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Abstract

This paper investigates the problem of anti-disturbance fault estimation and attitude
tracking fault tolerant control for a flexible spacecraft subject to actuator faults, exter-
nal disturbances, input saturation, and configuration misalignment. Different form the
traditional methods, both the nonlinear dynamics subsystem and attitude control sys-
tem are reconstructed into Takagi–Sugeno fuzzy models, where partial nonlinear term
is remained to assist the design of fuzzy controller. A fuzzy fault estimation observer
with proportional–integral adaptive laws is first designed. Without measuring any dynamic
information of flexible appendages, estimated values of unknown actuator faults and vibra-
tion disturbances of flexible appendages can be obtained simultaneously. This is the most
important advantage of the proposed fault estimation scheme over the previous methods.
Then, a fuzzy sliding mode fault tolerant control scheme, based on fewer fuzzy rules and
less computational burden, is developed under the framework of feedback linearisation and
feedforward compensation. The actuator faults and vibration disturbances are counter-
acted in real time. Regional pole placement and virtual controller with input saturation are
adopted to tune the control input and avoid the radical control torque scheduling. Finally,
numerical simulations are given to illustrate the validity of the proposed fault estimation
and fault tolerant control strategies.

1 INTRODUCTION

In recent decades, the attitude stabilisation of flexible space-
craft, which is usually composed of a rigid central body and
several flexible appendages, has received considerable attention
due to its advantages of saving cost and achieving complex
space missions. The existence of actuator faults could lead to
mission failure and catastrophic consequences for the severe
performance degradation or even instability of attitude control
system. Reviewing the existing study [1–3], fault estimation and
fault tolerant control techniques are effective methods to cope
with the unknown actuator faults and enhances the system reli-
ability and maintainability. Different from rigid spacecraft, the
intricate and strong coupling characteristics between the rigid
and flexible modes will increase the complexity and difficulty
in the achievements of accurate fault reconstruction and sta-
ble attitude control system [4–6]. However, to the best of the
authors’ knowledge, none of the existing traditional methods
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considers the estimation of actuator faults and vibration modes
simultaneously in the flexible spacecraft attitude system.

One of the key challenges of fault estimation design in the
flexible spacecraft with actuator faults comes from their strong
nonlinearity and high uncertainty. The fundamental of observer-
based fault estimation is to reconstruct the size and shape of
faults by residual information that arise from the mismatch
between real plant and observer model [3]. So far, various
types of fault estimation approaches for spacecraft have been
developed, such as adaptive observer [7], adaptive supertwist-
ing observer [4], intermediate observer [8], and iterative learning
observer [9, 10]. Considering actuator faults and external distur-
bances, an iterative learning observer is proposed to estimate
actuator faults of a rigid satellite [9]. In aerospace engineering,
apart from the external disturbances, there is always configura-
tion misalignment in spacecraft actuators. It should be pointed
out that, even a small degree of misalignment may have a great
effect on the fault estimation results by a large adaptive gain or
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20 LI ET AL.

learning rate [10, 11]. In order to estimate actuator faults for
a rigid spacecraft with model parameter uncertainties, an adap-
tive non-linear fault estimation observer proposed in ref. [7],
and a fault estimation observer with a stochastically interme-
diate variable is designed in ref. [8]. However, the spacecraft
attitude models considered above have been simplified. The atti-
tude angles of spacecraft are assumed to vary in a small range in
ref. [7], and the inertia matrix is assumed to be a diagonal matrix
in ref. [8]. From refs. [11–13], actuator faults and disturbances
are combined into a lumped disturbance, and the disturbance
observer is investigated to address the unknown lumped dis-
turbances. In ref. [14], an adaptive augmented observer is used
to simultaneously obtain estimated values of actuator and sen-
sor faults by introducing a new state variable. All the results
mentioned above are based on the rigid spacecraft. The prob-
lem of sensor fault estimation of flexible spacecraft has been
studied in literature [4, 15]. Ref. [16] deals with the actua-
tor fault estimation problem for flexible spacecraft based on
an iterative learning observer, while the flexible vibration dis-
turbance caused by flexible appendages is only treated as a
lumped disturbance together with the external disturbance.
For the actuator complete failure, an adaptive estimation tech-
nique is introduced to achieve the estimation of uncertainty of
flexibility [17]. However, the actuator fault estimation method
applied to flexible spacecraft under the general situation (such
as strong flexible vibrations, time varying faults, and large atti-
tude angle working scope) is less considered. Therefore, how
to further carry out the estimation of actuator fault and flexi-
ble vibration simultaneously for flexible spacecraft under large
angle manoeuver is an interesting issue and motivates our
study.

For the observer design of complex nonlinear system,
Takagi–Sugeno (T–S) fuzzy model has provided a new solution,
which consists of a set of locally linearised dynamics connected
by fuzzy membership functions. On account of its ability to
approximate the complicated nonlinear behaviours of dynam-
ics with any specified accuracy, it has verified to be a very
powerful and flexible tool for dealing with non-linear systems
[18–20]. In ref. [5], T–S fuzzy modelling method is applied to
express the nonlinear behaviours of flexible spacecraft, and a
fuzzy robust dissipative control with saturated time-delay input
is given. The design of T–S fuzzy model applied to flexible
spacecraft mentioned above can be similarly found in refs. [21,
22]. However, for the nonlinear system with complex nonlin-
earities, the reconstructed T–S fuzzy model may contain a large
number of fuzzy local models. It is often difficult for the T–S
fuzzy model to achieve stability analysis and control synthesis
[23]. In ref. [23, 24], a class of continuous/discrete non-linear
systems are represented by the T–S fuzzy models with con-
tinuous/discrete nonlinear local models, and the fuzzy models
have fewer fuzzy rules than conventional T–S fuzzy models
comprised of local linear models. Furthermore, the proposed
control design methods with fewer fuzzy rules leads to less
computational burden and more relaxed results. Inspired by
the above work, the observer-based fault estimation and fault-
tolerant control problem for the discrete-time nonlinear systems
with unknown perturbation has been studied in ref. [25], and the

robust fuzzy model predictive control for the discrete nonlinear
systems with parametric uncertainties has been investigated in
ref. [26]. Furthermore, a class of complex discrete-time non-
linear system with time-varying delay and actuator faults are
considered in ref. [27], and a T–S fuzzy modelling method with
nonlinear functions satisfying some sector-bounded conditions
is applied. In ref. [28], a fuzzy control scheme for nonlinear
impulsive switched systems described by nonlinear T–S fuzzy
models is developed, where only some of the nonlinearities are
used as premise variables.

Recently, a great deal of results on the stable attitude con-
trol for flexible spacecraft has been given. Sliding mode control
has been widely applied to the design of fault tolerant con-
trol due to its insensitive to external disturbances and model
uncertainties [9, 29]. Based on the backstepping technique and
adaptive sliding mode control, the attitude tracking fault toler-
ant control approach has been studied in refs. [7, 30, 31]. In
addition to external disturbances and configuration misalign-
ment, the effects of input saturation is also the key factor to
be considered in the real attitude control system, especially in
the presence of actuator faults. Based on the above considera-
tion, an integral sliding mode control is proposed to generate
control torque with desired performance [10]. A nonlinear inte-
gral sliding mode control with dual-layer gain adaption scheme
is studied to accommodate fault [32]. By introducing the fast
nonsingular terminal sliding mode surface, a fault tolerant con-
trol method is designed to avert the singularity problem [33]. In
addition, the unwinding problem and actuator faults are simul-
taneously considered in refs. [11, 34]. However, in most of the
previous studies concerning fault tolerant control, it is based on
the rigid spacecraft and no flexible vibrations are considered.
Considering the actuator faults and coupling effect of flexible
modes, ref. [35] develops an attitude controller with a fixed-
time nonsingular terminal sliding mode, which provides fast
fixed-time attitude manoeuver with high precision, singularity
avoidance, and chattering free. A fault tolerant control with time
variable sliding surface is investigated to deal with the compen-
sation problem caused by actuator faults [36]. Moreover, for
the flexible spacecraft with time varying inertia uncertainties
and actuator faults, the L2-gain is employed to obtain an adap-
tive controller with robust performance [37]. Ref. [22] addresses
a robust finite-time non-fragile sampled-data control problem
via an observer-based control approach. The T–S fuzzy model
approach and actuator faults with Bernoulli distribution are con-
sidered, while spacecraft attitude model considered is simplified
by setting body frame as principal-axis frame. The same assump-
tion constraint can also be found in ref. [17]. Ref. [38] provides
a model-free adaptive fault tolerant controller for flexible space-
craft with inertia uncertainties and actuator faults. However,
attitude angles of spacecraft are assumed to vary in a small
range and inertia matrix is assumed diagonal. The fault tolerant
attitude tracking control and vibration suppression for flexi-
ble spacecraft without attitude angular velocity measurement
are studied in ref. [4]. Based on T–S fuzzy model, an adaptive
integral sliding mode control strategy for the flexible space-
craft with configuration misalignment and unknown actuator
dead-zone is investigated [21]. Nevertheless, the considered T–S
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LI ET AL. 21

fuzzy model applied to the flexible spacecraft is complex owing
to six premise variables.

