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Haze Removal for a Single Remote Sensing Image
Using Low-Rank and Sparse Prior

Guoling Bi , Guoliang Si, Yuchen Zhao, Biao Qi, and Hengyi Lv

Abstract— Due to the influence of atmospheric scattering, the
quality of remote sensing images is degraded, which severely
limits the utility of remote sensing images. In this article, a novel
dehazing algorithm for a single remote sensing image is proposed
based on a low-rank and sparse prior (LSP). According to an
atmospheric scattering model, the dark channel of a hazy image is
decomposed into two parts: the dark channel of direct attenuation
with sparseness and the atmospheric veil with low rank. The
prior is obtained from the overall decomposition of the image
rather than the patches of the image; therefore, the image pixel
changes of the local blocks have little influence on the prior.
Considering different resolutions of remote sensing images, the
calculations of blocks involved in this article are completed by
adaptive methods. The principal component pursuit and alter-
nating direction multiplier method (PCP-ADMM) combined with
the adaptive threshold shrinkage method are used for low-rank
and sparse decomposition, therefore, the coarse estimation of
the atmospheric veil is obtained. The guided filter with adaptive
radius is used to refine it, and then the accurate atmospheric light
is estimated. Finally, using the deformed atmospheric scattering
model based on the atmospheric veil and atmospheric light, the
haze-free image is restored. Extensive experimental results on
publicly available data sets show that the dehazed images have
abundant detail, high contrast, and minimal color distortion when
using the proposed method, which is competitive with most state-
of-the-art technologies.

Index Terms— Atmospheric veil, dark channel, haze removal,
low-rank and sparse prior (LSP), remote sensing image.

I. INTRODUCTION

W ITH the development of remote sensing technology,
both military and civilian remote sensing satellites

provide a large number of remote sensing images with var-
ious ground sample distances (GDSs). These remote sens-
ing images have been widely used in various Earth surface
observation applications [1]–[3]. However, visible cameras
on satellites capture electromagnetic signals far away from
the Earth’s surface through the atmosphere, and the qual-
ity of remote sensing images is easily affected by adverse
atmospheric conditions such as haze, fog, smoke, and clouds.
Even in sunny weather, the atmosphere cannot be absolutely
free of any particles, therefore, haze still exists, which reduces
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the intelligibility and availability of remote sensing images.
Therefore, dehazing for remote sensing images is a crucial
and indispensable preprocessing task.

To improve the quality of remote sensing images, enhance-
ment methods have been extensively studied. These include
histogram equalization [4], [6], the homographic filter, and
retinex-based methods [7], [8]. These image enhancement
methods often introduce gradient reversal artifacts and oversat-
uration without knowing the mechanism of image degradation.

In recent years, an increasing number of prior-based dehaz-
ing methods specifically for remote sensing images have
been proposed [10]–[14]. Zhang et al. [12] developed a
haze-optimized transformation (HOT) that established a clear
sky line through the high correlation between the blue and
red bands and separated clouds and haze from the normal
surface. Chavez [10] proposed an improved dark-object sub-
traction (DOS) technique to predict the haze values for all
spectral bands based on the haze value of the starting band.
Jiang et al. [13] presented an effective method based on the
HOT and DOS for haze or thin cloud removal in visible remote
sensing images. Makarau et al. [11] developed the DOS prior
to obtaining a haze thickness map (HTM) for inhomogeneous
haze detection and removal in multispectral remote sensing
images. A ground radiance suppressed HTM (GRS-HTM) [14]
was proposed to accurately estimate the haze distribution
of each band of remote sensing images to restore clear
images.

More recently, deep-learning-based methods have achieved
great success in natural image dehazing [15]–[19], [23],
[59], [60]. These methods include multiscale convolutional
neural network DehazeNet [15], AOD-Net [17], the densely
connected pyramid-dehazing network (DCPDN) [18], gen-
erative adversarial networks (GANs) [16], the enhanced
pix2pix dehazing network (EPDN) [19], and multiscale
boosted dehazing network (MSBDN) [59]. The deep-learning-
based framework has also been applied to remote sensing
image dehazing [20]–[22]. Hu et al. [21] proposed an edge-
sharpening cycle-consistent adversarial network, which was
an unsupervised remote-sensing image dehazed method based
on cycle GANs. Gu et al. [22] proposed a prior-based dense
attentive dehazing network (DADN) based on dense blocks
and attention blocks for remote sensing image dehazing.
However, due to the limitations of remote sensing image
training data sets, these learning-based methods cannot adapt
to various practical environments.

