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Abstract

In this paper, a homography-based uncalibrated visual servo system with

neural-network-assisted robust filtering scheme and adaptive servo gain is

presented. This system employs a homography-based task function which is

robust to image defects. A neural-network-assisted robust filtering method

which combines the new form of smooth variable structure filter (SVSF) with

a radial basis function (RBF) neural network is proposed to estimate the total

Jacobian between task function and robot joints. The RBF neural network in

this filtering method plays the role as a corrector to further improve the accu-

racy and compensate the interference caused by the measurement errors of

image features. The controller that directly controls the robot joints based on

the estimated total Jacobian is designed for achieving the robustness to robot

parameters errors. By adopting this filtering scheme, the visual servo system

shows better accuracy and convincing anti-interference ability. In addition, a

novel Q-learning strategy is introduced for this homography-based system to

make adaptive adjustment for the servo gain. This adaptive gain enables the

system to achieve a faster convergence speed while ensuring the accuracy. Sev-

eral simulations and experiments have been carried out to verify the perfor-

mance of the proposed system.
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1 | INTRODUCTION

Visual servo control is a servo control method that
realizes the precise positioning of robot's end-effector or
camera by employing visual feedback. It can replace
manpower to perform automatic operations in harsh
environments and has a wide range of applications in

many fields, such as unmanned aerial vehicles [1, 2],
underwater vehicles [3, 4], and space robots [5, 6].
According to the different ways of employing visual feed-
back, visual servoing can be divided into position-based
visual servoing (PBVS), image-based visual servoing
(IBVS), and hybrid visual servoing. PBVS obtains the
information of relative pose in 3D Cartesian space based
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on visual feedback and forms a closed loop-system [7, 8].
IBVS directly uses 2D visual feedback to construct the
controller and constitutes a closed-loop system [9–12].
Hybrid visual servoing combines the above two
categories, so it is also called 2.5D visual servoing [13].
Among these methods, IBVS has attracted more
attention in recent years due to its better accuracy and
robustness [14].

In IBVS strategies, the pixel coordinates of image fea-
ture points are usually directly connected in series to
form the task function. The most pressing of issues in
IBVS is to obtain the mapping relationship from robot to
2D image plane, which is defined as the image Jacobian
matrix. In traditional method, the parameters of image
Jacobian matrix are obtained by system calibration and
depth estimation [15]. However, the performance of these
methods highly depends on the accuracy of system cali-
bration. Calibration errors and parameter changes will
cause a serious impact on the performance of the system.
To solve this problem, image-based uncalibrated visual
servoing (IBUVS) based on online techniques have been
proposed and widely used [16–20]. In this strategy, image
Jacobian matrix is estimated online in each control
period to construct the controller without calibrating the
system in advance. Therefore, IBUVS has better accuracy
and shows robustness to calibration errors and parameter
changes.

In practical applications, IBUVS encounters some
bottlenecks as well. Image feature defects caused by
motion blur, inconspicuous background contrast, and
occlusion of the field of view are the main reasons for
servo failure. Uncalibrated visual servoing based on pro-
jective homography (PHUVS) is the latest proposed solu-
tion that can overcome image feature defects [21, 22]. In
the PHUVS method, a target with more image feature
points is adopted, and the elements of the homography
matrix between the current and the desired image fea-
tures are used to construct the task function. The hom-
ography matrix can be calculated as long as there are no
less than four pairs of matched feature points. Therefore,
even if partial image feature defects occur, servo process
will not be interrupted. It is worth noting that no matter
how many feature points are identified, the dimension of
the task function remains constant. In Gu et al. [23], the
dimension of homography-based task function is further
reduced.

Another major issue is the online estimation of
image Jacobian matrix. There are two points should be
considered here. The first is the modeling uncertainty
caused by this local and linear approximation of the
nonlinear and highly coupled mapping relationship
between task function and robot. The other is the influ-
ence of the measurement noises caused by

measurement errors of image features. Classic image
Jacobian identification methods such as Broyden-based
method [24] and exponentially weighted recursive least
square update method [25] are not convincing in deal-
ing with unknown system structure and noise interfer-
ence. Particle filter demonstrates its anti-interference
ability, but its performance is unstable and its process
is complicated [26]. In recent years, the Kalman filter
(KF) which works as an optimal state estimator for
ideal linear dynamic systems with Gaussian white
noise, has become the mainstream method and show
better accuracy [19, 21, 22]. However, in most practices,
the measurement noises cause by the measurement
errors of image features are not always Gaussian white
noise, and its statistical characteristics are more compli-
cated. In this case, the KF will degenerate into a sub-
optimal filter and its accuracy will decrease or even
diverge [27]. Except for unstable Sage–Husa adaptive
KF method, adaptive KF methods based on fuzzy logic
are proposed to handle the noise with unknown statisti-
cal characteristics [28, 29]. However, their performances
depend on the formulation of fuzzy rules, and these
methods are mainly aimed at unknown Gaussian white
noise. These limitations lead to insufficient applicability
and stability. In a recently proposed variational
Bayesian (VB) adaptive KF method, the noise covari-
ance matrices are inferred based on the VB approach.
However, it mainly solves the problem of unclear
statistical characteristics of Gaussian white noise, and
the improvement of accuracy is based on more
iterations [30].