Motivated by the aforementioned discussion, based on the
T–S fuzzy modelling approach, this article is dedicated to
address the fault estimation and fault tolerant control problem
for flexible spacecraft in the presence of actuator faults, input
saturation, external disturbances, and configuration misalign-
ment. The proposed T–S fuzzy model for flexible spacecraft
can be applied to manoeuvering at any angle and a large range of
angular velocity. Then, a fuzzy adaptive observer is designed for
the flexible spacecraft attitude system, which combines the aug-
mentation technique with adaptive laws to address the estima-
tion problem of actuator fault and flexible vibration disturbance.
It should be pointed that, reviewing existing methods, the actu-
ator fault estimation method applied to the general flexible
spacecraft attitude system (considering model uncertainties, seg-
regating the effect of flexible vibration, and no manoeuver angle
constraints) is less considered. Moreover, based on feedback
compensation provided by fuzzy observer, a fuzzy adaptive slid-
ing mode fault tolerant control strategy is developed. Based on
Lyapunov theory and H∞ optimisation, all estimation errors in
the observer are proved to be ultimately uniformly bounded,
and the asymptotically stability and reachability for the closed-
loop control system is guaranteed. Compared with existing
works, the main contributions of this study are summarised as
follows:

1) Compared with the T–S fuzzy model with six premise
variables for flexible spacecraft in refs. [5, 21, 22], the
proposed method can approximate the flexible spacecraft
with only three premise variables. In this study, fewer
premise variables that meet the design rationality imply
fewer fuzzy rules and less computational burden, which
are conducive to the design of fuzzy model. Thus, owing
to comprehensive and concise fuzzy rules, the T–S fuzzy
model possess higher approximation precision. It is worth
mentioning that the T–S fuzzy models of dynamic subsys-
tem (for the observer design) and attitude control system
(for the controller design) share the same set of fuzzy
rules.

2) The fuzzy adaptive observer proposed can simultaneously
obtain the estimation of the system state, actuator fault,
and flexible vibration, while real time measurements of
the dynamic behaviour of flexible appendages are not
required.

3) Based on the proposed fuzzy observer and sliding mode
control theory, the proposed fuzzy adaptive fault toler-
ant controller provides higher control precision and better
energy-saving performance with insensitive to external dis-
turbances and flexible vibrations, fault tolerant to actuator
faults.

This paper is organised as follows. The dynamic model
for flexible spacecraft attitude system with actuator faults is
established in Section 2. Section 3 shows a T–S fuzzy fault
estimation strategy to achieve online estimation of actuator
faults and flexible vibrations. A fuzzy adaptive fault tolerant

FIGURE 1 The flexible spacecraft in orbit

control strategy is design in Section 4. Section 5 provides the
simulation results, including comparisons with some methods
from the literature. In Section 6, conclusions of this paper is
given.

2 PROBLEM FORMULATION

The following notations are used. For a matrix A, AT denotes
its transpose form; ⟨A⟩S denotes the form A + AT ; A+

is the Moore–Penrose inverse matrix; For a square matrix
A, A− is the inverse matrix. * is used for blocks induced
by symmetry; diag(·) denotes the block diagonal matrix; I

denotes the identity matrix with appropriate dimension; ‖ · ‖p

represents the p-norm in the Euclidean space; 𝜆min(·) repre-
sents the minimum eigenvalue of a matrix. For conciseness,
the form x is equivalent to the form x(t ). w× is the cross
product operator for wT = [w1 w2 w3] ∈ ℝ1×3 described
by

w× =

⎡⎢⎢⎢⎣
0 −w3 w2

w3 0 −w1

−w2 w1 0

⎤⎥⎥⎥⎦ (1)

2.1 Flexible spacecraft attitude error
dynamics

Figure 1 shows the flexible spacecraft in orbit. The origin of
the body frame OB is defined on the spacecraft centroid. The
origin of the inertial frame OI is located in the centre of the
earth.

Considering the actuator configuration misalignment, the
flexible spacecraft attitude system can be described as follows
[5, 36]:{

J 𝜔̇ = −𝜔×
(
J𝜔 + 𝛿T 𝜂̇

)
− 𝛿T 𝜂 + (Γ + ΔΓ)u + ud ,

𝜂 = −C𝜂𝜂̇ − K𝜂𝜂 − 𝛿𝜔̇,
(2)
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22 LI ET AL.

⎧⎪⎨⎪⎩
q̇v =

1
2

(
q0I + q×v

)
𝜔,

q̇0 = −
1
2

qT
v 𝜔,

(3)

where Equation (2) represents the dynamics subsystem that
describes the motion of the flexible spacecraft rigid body, the
vibration of the flexible appendages, and the coupling between
them. The kinematics subsystem (3) is described by the unit
quaternion q = [q0 qT

v ] ∈ ℝ4×1, where q satisfies the con-
straint ‖q‖2 = 1 and represents the attitude orientation of the
spacecraft in the body frame OB with respect to the inertial
frame OI. J ∈ ℝ3×3 is the inertia matrix of spacecraft. 𝜔T =
[𝜔x 𝜔y 𝜔z ] ∈ ℝ1×3 is the angular velocity of spacecraft,
expressed in OB relative to OI. Γ ∈ ℝ

3×nu denotes the distribu-
tion matrix of actuator and ΔΓ ∈ ℝ3×nu denotes the unknown
perturbation matrix caused by actuator configuration misalign-
ment, where nu is the number of actuators. u ∈ ℝnu×1 denotes
the expected control input. ud ∈ ℝ

3×1 denotes the external dis-
turbance, such as the air drag, solar radiation pressure, and
gravity gradient moment. 𝜂 denotes the generalised flexible dis-
placements that represent the vibration modes. 𝛿 denotes the
coupling matrix between rigid body and flexible appendages.
C𝜂 = diag{2𝜉i𝜔ni} and K𝜂 = diag{𝜔2

ni}(i = 1, 2, … , n𝜂 ) are the
damping and stiffness matrices, respectively. Where 𝜉i and 𝜔ni

represent the ith damping ratio and modal natural frequency,
respectively; n𝜂 is the number of modal frequencies to be taken
into account.

In order to address control issues of attitude tracking and
holding for a flexible spacecraft, the attitude tracking error
qe = (qe0, q

T
ev ) ∈ ℝ4×1 is defined to describe the relative orienta-

tion between OB and the desired frame OD . Giving the desired
spacecraft attitude qd = (qd 0, q

T
dv

) ∈ ℝ4×1, qe can be computed
by [

qe0

qev

]
=

[
qT

dv
qv + qd 0q0

qd 0qv − q×
dv

qv − qdvq0

]
, (4)

where ‖qe‖2 = 1 and ‖qd‖2 = 1.
The angular velocity tracking error 𝜔e ∈ ℝ

3×1 is defined as:

⎧⎪⎨⎪⎩
𝜔e = 𝜔 − Θq𝜔d ,

Θq =
(
q2

e0 − qT
ev qev

)
I3 + 2qevq

T
ev − 2qe0q×ev ,

(5)

where 𝜔d denotes desired attitude angular velocity, Θq denotes
the rotation matrix with Θ̇q = −𝜔

×
e Θq .

On the basis of above tracking errors, some controllers can
be designed to achieve the attitude pointing stability and track-
ing control, such as classical proportional–integral-derivative
control, sliding mode control [4, 6, 21], and adaptive control
[37].

Apart from the above, two important problems on flexible
spacecraft deserving more attention are actuator faults f (t ) ∈

ℝnu×1 and input saturation that the control input is constrained
in a compact set, i.e. 0 ≤ ‖u‖1 < umax. Then, the dynamics
subsystem (2) can be rewritten as:

⎧⎪⎪⎨⎪⎪⎩
𝜔̇ = −

(
J − 𝛿T 𝛿

)−1
𝜔×J𝜔 +

(
J − 𝛿T 𝛿

)−1
Γ
(
u + f

)
+
(
J − 𝛿T 𝛿

)−1
d (t ),

d = ΔΓ
(
u + f

)
+ ud + 𝛿

T
(
C𝜂𝜂̇ + K𝜂𝜂

)
− 𝜔×𝛿T 𝜂̇,

(6)

[
𝜂̇

𝜂 + 𝛿𝜔̇

]
=

[
0 I

−K𝜂 −C𝜂

][
𝜂

𝜂̇ + 𝛿𝜔

]
+

[
−𝛿

C𝜂𝛿

]
𝜔. (7)

The lumped disturbance d (t ) comprises two components:
1) d1(t ) = ΔΓ(u + f ) + ud caused by external disturbances
and actuator configuration misalignment; 2) Vibration dis-
turbance Td (t ) = 𝛿T (C𝜂𝜂̇ + K𝜂𝜂) − 𝜔×𝛿T 𝜂̇ caused by flexible
appendages.

Remark 1. The actuator fault f (t ) and lumped disturbance d (t )

share the same control input matrix (J − 𝛿T 𝛿)
−1

in Equation
(6). Obviously, the large disturbance will degenerate the accu-
racy of fault estimation. Thus, how to estimate the actuator
fault with high performance under strong disturbance is a dif-
ficulty and challenge, which is also one of the main works of
this paper. Note that flexible appendages of spacecraft are made
of advanced materials and the damping and stiffness matri-
ces are known. The external disturbance torque undergone by
the spacecraft is a relatively small quantity for a long time [21,
38]. Benefiting from modern mature installation technology and
high-precision measurement tools, the configuration misalign-
ment is a small quantity. Based on Equations (6) and (7), there
is an effective solution to overcome this problem by estimating
vibration disturbances and actuator faults at the same time.