In RGB space, the visible band of remote sensing
images has the same imaging waveband as that of natural
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images; therefore, the dehazing of remote sensing images
can also refer to successful dehazing methods of natural
images [24]–[26], [28]–[32]. Berman et al. [29] proposed
the nonlocal prior (NLD) for single-image dehazing. In RGB
space, the algorithm assumed that a haze-free image can
be represented by a few hundred tight color clusters.
Zhu et al. [28] proposed the color attenuation prior (CAP)
recovering the scene depth of a hazy image. He et al. [25]
proposed the famous dark channel prior (DCP) in which most
local patches in haze-free images contain some pixels that
have quite low intensities in at least one color channel. Then,
many DCP-based methods were proposed [9], [33]–[35].
Long et al. [33] presented a fast and effective method
based on DCP for single remote sensing image dehazing
that automatically extracts global atmospheric light and
refined atmospheric veils. Xu et al. [35] proposed DCP-based
iterative dehazing for remote sensing images (IDeRS). The
virtual depth was defined, and a fusion model was proposed
for combining pixelwise and patchwise transmission map
estimations. Bui et al. [32] proposed the color ellipsoid prior
(CEP), which found patches locally that can maximize the
color contrast in a hazy image. Although these prior-based
methods achieved promising results, the dehazing quality
often depends on the conformity between the proposed prior
and real data. Inspired by CEP [32], Guo et al. [34] proposed
an elliptical boundary prior (EBP) for remote sensing images
in which changes in the elliptical boundary in haze can be
used to assess the haze thickness of pixels in a patch.

However, there are some differences between remote sens-
ing images and natural images, which affect the adoption of
dehazing methods. First, atmospheric light is usually estimated
by the sky region of natural images, but remote sensing
images do not contain sky regions. Second, the density of haze
changes with the depth of field of natural images. However,
due to the large distance of remote sensing imaging, the
depth of the field of remote sensing images can be regarded
as a constant. Finally, remote sensing images usually have
GDSs ranging from tens of centimeters to tens of meters,
while natural images usually have similar resolutions and
scales. Although some natural image dehazing methods have
been successfully applied to haze removal for remote sensing
images, the large differences between natural images and
remote sensing images should be fully considered to achieve
the best performance.

From the above analysis, it can be seen that most of the
current algorithms are patch-based [23], [25], [32], [34], which
usually perform dehazing with a fixed patch size. For remote
sensing images, the resolution is not the same, and using
the same size also leads to unclear details or halo artifacts.
In addition, for a prior-based dehazing method, when the local
patch of the image does not conform to the prior, the prior is
invalid, resulting in color distortion, insufficient dehazing, and
oversaturation in the dehazed images.

Different from the existing methods, according to the char-
acteristics of different resolutions of remote sensing images
without sky region and by comprehensively considering the
direct attenuation model and atmospheric light model in an
atmospheric scattering model, a dehazing method is proposed

for a single remote sensing image. We propose a robust low-
rank and sparse prior (LSP), which is obtained from the
overall decomposition of the image rather than the patches
of the image; therefore, the image pixel changes of the local
blocks have little influence on the prior. Considering the
different resolutions of remote sensing images, the calculations
of blocks involved in this article are completed by adaptive
methods. Therefore, the proposed method is not affected by
the remote sensing image resolution or local pixel changes and
has good robustness. The dehazed images have high contrast,
rich detail, minimal color distortion, and few halo artifacts.

The main contributions of this article are summarized as
follows:

1) Based on an atmospheric scattering model, the dark
channel of the hazy image is decomposed into a
direct-attenuation dark channel and atmospheric veil.
It is verified that the direct-attenuation dark channel is
sparse, while the atmospheric veil is low rank; therefore,
the problem of dehazing is transformed into a problem
of low-rank and sparse decomposition, which makes the
prior more robust.

2) The adaptive patch sizes of dark channel pixels are used
to ensure the sparsity of the patch, and the adaptive patch
size is used as the radius of the guided filter.

3) An adaptive threshold shrinkage method is introduced.
Called principal component pursuit and alternating
direction multiplier method (PCP-ADMM), this method
is used for low-rank and sparse decomposition to obtain
the coarse estimation of the atmospheric veil, and a
guided filter with adaptive radius is used to refine it.

4) Considering that there is no sky region in remote
sensing images, according to the physical meaning of
atmospheric veils, we use the refined atmospheric veil
to estimate atmospheric light.

The rest of this article is organized as follows. In Section II,
we describe the related work. The proposed algorithm is
presented in Section III. Section IV gives the experimental
settings, results, and analysis, followed by a conclusion in
Section V.

II. RELATED WORK

The atmospheric scattering model [27] is typically used to
describe the impact of bad weather conditions such as haze
and fog on images. This model is depicted as

I (x) = J (x)t (x) + A(1 − t (x)) (1)

where x is the pixel index, I (x) is the hazy image, J (x)
is the haze-free image, and t (x) is the transmission, which
indicates that the portion of the light reaches the camera
without scattering. A is the global atmospheric light. The
degradation model for a remote sensing hazy scene is shown
in Fig. 1.

The degradation model is divided into two parts [26]. The
first part J (x)t (x) is called direct attenuation, which describes
the weakened incident light that is not scattered and absorbed
when entering the imaging system. It submerges the details and
color information and reduces the contrast of images, as shown
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Fig. 1. Degradation model for remote sensing hazy scene.

by the red dotted line in Fig. 1. The second part A[1 − t (x)]
is called airlight, which results from previously scattered light
and leads to the shift of the scene color, as shown by the green
dotted line in Fig. 1.