Combining the KF method with neural networks
(NNs) or other filter method is another feasible idea. In
Shenshu and Zhaoying [31], a feed-forward NN plays the
role of filtering gain for reducing the noise interference.
In Vaidehi et al. [32], a back-propagation NN is incorpo-
rated into KF method to improve the accuracy of tracking
the maneuvering targets by correcting the modeling
error. A multilayered NN is used to reduce the nonlinear
modeling error in tracking Kalman filter (TKF) in Takaba
et al. [33]. It is worth noting that these KF-NN methods
still rely on “known” noise statistics or an accurate linear
state space model of system. In Zhong et al. [27], NN is
introduced into KF method to compensate the interfer-
ence of noise without the above limitations and have a
convincing performance. However, this method requires
a large input dimension, resulting in a huge structure
and heavy computational burden of NN. In previous
works [23, 34, 35], a new form of the SVSF method (VBL-
SVSF) is proposed, which introduces the concept of the
state error covariance matrix of KF method into SVSF
method to derive the optimal time-varying smoothing
boundary layer (VBL). This derived smoothing boundary
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layer can be regarded as a measurement of the interfer-
ence caused by modeling uncertainty and measurement
noise. By switching between the optimal VBL-based gain
(or KF gain) and the conservative standard SVSF gain,
the optimality as shown in the KF method can be
pursued when the interference is not obvious; otherwise
the conservative and robustness of the SVSF method will
be sought. It shows convincing accuracy and anti-
interference performance than the SVSF method and KF
method. However, even if a certain degree of improve-
ment can be obtained, the decrease in accuracy caused by
measurement noise is still inevitable. Moreover, inappro-
priate filter parameters of the VBL-SVSF method will
lead to decrease in accuracy as well.

Another problem which is often ignored is the selec-
tion of servo gain. When the initial error of system is
large, a large servo gain will easily lead to the instability
of the system, while a small servo gain will cause the sys-
tem to converge too slowly. In recent years, the adaptive
gain that takes both stability and convergence speed into
account has attracted more attention. In Xu et al. [36], a
monitor is designed to make a rough adjustment of servo
gain, but its weak adaptive ability limits its performance
and applicability. For nonlinear second-order system, Jin
et al. [37] put forward an adaptive state-feedback-based
method to adjust the gain. In Wang et al. [38], a finite-
time observer is designed to estimate the error, and the
gain is obtained based on the uncertainty of estimation
error. However, the design of the state-feedback loop and
observer is very complicated, making these methods
unsuitable for visual servo. In comparison, Q-learning
with self-learning ability is a more reasonable choice. In
Shi et al. [39], the servo gain for a decoupled visual servo
system is adjusted by Q-learning and shows strong
adaptive ability to the environment. In Kang et al. [40],
Q-learning is adopted to adaptively adjust the servo gain
for an extreme learning machine-based visual servo
system, and the convergence speed of this system is
improved.

In this paper, a novel PHUVS system with NN-
assisted robust filtering scheme and adaptive servo gain
is proposed. In this system, a homography-based task
function with robustness to image defects is adopted, and
a discrete controller that directly controls robot joints
based on estimated total Jacobian is designed for
obtaining the robustness to robot parameter errors. With-
out various calibrations of system parameters, a novel
robust filtering scheme which combines the VBL-SVSF
method and RBF NN is presented to do online estimation
of the total Jacobian matrix, which is the mapping rela-
tionship between the homography-based task function
and the robot joints. In this novel filtering scheme, an
RBF NN is integrated into the VBL-SVSF method as a

corrector of state estimation error, for further improving
the robustness and compensating the estimation error
caused by the measurement errors of image features.
Compared with the KF method and VBL-SVSF
method, our proposed scheme shows more convincing
performance. Moreover, a novel Q-learning strategy
corresponding to the proposed homography-based system
is presented to obtain the Q-table for decision making.
According to the convergent Q-table, the servo gain is
adjusted adaptively at each interval to achieve the opti-
mal value, for improving the convergence speed while
ensuring the accuracy. Finally, the complete novel
PHUVS framework employing NN-assisted robust filter-
ing scheme and Q-learning are described. The results of
simulations and experiments prove the improvement of
the novel robust filtering scheme in the positioning
accuracy and the anti-interference ability. The increase in
convergence speed brought by the proposed Q-learning
strategy has been verified as well.

The structure of this paper is introduced as follows.
The basic principle of PHUVS is introduced in the next
section. In Section 3, the NN-assisted robust filtering
scheme is proposed. In Section 4, a method of adaptive
gain using Q-learning is proposed. The complete frame-
work of the proposed PHUVS is described in Section 5.
Results of experiment and simulation are given to verify
the effectiveness of the proposed system in Section 6. At
last, the conclusion is presented in Section 7.