2.2 T–S fuzzy model transformation

The dynamics subsystem (6) and (7) can be reconstructed into a
T–S fuzzy system by the following IF-THEN rules.

Model rule i: IF z1(t ) is M i
1 and … and zp(t ) is M i

p, THEN

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ(t ) = Aix(t ) + BiΓ
(
u(t ) + f (t )

)
+ Bid1 +D2i d2,

y(t ) = Cix(t ),

d2(t ) = Ad 1i𝜛(t ) + Bd 1i u2(t ),

𝜛̇(t ) = Ad 2i𝜛(t ) + Bd 2i u2(t ), i = 1, 2, … , r ,

(8)

where

Ai = −
(
J − 𝛿T 𝛿

)−1
𝜔×J ,Bi =

(
J − 𝛿T 𝛿

)−1
,Ci = I ,

D2i =
(
J − 𝛿T 𝛿

)−1[
𝛿T K𝜂 𝛿T C𝜂 − 𝜔

×𝛿T
]
,
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LI ET AL. 23

Ad 1i = I , u2(t ) = 𝜔(t ), d2 =

[
𝜂(t )

𝜂̇(t )

]
,𝜛(t ) =

[
𝜂

𝜂̇ + 𝛿𝜔

]
,

Ad 2i =

[
0 I

−K𝜂 −C𝜂

]
,Bd 1i =

[
0

−𝛿

]
,Bd 2i =

[
−𝛿

C𝜂𝛿

]
. (9)

z j (t )( j = 1, 2, … , p) are measurable premise variables and p

is its quantity; M i
j is the fuzzy set and r is the number of model

rules; x(t ) is the system state with x(t ) = 𝜔(t ); y(t ) is the mea-
surement output. In this paper, the state vector x(t ) is set as the
premise variable z (t ). Then, there are common matrices Bi = B,
Ci = C , Ad 1i = Ad 1, Ad 2i = Ad 2, Bd 1i = Bd 1, and Bd 2i = Bd 2.

The defuzzification process of the model (8) can be
represented as:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ(t ) =
r∑

i=1

hi (z )
{

Aix(t ) + BΓ
(
u(t ) + f (t )

)
× Bd1(t ) +D2i d2(t )

}
,

y(t ) =Cx(t ),

d2(t ) = Ad 1𝜛(t ) + Bd 1u2(t ),

𝜛̇(t ) = Ad 2𝜛(t ) + Bd 2u2(t ),

(10)

where hi (z (t )) =
∏p

j=1 Mi
j
(z j (t ))∑r

i=1
∏p

j=1 Mi
j
(z j (t ))

with 0 ≤ M i
j (z j (t )) ≤ 1 and∑r

i=1 hi (z (t )) = 1.

Remark 2. In practice, the actuator faults existing in the
dynamic subsystem can be transmitted to the kinematic subsys-
tem through the closed-loop spacecraft attitude control system.
However, according to observer design theory, we here only
need the dynamic subsystem to realise the estimation of actua-
tor fault. Thus, only attitude angular velocity 𝜔(t ) is the premise
variable of T–S fuzzy model proposed, which greatly reduces
the number of model rules and the complexity of the T–S
fuzzy system.

Based on the above model, some rational assumptions are
given to assist the main results.

Assumption 1. The external disturbance ud (t ) and actuator
fault f (t ) are bounded with properties that ‖ud (t )‖ ≤ 𝜅d and‖ f (t )‖ ≤ 𝜅 f , where both the upper bound 𝜅d ≥ 0 and 𝜅 f ≥ 0
exist but are unknown.

Assumption 2. The flexible vibration mode 𝜂 and its deriva-
tives 𝜂̇ and 𝜂, are bounded with properties that ‖𝜂‖ ≤ 𝜅𝜂0,‖𝜂̇‖ ≤ 𝜅𝜂1, ‖𝜂‖ ≤ 𝜅𝜂2, where 𝜅𝜂i , i = 0, 1, 2 are unknown.

Assumption 3. Both the attitude q(t ) and the angular velocity
𝜔(t ) own bounded first-order derivatives.

Assumption 1 is a general constraint and has been widely
considered in literature [7, 16, 31, 32, 35], which is reasonable in

engineering application owing to physical limitations. Assump-
tion 2 is feasible in practical situation due to the damping in
flexible structures [5, 16, 35]. Assumption 3 is natural and realis-
tic because signals q(t ), q̇(t ), 𝜔(t ), and 𝜔̇(t ) are energy-bounded
in practical systems [16, 31, 32].

Before the main results, some necessary lemmas are intro-
duced as follows.

Lemma 1 [15]. For system G ∶ (Ai ,Bi ,Ci ,Di ), the H∞ perfor-

mance with an attenuation level 𝛾 > 0 will be guaranteed if there exist a

symmetric positive definite matrix P such that:

⎡⎢⎢⎢⎣
⟨PAi⟩S PBi C T

i

∗ −𝛾2I DT
i

∗ ∗ −I

⎤⎥⎥⎥⎦ < 0. (11)

Lemma 2 [39]. Given symmetric positive definite matrix P, then

[
𝜉

𝜓

]T [⟨PA⟩S PB

∗ 0

][
𝜉

𝜓

]
< 0 (12)

holds for any 𝜉 ≠ 0 and 𝜓 satisfying 𝜓T 𝜓 ≤ 𝜉T C T C𝜉 if and only if

there exists a scalar 𝜎 ≥ 0, such that[⟨PA⟩S + 𝜎C T C PB

∗ −𝜎I

]
< 0. (13)

Lemma 3 [40]. The eigenvalues of a given matrix A belong to the

circular region O(𝜙, 𝜀) with centre 𝜙 + j0 and radius 𝜀 if and only if

there exists a symmetric positive definite matrix P such that the following

condition holds [
−P P (A − 𝜙I )

∗ −𝜀2P

]
< 0. (14)

3 FAULT ESTIMATION STRATEGY
DESIGN

This section mainly introduces the design of the proposed fuzzy
adaptive fault estimation observer (FAFEO), including the suf-
ficient existence condition given in linear matrix inequality
(LMI) and feasibility proof.

3.1 Fuzzy adaptive observer

Firstly, the following error vectors are defined as:

eZ (t ) = Z (t ) − Ẑ (t ), Z = x, y, f , d2,𝜛, (15)

where Ẑ (t ) is the online estimation of vector Z (t ). ex (t ),
ey (t ), e f (t ), and ed (t ) denote the state estimation error, residual
error, fault estimation error, and disturbance estimation error,
respectively. e𝜛 (t ) denotes the estimation error of𝜛(t ).
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24 LI ET AL.

For the T–S fuzzy system (10), the FAFEO is given as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

̇̂x(t ) =
r∑

i=1

hi (z )
{

Aix̂(t ) + BΓ
(
u(t ) + f̂ (t )

)
+D2i d̂2(t ) + Ki

(
y(t ) − ŷ(t )

)}
,

ŷ(t ) =C x̂(t ),

(16)

where the fuzzy adaptive laws are designed as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

̇̂fi (t ) = Proj
[
Ψi (y, ŷ)

]
, i = 1, 2, … , nu

=

⎧⎪⎨⎪⎩
0, if f̂i (t ) ≥ fmax, Ψi (y, ŷ) > 0,

0, if f̂i (t ) ≤ fmin, Ψi (y, ŷ) < 0,

Ψi (y, ŷ), otherwise,

Ψ(y, ŷ) =
r∑

i=1

hi (z )
{

F1i (y − ŷ) + 𝜃1F2(ẏ − ̇̂y)
}
,

d̂2(t ) = Ad 1𝜛̂(t ) + Bd 1u2(t ), ‖‖d̂2(t )‖‖1 ≤ d̂max,

̇̂𝜛(t ) =
r∑

i=1

hi (z )
{

Ad 2𝜛̂(t ) + Bd 2u2(t )

+ G1i (y − ŷ) + 𝜃2G2(ẏ − ̇̂y)
}
,

(17)

where Ki , F1i , and G1i are the gain matrices with appropri-
ate dimensions to be designed. The gain matrix F2, G2 and
adjustable scalars 𝜃1, 𝜃2 are chosen by the designer. d̂max denotes
the allowable maximum value of d̂2(t ). fmax and fmin denote the
maximum and minimum allowable values of f̂i (t ), respectively.