Single image dehazing restores a haze-free ImageJ(x) from
a hazy (x), which is an underconstrained problem. Kinds of
hand-crafted priors [24]–[32], [36] are used to constrain the
physical model to obtain the estimations of the transmission
and atmosphere light to restore the haze-free image. For
example, the CAP [28] is used to obtain the depth map
of the hazy image and then estimate the transmission. The
NLD [29] is used to obtain the haze lines, which can obtain a
per-pixel estimation of the transmission. The DCP [25] is used
to estimate the transmission map. Although the prior is invalid
when the region is similar to atmospheric light and there is no
shadow coverage, resulting in color distortion or some artifacts
in dehazed images, DCP is still a simple and effective dehazing
prior. In addition, some deep neural networks [23], [38] also
fuse this prior. Chen et al. [23] designed a patch map selection
network (PMS-Net) to select the patch size automatically for
DCP dehazing. Yang et al. [38] proposed a novel proximal
dehaze net for single-image dehazing by learning dark chan-
nels and transmission priors. It can be seen that a good prior
is also very meaningful in the design of neural networks.

In addition, there have been some studies on dehazing
from the perspective of an airlight model [33], [36], [37]. For
example, Tarel [36] introduced the intensity of the atmospheric
veil V (x) to denote the air lightness of the model

V (x) = A(1 − t (x)). (2)

This indicates that the atmospheric light involved in the imag-
ing enters the field of view, causing the high-frequency com-
ponents of the image to be suppressed and the low-frequency
component to be highlighted, which further leads to a loss of
image detail and degradation of contrast and clarity. Different
from the atmospheric veil defined by Tarel [36], this value was
defined by Long et al. [33] as

V (x) = 1 − t (x). (3)

The atmospheric veil V (x) is obtained by computing the
minimum color channel and refined by a low-pass Gaussian
filter, and then the transmission is redefined. The transmission
t (x) expression is

t (x) = e−β(x)d(x) (4)

where d(x) is the imaging distance from the scene to the
camera, which is nearly constant in remote sensing imaging,
that is, d(x) ≈ d0. β(x) is the scattering coefficient, which
represents the attenuation of the incoming energy by aerosols,
and it depends on wavelength λ and turbidity T [9]. Under
haze conditions, it is usually assumed that the extinction
coefficient is independent of wavelength [5]. Therefore, (4)
can be written as

t (x) = e−β(x)d0 . (5)

Because the transmission t (x) ∈ (0, 1] depends only on the
pixel position and does not correspond to the wavelength, the
transmissions are the same for all RGB channels [33].

III. PROPOSED ALGORITHM

Based on the atmospheric scattering model, the dark channel
of a hazy image can be decomposed into a dark channel of
direct attenuation with sparseness and an atmospheric veil with
low rank. Therefore, we propose a haze removal method for
a remote sensing image based on an LSP.

A. Model Based on Low-Rank and Sparse

Assuming the atmospheric light is known, since the trans-
mission is the same for all RGB channels and is constant
in a local patch [33], which is marked as t̃(x); therefore,
we perform the minimum operations on both RGB channels
and the local patch in the model of (1)

min
y∈�(x)

(min
c∈{r,g,b} I c(y))

= min
y∈�(x)

(min
c∈{r,g,b} J c(y))t̃(x) + A(1 − t̃(x)). (6)

Let I dark(x) = miny∈�(x)(minc∈{r,g,b} I c(y)), where I dark(x)
is the dark channel of the hazy image. Let J dark(x) =
miny∈�(x)(minc∈{r,g,b} J c(y)), J dark(x) be the dark channel of
the clear image. Equation (6) can be changed to

I dark(x) = J dark(x)t̃(x) + A(1 − t̃(x)). (7)

Then, we can obtain the dark channel of direct attenuation as

D(x) = J dark(x)t̃(x). (8)

Assuming Ṽ (x) is the coarse atmospheric veil, this can be
expressed as

Ṽ (x) = A(1 − t̃(x)). (9)

When E(x) = I dark(x) and Z(x) = Ṽ (x), the hazy image
model can be rewritten as

E(x) = D(x) + Z(x). (10)

We refine the coarse atmospheric veil Z(x) and obtain V (x);
then, (1) can be changed to

I (x) = J (x)

(
1 − V (x)

A

)
+ V (x). (11)
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Fig. 2. Dark channels of haze-free remote sensing images with different
patch sizes. (a) Haze-free images without gray areas. (b) p = 5. (c) p = 15.
(d) Haze-free images with gray areas. (e) p = 15. (f) p = 45.

1) Attenuation Dark Channel Inference: Due to widespread
shadows, dark objects, and colorful objects in outdoor images,
the number of dark pixels increases with an increase in the
minimum filtering radius when obtaining the dark channel
image [56]. We select a large number of haze-free remote
sensing images from remote sensing data sets for experiments,
i.e., the RS_C11 database [39] and RSICD data set [40]. Here,
we provide only six representative haze-free remote sensing
images and their dark channel images, as shown in Fig. 2.
We divide the images into two groups. For the left group, the
first column on the left shows the haze-free remote sensing
images without gray areas, as shown in Fig. 2(a). The second
and third columns are dark channel images with patch sizes of
p = 5 and p = 15, respectively. For the right group, the fourth
column shows the haze-free remote sensing images with gray
areas, as shown in Fig. 2(d). The fifth and sixth columns are
dark channel images with patch sizes of p = 15 and p = 45,
respectively.

