

Topology and structure of the optical remote sensor are both determined after the topology optimization and finite element 
simulation. Furthermore, to verify the correctness and effectiveness of the whole theoretical work, mechanical test of the optical 

Fig. 20. Finite element model of the optical remote sensor.  
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Table 3 
Modal analysis results.  

Mode Frequency Color nephogram 

Mode 1 92.6 Hz 

Mode 2 113.3 Hz 

Mode 3 141.2 Hz 

Mode 4 143.7 Hz 

(continued on next page) 
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remote sensor is carried out in the laboratory. The test environment is shown in Fig. 21. 
There are two kinds of acceleration transducers employed in the test—controlling transducer and measuring transducer. Con

trolling transducer is used for measuring the actual output of the vibration exciter to realize the closed-loop control and measuring 

Table 3 (continued ) 

Mode Frequency Color nephogram 

Table 4 
Deformation results.   

UX (mm) UY (mm) UZ (mm) USUM (mm) 

X  0.387  0.106  0.068  0.387 
Y  0.242  1.419  0.555  1.429 
Z  0.012  0.065  0.088  0.090  

Table 5 
Deformation color nephograms.  
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transducer is for measuring the response of some important components under the input signal. The test condition of sinusoidal 
excitation is listed in Table 6. 

There are several steps in the mechanical test. Firstly, the appearance of the optical remote sensor is checked and sweeping fre
quency test with 0.2 g acceleration is accomplished to acquire the characteristic frequency and mechanical amplification factor. Then 
the sinusoidal test is conducted. After the aforementioned procedure, the appearance check and sweeping frequency test are repeated 
once more to make sure that the optical remote sensor is in good condition after the mechanical test. Finally, electrical performance 
test is done to verify that all the functions work well. The test process is illustrated in Fig. 22. 

The characteristic frequency and mechanical amplification factor on each direction are acquired, which are listed in Table 7. 
According to the result, the characteristic frequency on X-direction is 66.95 Hz and the corresponding mechanical amplification factor 
is 5.29. The characteristic frequency on Y-direction is 98.84 Hz and the corresponding mechanical amplification factor is 4.058. The 
characteristic frequency on X-direction is 70.37 Hz and the corresponding mechanical amplification factor is 6.537. 

According to the test result, the first three characteristic frequencies are respectively 66.95 Hz, 70.37 Hz, and 98.84 Hz while the 
simulation result is 92.6 Hz, 113.3 Hz, and 141.2 Hz. The reasons for this difference include two factors, the mass distribution and the 
structure stiffness. In the simulation model, the structure mass is hypothesized to be a concentrated load while the actual mass is 
distributed along the optical axis. Additionally, the mass in the simulation model is less than that of the actual instrument because some 

Fig. 21. Test environment.  

Table 6 
Test condition of sinusoidal excitation.  

Frequency (Hz) 5–12 12–30 30–40 40–70 70–75 75–100 

Magnitude (0~P) 2.59 mm 1.5 g 1.5 g~2.0 g 2 g 2 g~1.5 g 1.5 g 
Direction X-axis 
Sweep frequency speed 4oct/min 
Frequency (Hz) 5–12 12–100 
Magnitude (0~P) 2.59 mm 1.5 g 
Direction Y-axis 
Sweep frequency speed 4oct/min 
Frequency (Hz) 5–12 12–35 35–40 40–50 50–55 55–75 75–80 80–100 
Magnitude (0~P) 2.59 mm 1.5 g 1.5 g ~2.5 g 2.5 g 2.5 g~1.5 g 1.5 g 1.5 g~2.5 g 2.5 g 
Direction Z-axis 
Sweep frequency speed 4oct/min  

Fig. 22. Test process of sinusoidal excitation.  

B. Huang et al.                                                                                                                                                                                                         



Optik 267 (2022) 169652

18

auxiliary components like cable racks and thermal control unit are not included in the simulation model. As to the stiffness, the 
multiple points constrain is used to simulate the connection between two mechanical components, which enhances the model stiffness 
and the characteristic frequency. In the actual test, the components are connected by bolts which are more flexible compared with 

Table 7 
Test results of sinusoidal excitation.  

Direction Characteristic 
frequency 

Mechanical amplification 
factor 

Response 

X  66.95  5.29 

Y  98.84  4.058 

Z  70.37  6.537 
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multiple points constrain. That is why the characteristic frequencies in the test are 30–40 Hz less than that in the simulation. Moreover, 
the mechanical amplification factors on each direction are no more than seven, the dynamic load caused by which will not damage the 
structure according to engineering experience, so the material strength of the whole structure can meet the requirement. 

6. Conclusion 

CFRP is one of the most widely employed lightweight materials with high modulus. In this paper, fiber orientation and topology 
optimization are accomplished and optimum design result is acquired. The optimization algorithm of fiber orientation is verified by 
theoretical analysis and simulations, illustrating that [90◦/+ 45◦/− 45◦/0◦] fiber orientation and symmetrical laminas are indis
pensable such that the stiffness and strength of CFRP can be maximized and coupling stiffness matrix can be avoided. Additionally, the 
topology optimization algorithm is validated to be convergent and can provide a conceptual model which offers a reference for the 
critical design. Finally, the first three characteristic frequencies of the optical remote sensor are respectively 66.95 Hz, 70.37 Hz, and 
98.84 Hz. The mechanical amplification factor of the first characteristic frequency is 5.29 in the mechanical test, which meet the 
performance requirement of the stiffness and strength for the optical remote sensor. 
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