Subtracting system (16) from Equation (10), the dynamic
error equation is obtained by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ėx (t ) =
r∑

i=1

hi (z )
{

(Ai − KiC ) ex (t ) + B�e f (t )

+D2i ed (t ) + Bd1(t )
}
,

ėy (t ) =Cex (t ),

ė f (t ) =
r∑

i=1

hi (z )
{

ḟ (t ) − F1iCex (t ) − 𝜃1F2C ėx (t )
}
,

ed (t ) =Ad 1e𝜛 (t ),

ė𝜛 (t ) =
r∑

i=1

hi (z )
{

Ad 2e𝜛 (t ) − G1iCex (t )

−𝜃2G2C ėx (t )
}
,

(18)

With the augmented variable ēT (t ) = [eT
x eT

f
eT
𝜛], the

fuzzy system (18) can be rewritten as:

̇̄e(t ) =
r∑

i=1

hi (z )
{

M̄−1
(
Āi − K̄iC̄

)
ē(t ) + M̄−1B̄d d̄o(t )

}
, (19)

where

M̄ =

⎡⎢⎢⎢⎣
I 0 0

𝜃1F2C I 0

𝜃2G2C 0 I

⎤⎥⎥⎥⎦, Āi =

⎡⎢⎢⎢⎣
Ai BΓ D2i

0 0 0

0 0 Ad 2

⎤⎥⎥⎥⎦,

K̄i =

⎡⎢⎢⎢⎣
Ki

F1i

G1i

⎤⎥⎥⎥⎦, C̄ =
[
C 0 0

]
,

B̄d =

⎡⎢⎢⎢⎣
B 0

0 I

0 0

⎤⎥⎥⎥⎦, d̄o(t ) =

[
d1(t )

ḟ (t )

]
. (20)

Note that M̄ is nonsingular irrespective of the terms 𝜃1F2C

and 𝜃2G2C .
Performing Laplace transformation on the augmented

dynamic error system (19), the estimation error can be derived
from

ē(s̄) = Gēd̄ (s̄)d̄o(s̄),

Gēd̄ (s̄) =
r∑

i=1

hi (z )
{[

s̄I − M̄−1(Ā − K̄iC̄ )
]−1

M̄−1B̄d

}
,

(21)

where the transfer function Gēd̄ (s̄) is a multivariable function
of {K̄i , M̄ }. Clearly, ē(t ) is not only related to ḟ (t ) and ud (t ),
but also related to u(t ) and f (t ) caused by actuator configura-
tion misalignment. In order to attenuate the influence of above
disturbances on estimation, the H∞ optimisation is introduced
into the design of FAFEO.

Remark 3. From Equation (17), the online fault estimator can
be derived as:

f̂ (t ) =
r∑

i=1

hi (z )

{
F1i ∫

t

t0

C ex (𝜏)d𝜏 + 𝜃1F2C ex (t )

− 𝜃1F2C ex (t0)

}
, (22)

where t0 denotes a certain moment before the fault occur-
rence. It is obvious that the presented fault estimator f̂ (t ) is a
proportional–integral (PI) function of ex (t ), where only the cur-
rent measurement output are required. Similarly, we can obtain
the same conclusion on the online disturbance estimator.
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LI ET AL. 25

3.2 Observer-based fault estimation design

Theorem 1. For systems (10) and (16), let an H∞ performance index

𝛾1 > 0 , and a circular pole constraint region O(𝜙1, 𝜀1) for M̄−1(Āi −
K̄iC̄ ) be given. For prescribed scalars 𝜃1 , 𝜃2 , and matrices F2 , G2 , if

there exist matrices Y1i , Q > 0 satisfying[⟨
M̄ T QĀi − M̄ T Y1iC̄

⟩
S
+ I M̄ T QB̄d

∗ −𝛾2
1I

]
< 0, (23)[

−Q −𝜙1QM̄ + QĀi −Y1iC̄

∗ −𝜀21M̄ T QM̄

]
< 0,

i = 1, 2, … , r ,

(24)

then the augmented system (19) is asymptotically stable and satisfies‖Gēd̄ (s̄)‖∞ < 𝛾1 . The gain matrices of the fuzzy adaptive observer are

computed by K̄i = Q−1Y1i .

Proof. Define the Lyapunov candidate as:

V0(t ) = ēT (t )M̄ T QM̄ ē(t ). (25)

For an symmetric positive definite matrix Q, the matrix
M̄ T QM̄ is also symmetric positive definite. Clearly, V0(t ) is
positive definite.

Firstly, the stability of the system (19) with d̄o(t ) = 0 is
proved. The time derivative of Equation (25) is

V̇0(t ) = ̇̄e
T

(t )M̄ T QM̄ ē(t ) + ēT (t )M̄ T QM̄ ̇̄e(t )

=

r∑
i=1

hi (z )ēT (t )
(
Āi − K̄iC̄

)T
M̄−T M̄ T QM̄ ē(t )

+

r∑
i=1

hi (z )ēT (t )M̄ T QM̄M̄−1
(
Āi − K̄iC̄

)
ē(t )

=

r∑
i=1

hi (z )
{

ēT (t )
⟨

M̄ T Q
(
Āi − K̄iC̄

)⟩
S
ē(t )
}

(26)

It can be readily found that V̇0(t ) < 0 is equivalent to⟨
M̄ T Q

(
Āi − K̄iC̄

)⟩
S
< 0. (27)

Based on Lyapunov stability theorem, the system (19) is
asymptotically stable as the inequality (27) is satisfied.

Then, when d̄o(t ) ≠ 0, it is proved that Equation (19) has H∞
performance index [40, 41]‖‖Gēd̄ (s̄)‖‖∞ < 𝛾1. (28)

According to Lemma 1, the system (19) possess H∞ perfor-
mance with an attenuation level 𝛾1 if the following condition
holds: [⟨

M̄ T Q
(
Āi − K̄iC̄

)⟩
S
+ I M̄ T QB̄d

∗ −𝛾2
1I

]
< 0. (29)

Obviously, Equation (29) holds, implying that inequality (27)
also holds. Finally, we have the condition (23) results from
Equation (29) by defining Ȳi = PK̄i and Schur complement.

Now, the convergence of ē(t ) is proved. According to Lemma
2 and assuming that 𝜎 = 1, for Equation (29), when

ēT (t )ē(t ) ≥ 𝛾2
1 d̄ T

o (t )d̄o(t ), (30)

it can guarantee that

V̇0(t ) =
r∑

i=1

hi (z )

[
ē

d̄o

]T

[⟨
M̄ T Q

(
Āi − K̄iC̄

)⟩
S

M̄ T QB̄d

∗ 0

][
ē

d̄o

]
< 0,

(31)

and there is T > 0, for any t > t0 + T such that

‖‖ē(t )‖‖2 ≤ 𝛾1
‖‖d̄o(t )‖‖2, (32)

which indicates the dynamic error system (19) is asymptotically
stable and estimate error ē(t ) is ultimately uniformly bounded.

For the condition (24), by Lemma 2, there is a symmetric
positive definite matrix M̄ T QM̄ such that

𝜁 =

[
−M̄ T QM̄ −𝜙1M̄ T QM̄ + M̄ T Q(Ā − L̄C̄ )

∗ −𝜀21M̄ T QM̄

]
< 0,

(33)
from which it follows that the eigenvalues of M̄−1(Āi − K̄iC̄ )
belong to the given circular region O(𝜙1, 𝜀1). Then we can
obtain Equation (24) via Y1i = QK̄i and M̃𝜁M̃ T with M̃ =
diag(M̄−1, I ). This completes the proof. □

Remark 4. Reviewing the existing approaches [40, 41], H∞
optimisation and regional pole placement are effective methods
in coping with disturbance and tuning the transient response,
respectively. Here, H∞ design and regional pole placement
are combined to assist in the design of adaptive observer
and improve the fault estimation performance, which are also
applied to the controller design.

4 FAULT TOLERANT CONTROL
STRATEGY DESIGN

In this section, based on the fuzzy adaptive observer, a fuzzy
adaptive sliding mode control strategy is developed. The con-
trol algorithm is divided into two steps: 1) The T–S fuzzy model
of attitude control system is reconstructed; 2) A fuzzy adaptive
sliding mode controller is developed to deal with the prob-
lem of attitude tracking and holding under actuator faults and
input saturation.
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26 LI ET AL.

4.1 Attitude control system

From Equations (2)–(5), the attitude error dynamics system of
flexible spacecraft can be derived as:

⎧⎪⎨⎪⎩
q̇ev =

1
2

(
qe0I + q×ev

)
𝜔e,

q̇e0 = −
1
2

qT
ev𝜔e,

(34)

𝜔̇e = −
(
J − 𝛿T 𝛿

)−1
𝜔×J𝜔e +

(
J − 𝛿T 𝛿

)−1(
Γ
(
u + f

)
+ d
)

−
[(

J − 𝛿T 𝛿
)−1
𝜔×J − 𝜔×e

]
Θq𝜔d − Θq𝜔̇d , (35)

Define a new control error variable s = 𝜔e + 𝛽qev , 𝛽 > 0.
Then, the new attitude control system can be obtain as follows:

ṡ = −
(
J − 𝛿T 𝛿

)−1
𝜔×Js +

(
J − 𝛿T 𝛿

)−1
Γ
(
u + f

)
+
(
J − 𝛿T 𝛿

)−1
d + g(s),

(36)

where g(s) =
1

2
𝛽(qe0I + q×ev )𝜔e + (J − 𝛿T 𝛿)

−1
𝜔×J𝛽qev −

[(J − 𝛿T 𝛿)
−1
𝜔×J − 𝜔×e ]Θq𝜔d − Θq𝜔̇d .

Based on T–S fuzzy modelling approach, the system (36) can
be reconstructed as

ṡ(t ) =
r∑

i=1

hi (z )
{

Ais(t ) + g(s) + BΓ
(
u(t ) + f (t )

)
+ Bd1(t ) +D2i d2(t )

}
. (37)

The same fuzzy rules as in the Section 2.2 are used, and the
matrices Ai , B, D2i is consistent with that in Equation (10). The
complex nonlinear term g(s) is introduced into the fuzzy model
(37). It retains some nonlinear characteristics of the nonlinear
model (36), which increases the accuracy of T–S model pro-
posed. On the other hand, it can reduce the number of fuzzy
rules, which results in less amount of calculation. It should be
noted that, the term g(s) can be obtain in real time from known
information, which contributes to the achievement of feedback
linearisation.