As shown in Fig. 2, for the images without gray areas, when
the patch size p = 5, the dark channels contain a large number
of nonzero areas. When p = 15, the pixel values of most areas
in the dark channels tend to 0; that is, the dark channel image
is sparse. For the images with gray areas, when the patch size
p = x15, there are a large number of nonzero areas in the
dark channels. When p = 45, the pixel values of most areas
in the dark channels tend to 0; that is, the dark channel image
is sparse.

Some remote sensing images often contain gray and bright
areas (such as the reflective area of white buildings and bright
water surfaces), resulting in high values of pixels in these
areas of the dark channel J dark(x). In addition, different remote
sensing images have large differences in the GDS and object
scales; therefore, different patch sizes are more expected to
obtain the dark channel to ensure the sparsity of dark channel
images. We select a large number of remote sensing images
with different GDSs for experiments. The patch size p can be
approximated by counting the number of pixels in the gray
area, as shown in the following equation:

p =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
15, p < 15

round

(
sqrt

(
255∑

x=m

hist(I (x))

)
/N

)
, else

50, p > 50

(12)

Fig. 3. Coarse and refined atmospheric veil, for the first line shows the
Top: p = r = 50, the second line shows Bottom: p = r = 15. (a) Hazy
remote sensing image. (b) Coarse atmospheric veil. (c) Refined atmospheric
veil. (d) Dehazed results.

where m is the minimum pixel value of the gray-white area, for
24-bit color images, we set m = 150. Suppose the total gray
area is a square with a side length of sqrt(

∑255
x=m hist(I (x))),

which is N times the patch size, we set N = 5. The round()
function is the rounding operation. For a gray-white area of
the same size, when the GDS is particularly large, the remote
sensing image has smaller gray areas, that is, p < 15, and
we set p = 15. When the GDS is small, the remote sensing
image has larger gray areas, and we set p = 50. In this way,
we realize the adaptive selection of patch size. Therefore,
we can adaptively obtain the sparse dark channel of the
haze-free remote sensing image. Since we know t̃(x) ∈ (0, 1],
D(x) = J dark(x)t̃(x) ≤ J dark(x), the dark channel of direct
attenuation D(x) is sparser than J dark(x).

2) Coarse Atmospheric Veil Inference: The transmission is
the same for all RGB channels, and the transmission in a local
patch is constant [33]. According to (9) and (10), the coarse
atmospheric veil Z(x) is subject to three constraints.

1) For t̃(x) ∈ (0, 1], Z(x) is positive.
2) Z(x) cannot be higher than the dark channel of the hazy

image, that is Z(x) ≤ I dark(x).
3) Similar to the transmission, Z(x) is constant in a local

patch.

On the whole, the coarse atmospheric veil Z(x) has many
similar components; therefore, it has the characteristics of low
rank, as shown in Fig. 3(b).

After the above analysis, it can be seen from (10) that
the dark channel of a hazy image E(x) can be decomposed
into two parts: the dark channel of direct attenuation with
sparseness and the atmospheric veil with low rank, which meet
the conditions of low-rank and sparse decomposition. In this
way, the image dehazing problem is converted into a problem
of low-rank and sparse decomposition.

B. Low-Rank and Sparse Decomposition

Low-rank sparse decomposition (LRSD) based on the
matrix kernel norm and its improved method [41]–[43] has
been widely used in many fields. Candés et al. [41] proposed
the classic principal component pursuit (PCP) method which
uses the nuclear norm to approximate the rank of the matrix
and uses the L1 norm to approximate the sparsity of the
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matrix. Therefore, (10) is transformed into an LRSD problem
as follows:

min‖Z‖∗ + λ‖D‖1

s.t. E = Z + D (13)

where ‖‖∗ denotes the nuclear norm of the matrix, and ‖‖1

denotes the L1-norm, and λ is a compromise parameter that
is used to balance low rank and sparse components. Usually,
λ is set as λ = (1)/(max(m, n))1/2, and m is the number of
rows of the image, and n is the number of columns of the
image.

To obtain the optimal solution to the above-mentioned con-
vex problem, many solving algorithms have been proposed to
improve the accuracy of the solution [44]–[49]. These include
the iterative thresholding (IT) algorithm [44], accelerated prox-
imal gradient (APG) algorithm [45], primary-dual algorithm
(PDA) [46], augmented Lagrange multiplier (ALM) [47], and
alternating direction multiplier method (ADMM) [48], [49].
ADMM can be regarded as an attempt to combine the advan-
tages of double decomposition and augmented Lagrangian
methods for constrained optimization. ADMM takes the form
of a decomposition-coordination procedure, in which the solu-
tions to small local subproblems are coordinated to find a
solution to a large global problem, which reduces the difficulty
of solving large-scale problems. Therefore, we use ADMM to
solve the convex optimization problem of (13). The solving
process of ADMM is as follows:

The augmented Lagrangian function to (13) is

L〈Z , D, Y, m〉 = ‖Z‖∗ + λ‖D‖1 + 〈Y, Z + D − E〉
+μ

2
‖Z + D − E‖2

F (14)

where Y is a Lagrange multiplier, the operator 〈., .〉 represents
the inner product of a matrix, ‖‖F represents the Frobenius
norm of a matrix, and μ > 0 is a penalty parameter. Next,
we use ADMM to solve the optimization problem, that is,
by updating one variable alternately while fixing the other
variables.