Remark 5. The nonlinear term g(s) is bounded.

‖‖g(s)‖‖ = ‖‖‖‖1
2
𝛽
(
qe0I + q×ev

)
𝜔e +
(
J − 𝛿T 𝛿

)−1
𝜔×J𝛽qev

−
[(

J − 𝛿T 𝛿
)−1
𝜔×J − 𝜔×e

]
Θq𝜔d − Θq𝜔̇d

‖‖‖‖
≤ ‖‖‖‖1

2
𝛽
(
qe0I + q×ev

)
𝜔e

‖‖‖‖ + ‖‖‖‖(J − 𝛿T 𝛿
)−1
𝜔×J𝛽qev

‖‖‖‖
+
‖‖‖‖[(J − 𝛿T 𝛿

)−1
𝜔×J − 𝜔×e

]
Θq𝜔d

‖‖‖‖ + ‖‖‖Θq𝜔̇d
‖‖‖

≤ 1
2
𝛽‖𝜔e‖ + c1𝛽‖‖qev

‖‖ + c2‖𝜔d‖ + ‖𝜔̇d‖, (38)

where ‖qe0I + q×ev‖ = 1, c1 ≥ 0 and c2 ≥ 0 are bounded con-
stants. All variables including𝜔e , qev ,𝜔d , 𝜔̇d , and 𝛽 are bounded,
the term g(s) is bounded consequently.

Remark 6. The comparison of T–S fuzzy model for flexible
spacecraft attitude system. In refs. [5, 21, 22], the attitude and
angular velocity are selected as premise variables, and conse-
quently, the design of corresponding fuzzy rules is complex.
It is worth mentioning that, in this paper, only three premise
variables are needed to approximate the nonlinear model. More-
over, the T–S fuzzy model proposed has higher fitting accuracy
and larger continuous definition domain owing to multiple rules
are fired at the same time.

4.2 Fuzzy adaptive sliding mode controller
design

A linear sliding surface, also recognised as error variable above
mentioned, is defined as follows:

s = 𝜔e + 𝛽qev . (39)

For the sake of ensuring the reachability of the assigned slid-
ing surface, a T–S fuzzy adaptive sliding mode controller is
introduced as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u(t ) = ueq (t ) + uvs (t ),

ueq (t ) =
r∑

i=1

hi (z )
{

v − f̂ − Γ+B−D2i d̂2 − Γ
+B−g(s)

}
,

v(t ) =
r∑

j=1

h j (z )K i
c s,

uvs (t ) = −Γ+𝜎1s − Γ+𝜎2
s‖s‖2
,

(40)

where 𝜎2 >
‖B‖
𝜆min(B)

r∑
i=1

hi (z )‖Γe f (t ) + d1(t ) + B−D2i ed (t )‖,
𝜎1 > 0. According to Assumptions 1 and 2, and adaptive laws
(17), the gain 𝜎2 > 0 has a lower bound which can be calculated
from the bounded signals d1(t ), e f (t ), and ed (t ). ueq (t ) denotes
the equivalent control component and is chosen to ensure
that ṡ = 0 for all time. uvs (t ) denotes the variable structure
component, which is to be chosen to ensure that the sliding
surface s = 0 is attractive and can be reached in finite time. The
virtual controller v(t ) is designed by state feedback control and
K i

c is the controller gain to be designed.

Theorem 2. For the flexible spacecraft attitude control T–S fuzzy system

(37) and T–S fuzzy adaptive sliding mode controller (40), let an H∞
performance index 𝛾2 > 0, the initial state s(0) upper bound ‖s(0)‖2 <

𝜇 and a circular pole constraint region O(𝜙2, 𝜀2) for Ai + BΓK i
c be

given. For prescribed scalar 𝜍 > 0, if there exist matrices Y2i , X > 0
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LI ET AL. 27

satisfying

⎡⎢⎢⎢⎣
⟨AiX + BΓY2i⟩S B̄ci X

∗ −𝛾2
2I 0

∗ ∗ −I

⎤⎥⎥⎥⎦ < 0, (41)

[
−X AiX + BΓY2i − 𝜙2X

∗ −𝜀22X

]
< 0, (42)

−X + 𝜇2I < 0, (43)

[
−X −Y T

2i

∗ −𝜍2I

]
< 0, i = 1, 2, … , r , (44)

where B̄ci = [BΓ D2i B]. Then the fuzzy system (37) is global

asymptotically stable, which implies limt→∞s = 0, limt→∞𝜔e = 0,

limt→∞qev = 0. The virtual controller v(t ) with the H∞ performance

index 𝛾2 satisfies ‖v(t )‖2 < 𝜍. The gain matrices of the virtual controller

are computed by K i
c = X −1Y2i .

Proof. Firstly, the stability of sliding mode is proved. According
to the sliding mode theory, once the state trajectory s(t ) reaching
and sliding conditions are satisfied, the system is finally driven
to stay in the sliding mode:

s = 𝜔e + 𝛽qev = 0. (45)

Select the Lyapunov function as:

V1 = qT
ev qev +

(
1 − qe0

)2
= 2(1 − qe0). (46)

Clearly, the time derivative of the Lyapunov function V1 is

V̇1 = −2q̇e0 = qT
ev𝜔e = −𝛽qT

ev qev ≤ 0. (47)

For V̇ = 0 only if qev = 0, the equilibrium state qev = 0 is
global asymptotic stability. According to Equation (45), we
have limt→∞qev = 0, limt→∞𝜔e = 0. Consequently, based on
the sliding surface (39), the stability of the system in the sliding
surface is guaranteed.

Then, the reaching of the sliding vector s(t ) is proved. The
time derivative of the sliding surface (39) is

ṡ =

r∑
i=1

hi (z )
{

Ais + g(s) + BΓ
(
u(t ) + f (t )

)
+ Bd1 +D2i d2}

=

r∑
i=1

hi (z )

{
Ais + g(s) + BΓ

(
r∑

j=1

h j (z )

{
v − f̂

− Γ+B−D2 j d̂2 − Γ
+B−g(s) − Γ+𝜎1s − Γ+𝜎2

s‖s‖2

}

+ f
)
+ Bd1 +D2i d2

}

=

r∑
i=1

hi (z )

{
Ais + B

(
Γv − 𝜎1s − 𝜎2

s‖s‖2
+ Γe f (t )

)

+ Bd1(t ) +D2i ed (t )

}
. (48)

By substituting Equation (48) into the sliding condition, we have

sT ṡ =

r∑
i=1

hi (z )sT

{
Ais + B

(
Γv − 𝜎1s − 𝜎2

s‖s‖2
+ Γe f (t )

)
+ Bd1 +D2i ed (t )

}
(49)

=

r∑
i=1

hi (z )

{
sT
(
Ai + BΓK i

c

)
s − sT B𝜎1s − sT B𝜎2

s‖s‖2

+ sT B
(
Γe f (t ) + d1 + B−D2i ed (t )

)}

≤
r∑

i=1

hi (z )
{
−sT B𝜎1s − ‖‖sT ‖‖2𝜆min (B)𝜎2

+ ‖‖sT ‖‖2 ‖B‖ ‖‖‖Γe f (t ) + d1(t ) + B−D2i ed (t )‖‖‖}
≤ −

r∑
i=1

hi (z )sT B𝜎1s. (49)

where K i
c in controller v(t ) is designed such that the matrix

Ai + BΓK i
c is Hurwitz. Thus, sT (Ai + BΓK i

c )s(t ) ≤ 𝜆max(Ai +
BΓK i

c )‖s(t )‖2
2 ≤ 0 can be guaranteed.

Then, the design of K i
c is given. From Equation (48), we

have

ṡ =

r∑
i=1

hi (z )
{(

Ai + BΓK i
c

)
s + B̄ci d̄c (t )

}
, (50)

where d̄c (t ) = [
e f (t )
ed (t )

−𝜎1s − 𝜎2s∕‖s‖2 + d1(t )
].

Select a Lyapunov function as:

V2(t ) = sT (t )Ps(t ). (51)

The time derivative of the Lyapunov function (51) is

V̇2(t ) = ṡT (t )Ps(t ) + sT (t )Pṡ(t )

=

r∑
i=1

hi (z )
{

sT
⟨

P
(
Ai + BΓK i

c

)⟩
S
s + 2d̄ T

c B̄T
ci Ps
}
,

(52)
Clearly, the condition that the matrix Ai + BΓK i

c is Hurwitz is
equivalent to ⟨

P
(
Ai + BΓK i

c

)⟩
S
< 0. (53)
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28 LI ET AL.

According to Lemma 2, the system (40) possess H∞ perfor-
mance with an attenuation level 𝛾2 if the following condition
holds:

⎡⎢⎢⎢⎣
⟨

P
(
Ai + BΓK i

c

)⟩
S

PB̄ci I

∗ −𝛾2
2I 0

∗ ∗ −I

⎤⎥⎥⎥⎦ < 0. (54)

The eigenvalues of Ai + BΓK i
c belong to the given circular

region O(𝜙2, 𝜀2) if the following condition holds:[
−P P

(
Ai + BΓK i

c − 𝜙2I
)

∗ −𝜀22P

]
< 0. (55)

Define X = P−1 > 0. Pre- and post-multiplying Equation (54)
by diag(X , I , I ) and its transpose matrix, and Pre- and post-
multiplying Equation (55) by diag(X ,X ) and its transpose
matrix, we have

⎡⎢⎢⎢⎣
⟨(

Ai + BΓK i
c

)
X
⟩

S
B̄ci X

∗ −𝛾2
2I 0

∗ ∗ −I

⎤⎥⎥⎥⎦ < 0, (56)

[
−X

(
Ai + BΓK i

c − 𝜙2I
)
X

∗ −𝜀22X

]
< 0. (57)

The conditions (41) and (42) are obtained by Y2i = K i
c X .

Next, the constraint ‖v(t )‖2 < 𝜍 is proved. Assuming that
sT (0)Ps(0) < 1, by Schur complement, we have[

1 sT (0)

s(0) P−1

]
> 0. (58)

According to ‖s(0)‖2 < 𝜇 and Equation (58), we assume that

𝜇2I < X . (59)

From the stability analysis above, for any t > 0 such that

sT (t )Ps(t ) ≤ sT (0)Ps(0) < 1. (60)

The condition ‖v(t )‖2 < 𝜍 leads to

vT v =

r∑
i=1

r∑
j=1

hih j

(
K i

c s
)T

K
j

c s

≤ 1
2

r∑
i=1

r∑
j=1

hih j

{(
K i

c s
)T

K i
c s +
(

K
j

c s
)T

K
j

c s

}

=

r∑
i=1

hi s
T
(
K i

c

)T
K i

c s < 𝜍2.

(61)

Clearly, the inequality (61) holds, if

r∑
i=1

hi s
T
(
K i

c

)T
K i

c s − 𝜍2sT Ps ≤ 0, (62)

which is equivalent to (K i
c )

T
K i

c − 𝜍
2P < 0. Finally, the condi-

tion (44) can be obtained by invoking Schur complement and
Y2i = K i

c X on the following inequality:

X
{(

K i
c

)T
K i

c − 𝜍
2P
}

X = X
(
K i

c

)T
K i

c X − X 𝜍2 < 0. (63)

This completes the proof. □

Remark 7. In this paper, we combine H∞ design with
regional pole placement to assist the state feedback control
v(t ) and improve the control performance. In addition, adap-
tive observer and feedforward compensation design are used
to compensate strong disturbances and actuator faults. An H∞
method is adopted to attenuate the influence of disturbances
and faults which are not fully compensated.

In engineering application, the chattering phenomenon usu-
ally exists in the sliding mode control due to the sign function
sgn(s) = s∕‖s‖ in the variable structure controller. According to
refs. [7, 21, 31], the sign function can be replaced by a saturation
function or saturation-like function so to attenuate the chatter-
ing of the controller. Thus, using the continuous saturation-like
function s∕(‖s‖ + 𝜎′2), the variable structure controller uvs (t ) in
Equation (40) is modified as follows:

uvs (t ) = −Γ+𝜎1s − Γ+𝜎2
s‖s‖2 + 𝜎

′
2

, (64)

where 𝜎′2 > 0 is a small parameter to be designed.

5 NUMERICAL SIMULATION

In this section, simulation results on a flexible spacecraft are
provided to show the feasibility and benefits of the proposed
strategy. The numerical simulation including three parts: 1) T–
S fuzzy model; 2) actuator fault estimation; 3) fault tolerant
control. The T–S fuzzy model of flexible spacecraft attitude sys-
tem proposed in refs. [5, 21, 22], the fault estimation observer
proposed in ref. [10], and the fault tolerant control strategy
proposed in refs. [21, 35] are considered for comparison. More-

over, the energy function E = ∫ T

0
‖u(t )‖2

2dt is introduced to
quantitatively characterise the energy-cost of controller [10–12].

Considering that the vibrations of flexible appendages are
mainly determined by low-frequency modes, the first four-
order nature frequencies are adopted in the simulation. The
nature frequencies of the flexible appendages are set as 𝜔n1 =
1.5362 rad∕s, 𝜔n2 = 2.2076 rad∕s, 𝜔n3 = 3.7466 rad∕s, 𝜔n4 =
3.7466 rad∕s. The corresponding damping ratios are 𝜁n1 =
0.0056, 𝜁n2 = 0.0086, 𝜁n3 = 0.013, 𝜁n4 = 0.013.
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LI ET AL. 29

In this paper, the actuator distribution matrix is set as Γ = I3.
The inertia matrix, coupling matrix, external disturbance, and
perturbation matrix are given as follows [21, 31]:

J0 =

⎡⎢⎢⎢⎣
350 3 4

3 270 10

4 10 190

⎤⎥⎥⎥⎦kg ⋅m2,

𝛿 =

⎡⎢⎢⎢⎢⎢⎣

6.45637 1.27814 2.15629

−1.25819 0.91756 −1.67264

1.11687 2.48901 0.83674

1.23637 −2.65810 −1.12530

⎤⎥⎥⎥⎥⎥⎦
kg1∕2 ⋅m∕s2,

ud (t ) =

⎡⎢⎢⎢⎢⎢⎣

− 3 + 4 cos(0.2𝜋t ) − cos(0.4𝜋t )

4 + 3 sin(0.2𝜋t ) − 2 cos(0.4𝜋t )

− 3 + 4 sin(0.2𝜋t ) − 3 sin(0.4𝜋t )

⎤⎥⎥⎥⎥⎥⎦
10−4N ⋅m,

ΔΓ =

⎡⎢⎢⎢⎣
0 Δa2 cosΔb2 Δa3 cosΔb3

Δa1 cosΔb1 0 Δa3 cosΔb3

Δa1 cosΔb1 Δa2 cosΔb2 0

⎤⎥⎥⎥⎦,
Δa = (0.2, 0.1, 0.1) deg, Δb = (0.15, 0.1, 0.1) deg .

Generally, three scenarios of actuator faults are considered:
fault-free (healthy), intermittent fault, and time varying fault.
Here are three channels defined as:

f1(t ) =

{
0.5(t − 40)0.2sin(0.2(t − 40))N ⋅m, 40 s < t ,

0N ⋅m, others,

f2(t ) =

⎧⎪⎨⎪⎩
1N ⋅m, 40 s < t ≤ 70 s,

1.5N ⋅m, 100 s < t ,

0N ⋅m, others,

(66)

f3(t ) = 0N ⋅m.

In this example, according to the general working sit-
uation of the flexible spacecraft, the operating regions of
premise variables are set as 𝜔 j (t ) ∈ [−0.7 0.7]rad∕s , j =
1, 2, 3. Based on eight operating points [42], which are
(0.7, 0.7, 0.7), (0.7, 0.7, −0.7), (0.7, −0.7, 0.7), (0.7, −0.7,
−0.7), (−0.7, 0.7, 0.7), (−0.7, 0.7, −0.7), (−0.7, −0.7, 0.7),
(−0.7, −0.7, −0.7), the membership functions of T–S fuzzy sets
M i

j (i = 1, 2, … , 8, j = 1, 2, 3) are illustrated in Figure 2. The T–
S fuzzy model of the flexible spacecraft is expressed as follows:

Model rule 1: IF 𝜔(t ) is
[
0.7 0.7 0.7

]
, THEN

ẋ(t ) = A1x(t ) + B
(
Γ
(
u + f

)
+ d1
)
+D21d2,

ṡ(t ) = A1s(t ) + g(s) + B
(
Γ
(
u + f

)
+ d1
)
+D21d2.

⋮

FIGURE 2 Membership functions

Model rule 8: IF 𝜔(t ) is
[
−0.7 −0.7 −0.7

]
, THEN

ẋ(t ) = A8x(t ) + B
(
Γ
(
u + f

)
+ d1
)
+D28d2,

ṡ(t ) = A8s(t ) + g(s) + B
(
Γ
(
u + f

)
+ d1
)
+D28d2.

Remark 8. In this paper, T–S fuzzy models (10) and (37) adopt
the same set of fuzzy rules, and share the state matrix and con-
trol input matrix. In this numerical simulation, the design of
fault estimation observer and fault tolerant controller are based
on fuzzy models, and the flexible spacecraft attitude system
expresses in nonlinear system.

5.1 T–S fuzzy model

The effectiveness of the proposed T–S fuzzy model (37) is
demonstrated on a feedback control loop (see Equation (69)).
The T–S fuzzy model in ref. [5], which is also adopted in refs.
[21, 22], is considered as comparison. Considering a general
situation, the initial flexible spacecraft attitude states are cho-
sen by qT

v (0) = (0.1, −0.1, 0.1), 𝜔T (0) = (0.02, −0.03, 0.01),
𝜂(0) = 04×1, 𝜂̇(0) = 04×1. The desired states are given by qT

dv
=

(0.3, 0.2, −0.4), 𝜔d = 03×1. As shown in Figure 3, the proposed
T–S fuzzy model (37) has good approximation performance on
the actual nonlinear model (36). However, the T–S fuzzy model
proposed in ref. [5] deviates from the actual model (36), where
the number of fuzzy rules fired to approximate the actual model
is less.