1) Update Z k+1: With the variables D and Y being fixed,
Z can be updated by solving the following problem

Z k+1 = arg min
Z

L(Z , Dk, Y k, μk)

= arg min
Z

‖Z‖∗ − 〈Y k, Z + Dk − E〉

+μk

2

∥∥Z + Dk − E
∥∥2

F

= arg min
Z

‖Z‖∗ + 1

2

∥∥∥∥Z −
(

E − Dk + Y k

μk

)∥∥∥∥2

F

. (15)

Donohn [50] proposed the wavelet hard threshold function
shrinkage method [as shown in (16)] and soft threshold
function shrinkage method [as shown in (17)]. The function
sign returns the sign of its operand. The threshold is set to ε.
In many wavelet coefficients x , the wavelet coefficients with
smaller absolute values are set to 0, and the coefficients with

larger absolute values are kept or contracted

x̂ =
{

x, |x | ≥ ε

0, |x | < ε
(16)

x̂ =
{

sign(x)(|x | − ε), |x | ≥ ε

0, |x | < ε.
(17)

However, the threshold function always has a constant devi-
ation. To facilitate the solution of the optimal threshold and
improve the efficiency of the algorithm, we propose an adap-
tive threshold shrinkage function Mε(x) as follows:

Mε(x) =
⎧⎨⎩ sign(x)

(
|x | − εβ

(
|x |
ε

−1
))

, |x | ≥ ε

0, |x | < ε

(18)

where β ∈ [0, 1] is an adjustment parameter. When β = 0,
it becomes a hard threshold function. When β = 1, the
function becomes a soft threshold function. The parameter β
can adjust the approximation degree of the threshold function
and the straight line y = x , thereby improving the efficiency of
the algorithm. ε is the threshold. When |x | → ε, Mε(x) → 0;
when |x | → ∞ and Mε(x) → |x |. With an increase in
|x |, the deviation of |x | and Mε(x) decreases, which over-
comes the shortcoming of the constant deviation of the soft
threshold function. We use the adaptive threshold shrinkage
function (18) to update Z as follows:

Z k+1 = U M 1
μk

(∑)
V T (19)

where [U,
∑

, V ] = svd(E − Dk + (Y k/μk)) and M is the
adaptive threshold shrinkage function.

2) Update Dk+1: With variables Z and Y being fixed, D can
be updated by solving the problem as follows:
Dk+1 = arg min

D
L(Z k+1, D, Y k , μk)

= arg min
D

λ‖D‖1 − 〈Y k, Z k+1 + D − E〉

+μk

2

∥∥Z k+1 + D − E
∥∥2

F

= arg min
D

λ

μk
‖D‖1 + 1

2

∥∥∥∥D −
(

E − Z k+1 + Y k

μk

)∥∥∥∥2

F

.

(20)

We use the adaptive threshold shrinkage method to solve this
problem as follows:

Dk+1 = M λ
μk

(
E − Z k+1 + Y k

μk

)
. (21)

3) Update Y k+1 and μk+1: Update the multiplier Y and the
penalty factor μ. Then,

Y k+1 = Y k − μk(Z k+1 + Dk+1 − E) (22)

μk+1 = min(σμk, μmax) (23)

where σ > 1 is the magnification factor.
The termination condition of the iteration is

δ = ∥∥Z k+1 − Z k)
∥∥2

F
< δ0 (24)

where δ0 is set to 10−2.
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C. Recovering the Scene Radiance

1) Refine the Coarse Atmospheric Veil: In the previous
section, the low-rank atmospheric veil Ṽ (x) = Z(x) is roughly
estimated. Here, we choose one airport remote sensing image
from the remote sensing data set of the RSOD database [52],
as shown in Fig. 3(a). We can see that the coarse atmospheric
veil has block artifacts, as shown in Fig. 3(b) (warm colors
depict high values). To avoid halo artifacts in the dehazed
image, a guided filter [51] is used to refine the coarse
atmospheric veil, which can make the refined atmospheric veil
V (x) retain the structure of the original image, as shown in
Fig. 3(c).

In this article, we take the adaptive patch size of the dark
channel as the radius of the guided filter. According to (12),
p = 50, therefore, the radius of the guided filter r = 50,
as shown in the first line of Fig. 3. For comparison, we also
chose p = r = 15 and set all of ε to 10−2 for experiments,
as shown in the second line of Fig. 3.

The atmospheric veil obtained by the adaptive patch size
and guided filter radius is smoother, and sufficient edge
information is retained. Therefore, for the dehazed image, the
color is more realistic, and there are fewer halo artifacts.

2) Estimating the Atmospheric Light: In this article, the
regions with high pixel values in the refined atmospheric
veil are considered to be the most haze-opaque regions, and
the pixels in these regions of the hazy image I (x) are used
to estimate atmospheric light. We first choose the top 0.1%
brightest pixels in the atmospheric veil. The regions of these
brightest pixels are �I ∈ 0.1%{up(count[V (x)])}, and N is
the total number of pixels. By calculating the averages of each
channel of the hazy image I (x) in these regions, the accurate
atmospheric light A of the three channels is obtained as

A =
∑

x∈�I
I (x)

N
. (25)

3) Haze Removal: The refined atmospheric veil V (x) and
atmospheric light are obtained according to the deformed
atmospheric scattering model in (11). The haze-free scene is
restored as

J (x) = A
I (x) − ζ V (x)

A − ζ V (x)
(26)

where ζ is an adjustment factor. The image restored by (26)
looks dim, and the exposure of the dehazed image is increased
to display.