5.2 Actuator fault estimation

The gain matrices F2, G2, and adjustable parameters 𝜃1, 𝜃2 are
selected as:

F2=
⎡⎢⎢⎣

2 0 0
∗ 1 0
∗ ∗ 1

⎤⎥⎥⎦ ,G T
2 =
⎡⎢⎢⎣
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0

⎤⎥⎥⎦ ,
𝜃1= 20, 𝜃2 = 20. (68)

We set regional pole constraint as O(−10, 10), the feasibil-
ity radius of LMIs in Theorem 1 as 1 × 107, and 𝛾2

1 ≤ 0.1,
which are conducive to avert the singularity of gain matrix
K̄i and enhance the numerical stability. The designed parame-
ters for proposed observer (16) are provided in Appendix (1).
The simulation analysis is performed for two manoeuver
process, which is shown in Table 1. The initial flexible space-
craft attitude states are chosen by qT

v (0) = (0.3, 0.2, −0.4),
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FIGURE 3 (a) Comparison between the T–S fuzzy model proposed and
actual model; (b) comparison between the T–S fuzzy model in ref. [5] and
actual model

TABLE 1 Manoeuver sequence of flexible spacecraft

Time (s)

Fault

events

Manoeuver

events

0–40 No Yes

40–80 Yes No

80–200 Yes Yes

𝜔T (0) = (0.02, −0.03, 0.01), 𝜂(0) = 04×1, 𝜂̇(0) = 04×1. The
desired states are set as 𝜔d = 03×1, qT

dv
= (0.3, 0.2, −0.4) at

0–80 s, and 𝜔d = 03×1, qT
dv
= (0.2, −0.1, −0.1) at 80–200 s.

Moreover, the actuator faults with different amplitude are
applied to analyse the performance of the method proposed.
The weak faults are defined as 0.2 fi (t ), i = 1, 2, 3 and the
condition is only used here.

0 50 100 150 200
-0.05

0
0.05

0 50 100 150 200
-0.05

0
0.05

0 50 100 150 200
-0.02

0
0.02

0 50 100 150 200
Time (s)

-0.01
0

0.01

FIGURE 4 The vibration mode of flexible appendages

0 50 100 150 200
-1

0

1

0 50 100 150 200
-1

0

1

0 50 100 150 200
Time (s)

-1

0

1

FIGURE 5 The estimation of vibration disturbances

Figure 4 illustrates the vibration mode of the flexible
appendages under the proposed control strategy. As shown in
Figure 5, the proposed observer is able to estimate the vibration
disturbances caused by flexible appendages during spacecraft
manoeuver. Clearly, the estimation of vibration disturbances
is robust to actuator faults and attitude manoeuver. The esti-
mation and estimated error of angular velocity are drawn in
Figure 6. It should be pointed that all the estimated values also
show the fluctuation with fault characteristics as actuator faults
occur, especially for the time-varying fault. The estimation error
convergence bound is ‖ex (t )‖2 ≤ 4 × 10−7 rad∕s in 15 s, and
increases to ‖ex (t )‖2 ≤ 3 × 10−5 rad∕s as the actuator faults
occurs. Moreover, Figure 7 depicts the comparison of simula-
tion results under the intermittent fault and time-varying fault,
respectively. The week faults are also considered in Figure 8.
Obviously, the proposed observer can estimate both the sys-
tem states and actuator faults simultaneously, and all estimation
errors asymptotically converge to a small bounded interval.
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FIGURE 6 (a) The estimation of angular velocity; (b) the estimation error of angular velocity
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FIGURE 7 Comparison of fault estimation
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FIGURE 8 Comparison of fault estimation (under weak faults)
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FIGURE 9 Time trajectory of control input torque

Compared with the iterative learning observer (ILO) based on
nonlinear system (N-S) in ref. [10], the proposed method have
lower fault estimation errors and higher estimation accuracy,
especially for weak faults.

5.3 Fault tolerant control

Three fault tolerant control methods are considered to draw
comparisons. The control input saturation is set as ‖u‖1 <
umax = 5N ⋅m. Note that the variable s, as mentioned in
formula (36) earlier, is defined as s = 𝜔e + 𝛽qev .

(a) Based on the feedforward compensation including non-
linear term g(s) and estimations f̂ (t ), d̂2(t ), the classical
proportional-derivative (PD) control can be designed as:

u(t ) = −kpqev − kd𝜔e − f̂ (t ) − B+D2i d̂2(t ) − B+g(s),
(69)

where kp = 20 and kd = 60 are proportional term and
derivative term, respectively.

(b) According to ref. [21], the adaptive integral sliding mode
control (AISMC) can be designed as:

u(t ) = −
r∑

i=1

hi (z )Γ+
{‖‖K i

c s(t )‖‖2 + 𝜎 + d̂m (t )
} S‖S‖2 + 𝜎

′

− Γ+B+g(s),
(70)
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FIGURE 10 Comparison of angular velocity tracking errors: (a) channel with time varying fault; (b) channel with intermittent fault; (c) channel without fault;
(d) norm of angular velocity tracking errors
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FIGURE 11 Comparison of attitude tracking errors: (a) channel with time varying fault; (b) channel with intermittent fault; (c) channel without fault; (d) norm
of attitude tracking errors

S (t ) = s − ∫
t

0

r∑
i=1

hi (z )
(
Ai + BK i

c

)
sdt , d̂m (t ) = ‖S‖2,

(71)

where Equation (71) denotes the integral sliding sur-
face; 𝛽 = 2, 𝜎 = 0.002, and 𝜎′ = 0.01. d̂m (t ) denotes the
estimation of the upper bound dm ≥ ‖d (t )‖2 of lumped dis-
turbance d (t ). K i

c is computed by Theorem 1 in ref. [21].
It is noted that, as applied in literature [11–13, 16], actu-
ator faults and disturbances are considered as a lumped
disturbance.

(c) In ref. [35], a nonsingular fast fixed-time terminal slid-
ing surface and a robust adaptive fixed-time sliding mode
control (RAFTSMC) scheme are considered. The designed
parameters of the controller in ref. [35] are provided as fol-
lows: k1 = k2 = 0.2, l1 = 8.8, l2 = −252, 𝜙 = 0.01, r1 =
1.2, r2 = 0.6, r3 = 1.5, r4 = 0.6, 𝜅1 = 0.4, 𝜅2 = 20, 𝜅3 =

0.5, 𝜅4 = 8, 𝛾1 = 1, 𝛾2 = 10, 𝛾3 = 10, 𝜀 = 0.01, g1 = g2 =
1, p1 = p2 = 0.1.

Based on above simulation situation in fault estimation,
we obtain the simulation results of attitude tracking control
and comparisons. The designed parameters for proposed con-
troller (40) are provided in Appendix (2). Figure 9 depicts
the time trajectory of control input torque, where the signal
is always constrained within the allowable maximum magni-
tude. Figures 10 and 11 show the comparison of simulation
results under the intermittent fault and time varying fault,
including attitude tracking errors and angular velocity track-
ing errors. It can be seen, all control methods can achieve
attitude stability under actuator faults, and the effect of time
varying fault on steady-state error is relatively greater. As dis-
played in Figures 10(d) and 11(d), the tracking errors of angular
velocity and attitude quaternion obtained by all controllers con-
verge to a small neighbourhood of zero in the end. Differently,
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FIGURE 12 Comparison of control input torque: (a) channel with time varying fault; (b) channel with intermittent fault; (c) channel without fault; (d)
controller energy cost

compared with PD-based method and AISMC scheme, the
fault tolerant control algorithm proposed has better perfor-
mance in terms of convergence rate and steady-state error.
The RAFTSMC has the fastest convergence performance and
the proposed control scheme gets superior steady-state errors.
According to energy function mentioned above, the compari-
son of energy utilisation is drawn in Figure 12. It is obvious
that the energy-cost by AISMC and RAFTSMC is relatively
high, and the energy consumption gap comes from the initial
stage of spacecraft manoeuver. Due to regional pole place-
ment and saturation virtual controller v(t ), the control input
given by proposed control strategy is not too radical when
the control error signal is large. Therefore, the spacecraft
obtain less fluctuation of control input torque which results
in better energy-saving performance. It is worth noting that
although PD-based method can achieve low energy consump-
tion, it leads to larger steady-state error and slower convergence
rate.

Overall, the above analysis results of three parts have
sufficiently verified the effectiveness and advantages of the
developed strategy.