IV. EXPERIMENTAL RESULTS

We selected remote sensing images with different haze
densities, different colors, and different scenes for exper-
iments. The images are from three remote sensing data
sets: RSOD [52], RSICD [40], and NWPU-RESISC45 [53].
Eight classical methods are selected for comparison: prior-
based methods such as DCP [25], CAP [28], NLD [29],
and IDeRs [35]; and learning-based methods such as
DehazeNet [15], EPDN [19], and MSBDN [59]; and the
methods that combine the prior-based method and learning-
based method, such as PSD [60]. The source code of these
benchmark methods can be downloaded from the author’s

website, and the configurations strictly follow the authors’
suggestions in their articles.

A. Analysis of Accuracy of Atmospheric Veil

According to the atmospheric scattering model, the airlight
leads to a color shift in the scene. Therefore, if the estimation
of atmospheric veils is inaccurate, then color distortion of
the dehazed image occurs. For most studies, the airlight
was evaluated by transmission; therefore, we use the refined
atmospheric veil to obtain the transmission according to (2).

The accuracy of the atmospheric veil is evaluated by com-
paring the transmission with other methods. The prior-based
methods DCP [25], CAP [28], NLD [29], and IDeRs [35] are
selected for comparison, as shown in Fig. 4. According to
(5), the transmission should be independent of the texture of
the scene in remote sensing images [9]. On the whole, while
the edges of the transmission map obtained by our method
are preserved and most of the textures are smoothed, other
methods still have richer texture details.

In remote sensing images, different objects on the surface of
the earth usually have different surface reflection coefficients,
thus showing different color saturations. Low saturation is
caused not only by haze but also possibly by light-colored
objects (such as white or gray buildings, snow, and thin clouds)
or translucent coverings. Therefore, the gray airport road in
Fig. 3(a) should have a low transmission.

We can see that, compared with our method, the trans-
missions of the gray airport road obtained by DCP [25],
cap [28], and NLD [29] are higher, while the corresponding
transmission obtained by IDeRs [35] is lower. This leads to
color distortion of the dehazed images, as shown in Fig. 5.

B. Qualitative Evaluation

1) Dehazing Performances With Different Haze Density:
We select remote sensing images with different haze densities,
including homogeneous haze, heterogeneous haze, and thick
haze, for experiments. The results are shown in Figs. 5–7.

In Fig. 5, the results of DCP [25], CAP [28],
DehazeNet [15], and EPDN [19] look dim with unclear details.
IDeRs [35], NLD [29], and PSD [60] have abundant details
but with color distortion, while MSBDN [59] has better color
retention but unclear details. The proposed method can keep
the color visually consistent with the real scene and abundant
distinguishable details. This shows that the proposed LSP can
accurately estimate the atmospheric veil and atmospheric light.

For heterogeneous hazy images, all of the methods achieve
good dehazed results. Compared with other methods, the
proposed method can obtain dehazed images with richer and
clearer details, such as the area marked by the red rectangles
in Fig. 6. The effectiveness of the proposed method adopts the
adaptive radius of the guided filter to refine the atmospheric
veil.

In Fig. 7, the entire image is covered with thick haze,
making most of the image details invisible. The DCP [25],
CAP [28], DehazeNet [15], and MSBDN [59] methods tend
to leave haze in the results. The results of NLD [29] and
EPDN [19] look dim, while the results of IDeRs [35] and
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Fig. 4. The transmission estimation. (a) DCP [25]. (b) CAP [28]. (c) NLD [29]. (d) IDeRs [35]. (e) Our method.

Fig. 5. Dehazed results of different methods on homogeneous haze. (a) Input hazy images. (b) DCP [25]. (c) CAP [28]. (d) NLD [29]. (e) IDeRs [35].
(f) DehazeNet [15]. (g) EPDN [19]. (h) MSBDN [59]. (i) PSD [60]. (j) Our method.

Fig. 6. Dehazed results of different methods on heterogeneous haze. (a) Input hazy images. (b) DCP [25]. (c) CAP [28]. (d) NLD [29]. (e) IDeRs [35].
(f) DehazeNet [15]. (g) EPDN [19]. (h) MSBDN [59]. (i) PSD [60]. (j) Our method.

PSD [60] show saturated color in local regions due to exces-
sive dehazing. The proposed method obtains high-quality
dehazed images with high contrast, minimal halo artifacts, and
low color distortion.

2) Dehazing Performances With Different Colors: The dif-
ference in image color complexity may affect the dehazed
results; therefore, we choose three groups of remote sensing
images from the above-mentioned three remote sensing data

sets. The colors of the remote sensing images are monotonous,
as shown in Fig. 8. The colors of remote sensing images
are rich, as shown in Fig. 9. The remote sensing images
contain white regions, as shown in Fig. 10. White regions often
interfere with the selection of atmospheric light; therefore,
many existing dehazing methods are sensitive to white light.