6 CONCLUSION

In this paper, based on T–S fuzzy models, we presented an
observer-based anti-disturbance adaptive sliding mode control
scheme to solve fault estimation and fault tolerant control
problem of a flexible spacecraft subject to unknown actuator
faults, external disturbances, configuration misalignment, and
input saturation. The T–S fuzzy model was taken to express
the nonlinear dynamics of flexible spacecraft attitude system.
The estimation of actuator fault and flexible vibration is com-
pleted by a fuzzy adaptive observer proposed. Moreover, based
on the adaptive observer and sliding mode control theory,
a fuzzy adaptive fault tolerant controller was developed to
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ensure the reachability of the sliding surface and the stabili-
sation of the system. The sufficient stability conditions were
given in the terms of linear matrix inequality, which can be
easily calculated and has high numerical stability. Furthermore,
the H∞ optimisation was adopted to attenuate the effect of
disturbances. Regional pole placement was applied to tune
the system transient response. The simulation results with
comparisons has verified the effectiveness and superiority
of this paper. As future work, the proposed strategy can be
extended to address the issue of anti-disturbance fault esti-
mation of flexible spacecraft with more actuators, such as six
thrusters.
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APPENDIX A

(1) The designed parameters of proposed observer (16) are
provided as follows:

𝛾1 = 1.6563, fmax = 2, fmin = −2, d̂max = 0.2,

K1 =

⎡⎢⎢⎢⎣
11.0797 1.7060 0.1698

2.0634 15.3316 −3.7670

1.1124 −3.2298 17.4597

⎤⎥⎥⎥⎦,

K2 =

⎡⎢⎢⎢⎣
11.2338 1.8061 1.0575

0.3014 16.8966 −1.4905

2.8869 −2.5642 17.1767

⎤⎥⎥⎥⎦,

K3 =

⎡⎢⎢⎢⎣
11.3012 1.3731 −0.3320

3.1385 14.9069 −3.4138

2.0857 −4.0953 14.7673

⎤⎥⎥⎥⎦,

K4 =

⎡⎢⎢⎢⎣
13.5644 0.6913 1.1004

2.6231 15.8636 −2.9494

1.6844 −4.8170 15.5415

⎤⎥⎥⎥⎦,

K5 =

⎡⎢⎢⎢⎣
11.3442 2.2118 1.2684

0.9174 16.4726 −4.7243

6.0193 −2.6507 18.1318

⎤⎥⎥⎥⎦,

K6 =

⎡⎢⎢⎢⎣
10.6319 2.1572 0.2341

0.0696 17.1557 −2.4063

1.1002 −0.5380 16.0206

⎤⎥⎥⎥⎦,

K7 =

⎡⎢⎢⎢⎣
11.9018 0.7661 0.0607

2.0015 15.4469 −3.9478

3.2444 −2.6290 13.9143

⎤⎥⎥⎥⎦,

K8 =

⎡⎢⎢⎢⎣
11.9489 0.8640 0.1272

0.4371 16.8437 −2.8419

1.2606 −2.6794 14.0976

⎤⎥⎥⎥⎦;

F11 =

⎡⎢⎢⎢⎣
9.7237 × 103 326.8199 1.8290 × 103

−6.3344 1.0247 × 104 −3.2907 × 103

−746.9617 −1.2268 × 103 8.3579 × 103

⎤⎥⎥⎥⎦,
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F12 =

⎡⎢⎢⎢⎣
9.0309 × 103 2.7778 × 103 2.1771 × 103

−4.6158 × 103 1.1244 × 104 −2.5613 × 103

66.1973 −570.1799 8.2265 × 103

⎤⎥⎥⎥⎦,

F13 =

⎡⎢⎢⎢⎣
9.6426 × 103 398.4586 −212.2283

34.0224 1.0012 × 104 −2.9185 × 103

2.9817 × 103 −1.7920 × 103 7.6271 × 103

⎤⎥⎥⎥⎦,

F14 =

⎡⎢⎢⎢⎣
1.0171 × 104 2.4550 × 103 −210.9471

−3.5754 × 103 1.0542 × 104 −3.0415 × 103

2.6386 × 103 −1.5275 × 103 7.6178 × 103

⎤⎥⎥⎥⎦,

F15 =

⎡⎢⎢⎢⎣
9.1963 × 103 453.3374 3.3619 × 103

−918.4914 1.1172 × 104 −2.2130 × 103

1.3119 × 103 −3.5679 × 103 9.4382 × 103

⎤⎥⎥⎥⎦,

F16 =

⎡⎢⎢⎢⎣
8.6973 × 103 2.8241 × 103 1.6734 × 103

−3.8500 × 103 1.1534 × 104 −1.2398 × 103

−539.3831 −1.9341 × 103 8.0846 × 103

⎤⎥⎥⎥⎦,

F17 =

⎡⎢⎢⎢⎣
1.0057 × 104 −389.7244 96.0473

42.9327 1.0556 × 104 −1.2508 × 103

4.2230 × 103 −3.8485 × 103 7.5450 × 103

⎤⎥⎥⎥⎦,

F18 =

⎡⎢⎢⎢⎣
9.3632 × 103 1.9728 × 103 −305.1111

−4.2603 × 103 1.1604 × 104 −1.1329 × 103

3.5869 × 103 −3.4873 × 103 7.5922 × 103

⎤⎥⎥⎥⎦;

G11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

320.6129 −5.1408 159.0961

−142.4824 290.5667 −348.9390

202.5739 167.4318 −91.7588

173.1203 −149.7373 −83.8280

431.2368 86.5778 142.8238

−898.6241 455.6093 −1157.4772

541.0819 324.0231 180.4034

684.5043 −139.6698 143.7356

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G12 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

305.5511 83.2036 168.8351

−275.0154 293.5678 −325.2914

131.8068 214.6869 −77.3230

210.9485 −145.2681 −88.5007

360.4500 234.6058 170.6782

−1114.33017 135.7276 −1144.0781

231.3908 558.8776 261.2598

756.9340 −51.7888 129.6552

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G13 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

361.7443 −10.4094 82.7031

−213.7139 300.2449 −309.3160

164.6629 170.8180 −117.1624

99.9721 −134.5523 −98.5022

482.6662 82.1496 34.3687

−1331.2870 498.5755 −810.7609

443.0646 331.6670 64.3321

551.2211 −116.0938 33.4766

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G14 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

375.0407 59.3479 83.4535

−292.5768 297.4400 −322.4400

140.9596 209.5630 −119.4195

160.0084 −123.8689 −98.5515

476.3326 195.0656 29.8964

−1496.0033 243.5520 −786.4493

341.6687 509.1828 72.8951

706.7613 −8.0327 30.5024

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G15 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

329.4036 −27.5213 219.7104

−214.5960 362.0529 −350.0487

158.7602 204.1559 −71.9300

133.8327 −120.2928 −104.5593

421.0692 70.1396 252.8766

−1141.8168 762.1123 −1426.4282

388.1852 446.0579 336.5068

621.8390 −89.9025 161.9484

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G16 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

287.8983 68.5705 150.4751

−242.2390 328.5386 −281.4231

142.58864 231.3742 −71.8559

208.7085 −125.3695 −109.8762

341.6599 221.3584 158.6230

−948.2652 309.6604 −1014.3476

276.6781 618.2566 290.4692

753.0822 −17.0462 46.5165

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G17 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

391.6389 −60.4696 92.2539

−245.0695 356.4513 −265.0377

161.0947 182.5473 −94.7841

87.2154 −114.6821 −115.8267

518.6878 17.8405 68.4526

−1542.7317 881.1959 −761.7621

432.2399 364.3024 180.1956

563.2590 −122.3085 −13.6815

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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G18 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

357.6202 22.5913 80.2989

−335.4756 362.5720 −262.0622

108.6588 233.2093 −99.0336

151.2859 −109.6418 −122.4343

431.5542 153.8080 47.5774

−1548.3732 605.1020 −713.4597

194.7192 595.3380 147.4134

690.0607 −21.4134 −52.0813

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.1)

(2) The designed parameters of proposed controller (40) are
provided as follows:

𝛾2 = 1.7919, 𝜇 = 0.1, (𝜙2, 𝜀2) = (20, 20), 𝛽 = 2,

𝜍 = 5
√

3, 𝜎1 = 0.2, 𝜎2 = 0.15, 𝜎′2 = 1 × 10−4,

K 1
c =

⎡⎢⎢⎢⎣
−34.7440 1.1063 1.0937

1.4111 −33.8341 −0.8464

0.3764 −0.5589 −20.8476

⎤⎥⎥⎥⎦,

K 2
c =

⎡⎢⎢⎢⎣
−35.4191 0.5616 0.7990

1.4483 −33.8696 −1.6043

0.1094 −1.6136 −20.9780

⎤⎥⎥⎥⎦,

K 3
c =

⎡⎢⎢⎢⎣
−31.9910 0.9290 0.8885

1.5486 −33.8368 −1.0351

1.9635 −0.6481 −19.9350

⎤⎥⎥⎥⎦,

K 4
c =

⎡⎢⎢⎢⎣
−32.5344 0.5510 0.5865

1.2052 −33.8601 −1.4684

1.6329 −1.2981 −20.0662

⎤⎥⎥⎥⎦,

K 5
c =

⎡⎢⎢⎢⎣
−35.0347 −0.6622 0.8585

−0.0102 −34.0008 −0.8408

0.0632 −0.9848 −21.1602

⎤⎥⎥⎥⎦,

K 6
c =

⎡⎢⎢⎢⎣
−35.2320 −1.2476 1.2101

0.0100 −33.8693 −1.6387

0.8286 −2.0212 −21.1286

⎤⎥⎥⎥⎦,

K 7
c =

⎡⎢⎢⎢⎣
−32.1281 −0.5289 0.6218

0.2065 −34.0080 −1.0504

1.5953 −1.1829 −20.1715

⎤⎥⎥⎥⎦,

K 8
c =

⎡⎢⎢⎢⎣
−32.2891 −0.9208 0.9916

−0.1776 −33.8574 −1.4950

2.2599 −1.8550 −20.1519

⎤⎥⎥⎥⎦. (A.2)
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