Although the DCP [25] and NLD [29] methods show good
performance on hazy remote sensing images of monotonous
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Fig. 7. Dehazed results of different methods on thick haze. (a) Input hazy images. (b) DCP [25]. (c) CAP [28]. (d) NLD [29]. (e) IDeRs [35].
(f) DehazeNet [15]. (g) EPDN [19]. (h) MSBDN [59]. (i) PSD [60]. (j) Our method.

Fig. 8. Dehazed results with different methods on monotonous color images. (a) Input hazy images. (b) DCP [25]. (c) CAP [28]. (d) NLD [29]. (e) IDeRs [35].
(f) DehazeNet [15]. (g) EPDN [19]. (h) MSBDN [59]. (i) PSD [60]. (j) Our method.

Fig. 9. Dehazed results with different methods on rich color images. (a) Input hazy images. (b) DCP [25]. (c) CAP [34]. (d) NLD [29]. (e) IDeRs [35].
(f) DehazeNet [15]. (g) EPDN [19]. (h) MSBDN [59]. (i) PSD [60]. (j) Our method.

and rich colors that have good color fidelity, they are less
robust for remote sensing images with white regions, as illus-
trated in the first lines of Fig. 10(d) and (h); they are
too dark to see the details. Although the dehazed results
by IDeRs [35] and PSD [60] are satisfactory in processing
details as well as image contrast, they tend to overenhance
the image with obvious color distortion and oversaturation
[especially in Fig. 9(e)]. The dehazed results of CAP [28],
DehazeNet [15], and MSBDN [59] are dim or retain much
of the haze, which leads to image blurring with bad visual
effects. EPDN [19] successfully removes most of the haze,
but the dehazed images tend to be dark and exhibit some color
shifting.

Whether the color of remote sensing images is monotonous
or rich or contains white regions, our dehazed results retain
very fine details and high contrast while preserving the color
of the original scene because the atmospheric veil estimated
by the proposed method can accurately describe the degra-
dation degree of the captured scene. This demonstrates the
effectiveness of the proposed method.

We also choose one of the haze-free remote sensing images
in Fig. 2 with gray areas for hazing, as shown in Fig. 11(a).
Regard the haze-free image as the ground truth. Using the
known transmission t(x) and atmospheric light A, according
to (1), the simulated hazy image is obtained as shown in
Fig. 11(b). Compared to the ground truth, the results of
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Fig. 10. Dehazed results with different methods on locally white color images. (a) Input hazy images. (b) DCP [25]. (c) CAP [28]. (d) NLD [29].
(e) IDeRs [35]. (f) DehazeNet [15]. (g) EPDN [19]. (h) MSBDN [59]. (i) PSD [60]. (j) Our method.

TABLE I

QUANTITATIVE COMPARISON OF e AND r

TABLE II

QUANTITATIVE COMPARISON OF FIVE CRITERION

IDeRs [35] and PSD [60] have rich details, but there are
obvious color shifts; the results of DCP [25], DehazeNet [15],
and EPDN [19] are generally a little dark; the color fidelity
of the results are higher by NLD [29], MSBDN [59], and
the proposed method, but the image details of the proposed
method are clearer.

3) Dehazing Performances for Different Scenes: We also
select five hazy remote sensing images of different scenes
from the above-mentioned three remote sensing data sets
for experiments: ports, industrial areas, parks, overpasses,
and thermal power plants. The dehazed results are shown in
Fig. 12. The first column shows hazy images, and the last
column shows the dehazed images by our method.

According to the five groups of dehazed results, the
DCP [25], CAP [28], DehazeNet [43], EPDN [45], and
MSBDN [59] methods often suffer from insufficient dehazing,
resulting in dehazed images that are often dark and blurry.
The results of IDeRs [35], NLD [29], and PSD [60] have clear
details but with local oversaturation and color distortion. It can
be observed that the proposed method is outstanding among
all tested methods when handling different hazy scenes, which

can retain the natural colors and fine structures and obtain
higher contrast.

C. Quantitative Evaluation

1) Non-Reference Image Quality Assessment: We choose
two objective indicators e and r [54] as the non-reference
image quality assessment metrics. The indicator e is used to
evaluate the ability of the dehazing method to restore the edge.
The indicator r is used to evaluate the quality of the contrast
restoration by the dehazing method. Generally, the higher e
and r , the better the performance.

For a quantitative comparison, we use the hazy remote
sensing images in the three groups of different haze densities,
different colors, and different scenes to test and obtain the
average of e and r in the three groups of remote sensing
images. The statistics for each group are listed in Table I.
It can be seen that e and r of the dehazed images of IDeRs [35]
and PSD [60] are highest because the dehazed images of
IDeRs [35] and PSD [60] have obvious color distortion and
overenhancement, which makes the newly visible edges and
contrast higher. Except for IDeRs [35] and PSD [60], the
values of e and r obtained by our method are higher than
those of other methods, indicating that our method performs
well on most of the hazy remote sensing images.

2) Reference Image Quality Assessment: The reference
image quality evaluation requires a clear image as a reference,
which is usually obtained by simulation. Compared with the
simulation data sets, BeDDE [55] is a real-world benchmark
data set that is used to evaluate dehazing methods. It is more
convincing to choose BeDDE [55] for experiments. We select
26 images of Chengdu with different haze densities from
BeDDE [55]. Here, we only give the dehazed results of the
hazy image chengdu_3.png, as shown in Fig. 13. Even if the
image contains the sky region, our method achieves a good
visual effect, the contrast is enhanced and the color distortion

Authorized licensed use limited to: Changchun Inst of Optics Fine Mechanics & Physics. Downloaded on February 07,2023 at 01:42:10 UTC from IEEE Xplore.  Restrictions apply. 



5615513 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 11. Dehazed results of a simulated hazy image. (a) Haze-free image. (b) Simulated hazy image. (c) DCP [25]. (d) NLD [29]. (e) IDeRs [35].
(f) DehazeNet [15]. (g) EPDN [19]. (h) MSBDN [59]. (i) PSD [60]. (j) Our method.

Fig. 12. Dehazed results with different methods on locally white color images. (a) Input hazy images. (b) DCP [25]. (c) CAP [28]. (d) NLD [29].
(e) IDeRs [35]. (f) DehazeNet [15]. (g) EPDN [19]. (h) MSBDN [59]. (i) PSD [60]. (j) Our method.

is not serious. In [55], the sky region is not in the scope of
comparison, and the clear image and the mask image are given
in [55], as shown in Fig. 13(a) and (f).

We choose five criteria: visibility index (VI) [55], realness
index (RI) [55], visual saliency-induced index (VSI) [57],
peak-signal-to-noise ratio (PSNR), and structural similarity
index measure (SSIM) [58] to evaluate the performance of
the dehazing methods, as shown in Table II.

The proposed algorithm obtains the highest values of VI,
RI, and SSIM, indicating that the proposed algorithm has
obvious advantages in visibility and realness. Although the
value of PSNR obtained by the proposed method is slightly
lower than that of DCP [25], NLD [29], and MSBDN [59],
DCP [25] has an obvious halo; NLD [29] has obvious color

distortion; MSBDN [59] has unclear details. DehazeNet [43]
has the highest VSI value of 0.957, while the VSI value of
the proposed algorithm is 0.948, which is very close to the
highest value.

In order to evaluate the color difference (CD) of the
dehazing images relative to the ground truth quantitatively,
we have selected four methods of quantitative evaluation
of color deviation in HSI [66], RGB [65], CIELAB [64],
and YCBCR [63] color spaces. The four methods are CD1
(Chrominance component CD [67]), CD2 (Adaptive image
difference [68]), CD3 (Color image difference [62]), and CD4
(Texture patch CD [61]).

According to the reference image [Fig. 11(a)], the above-
mentioned four methods are used to evaluate the CD of the
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Fig. 13. Experiments on BeDDE data set. (a) Clear image. (b) Input hazy image. (c) DCP [25]. (d) CAP [28]. (e) NLD [29]. (f) Mask image. (g) IDeRs [35].
(h) DehazeNet [15]. (i) EPDN [19]. (j) MSBDN [59]. (k) PSD [60]. (l) Our method.

TABLE III

CD VALUES FOR THE IMAGE IN FIG. 11

dehazing images in Fig. 11. Because the data obtained by
each method are not in a unified coordinate system, in order
to compare the data more clearly, we normalize the data of
each group, that is, divide each data by the maximum value of
the group; the results obtained are shown in Table III. In this
way, the maximum value of each group will be 1, and the
larger the value, the greater the CD.

Like our visual perception, IDeRs [35] and PSD [60]
have higher values because of the obvious color shifts. Our
method achieved the lowest value in the methods of CD3 [62]
and CD4 [61]. Although the values obtained in CD1 and
CD2 are not the lowest, they are only slightly higher than
DehazeNet [43] and MSBDN [59]. It shows that the proposed
method maintains the color integrity of the scene after dehaz-
ing better than other methods.

V. CONCLUSION

For single remote sensing image haze removal, we proposed
a dehazing method based on an LSP. Considering the overall
characteristics of the atmospheric scattering model, the dark
channel of a hazy image was decomposed into a sparse dark
channel of direct attenuation and a low-rank atmospheric veil.
The prior was based on the overall nature of the image;
therefore, local pixel changes had no effect on the prior, which
effectively enhanced the robustness of the prior.

In addition, the differences between remote sensing images
and natural images were fully considered. Considering the
different resolutions of remote sensing images, the calcula-
tions of patches involved in this article were completed by
adaptive methods. The PCP-ADMM method combined with
the adaptive threshold shrinkage method was used for low-

rank and sparse decomposition to obtain a coarse estimation of
the atmospheric veil, and the guided filter with adaptive radius
was used to refine it. Considering that there is no sky region
in remote sensing images, atmospheric light was estimated
by using a refined atmospheric veil. The haze-free image
was restored based on the deformed atmospheric scattering
model of the atmospheric veil and atmospheric light. Finally,
we conducted a large number of tests on remote sensing
images with different haze densities, different colors, and
different scenes in three public remote sensing data sets and
compared them with six advanced qualitative and quantitative
methods. The experimental results showed that the dehazed
image obtained by the proposed method has rich detail, high
contrast, and minimal halo artifacts and color distortion. This
result is superior to those of most state-of-the-art methods.
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