2 | VISUAL SERVOING BASED ON
PROJECTIVE HOMOGRAPHY

The basic framework of PHUVS is introduced in this
section. For eye-in-hand configuration system, the cam-
era moves with the robot end-effector and the purpose
of visual servoing can be understood as controlling the
camera to reach the desired pose. The current coordi-
nate system F and the desired coordinate system F� of
this eye-in-hand camera are defined as shown in
Figure 1. R � ℝ3�3 and t � ℝ3�1 are the orientation
matrix and displacement vector between F and F�

expressed in F. d� is the distance between the desired
projection center and the target plane π. pi ¼ ui vi 1½ �0 and
pi

� ¼ ui� vi� 1½ �0 are the homogeneous pixel coordinates
of the feature point P captured by the camera in current
pose and the camera in desired pose, respectively. There
is a mapping relationship between these two homoge-
neous coordinates as

pi ¼
Z�
i

Zi
K Rþ tn�T� �

K�1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
H3�3

pi
�, ð1Þ
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where K is the internal parameter matrix of camera and
n� is the normal vector of π expressed in the F� with
length n�k k¼ 1=d�. Zi and Z�

i are the depth information
of feature point P in F and F�, respectively. H is defined
as the projective homography matrix which can be esti-
mated with at least four pairs of matched feature points.
There is an unknown scale relationship between the esti-
mated and the defined homography matrix as H¼ βH,
where β is independent of the depth ratio Z�

i =Zi. Since
the homography matrix can be scaled with any scale, a
constraint h9 ¼ 1 is defined to obtain a unique solution in
each period, where h9 is the last element of H. Then, the
homography-based task function is formed by the
elements of the estimated homography matrix H as

h¼ h1 h2 � � � h8
� �T

8�1: ð2Þ

Gu et al. [23] prove that if and only if H is an identity
matrix, the current camera pose coincides with the
desired pose, which means R¼ I and t¼ 0. Thus, the
error vector of system is denoted as

s¼ h1 h2 � � � h8
� �T
� 1 0 0 0 1 0 0 0½ �T :

ð3Þ

A proportional control law that controls the robot
joints can be designed as

_q¼�λ JrJcð Þþs, ð4Þ

where Jc is the Jacobian matrix between task function
and robot end-effector. Jr is the robot Jacobian and λ is
the servo gain.

3 | NN-ASSISTED ROBUST
FILTERING SCHEME FOR TOTAL
JACOBIAN ESTIMATION

In uncalibrated visual servo system, analytical form of
the hand-eye relationship Jc between task function and
end-effector cannot be obtained. In addition, the calcula-
tion of the Jacobian Jr between robot joints and end-
effector is sensitive to the robot parameter errors [23].
Therefore, a robust identification strategy combining the
VBL-SVSF method and RBF NN is introduced to estimate
the total Jacobian between task function and robot joints
directly. The detail of this strategy is introduced in this
section.

3.1 | State space model for total Jacobian
estimation

The total Jacobian Jt which refers to the mapping rela-
tionship between the task function and the n degree of
freedom (DOF) robot joints is defined as

_h¼ Jt _q, ð5Þ

Jt ¼
∂h1=∂q1 � � � ∂h1=∂qn

..

. . .
. ..

.

∂h8=∂q1 � � � ∂h8=∂qn

2664
3775
8�n

¼
J11 � � � J1n

..

. . .
. ..

.

J81 � � � J8n

2664
3775
8�n

,

ð6Þ

where _q represents the joint velocities of an n-DOF robot.
The total Jacobian can be estimated online by state space
identification method. Thus, a linear discrete-time state
space model of uncalibrated visual servo system is
defined as follows:

XKþ1 ¼AXK , ð7Þ

ZK ¼HKXK þηK , ð8Þ

where ηk is defined as the measurement noise with a
covariance matrix Vk. A is the state transition matrix of
the system and it is an identity matrix. The state vector
XK is constructed by concatenating each row of the total
Jacobian matrix as

FIGURE 1 Projective homography model
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XK ¼ J11J12 � � � J8n½ �T8n�1: ð9Þ

The observation vector ZK is the amount of change
in the task function between two adjacent sampling
period as

ZK ¼ h Kþ1ð Þ�h Kð Þ: ð10Þ

And the observation matrix HK is constructed by joint
velocities and sampling time ΔT as

HK ¼
_qTΔT � � � 0

..

. . .
. ..

.

0 � � � _qTΔT

2664
3775
8�8n

: ð11Þ

When the measurement noise ηk complies with the
statistical characteristic of Gaussian white noise, the KF
method can obtain the optimal estimation of system state
vector XK . In practice, the statistical characteristic of
measurement noise caused by the measurement errors
of image features is often more complex and unavailable.
Coupled with the interferences caused by other
modeling uncertainties, the accuracy of the KF method
will decrease. In the VBL-SVSF method, by deriving
time-varying boundary layer and switching the filter
gains, the optimality as shown in the KF method can be
pursued when these interferences are not obvious;
otherwise the conservatism and robustness of the
SVSF method will be sought. However, even if a certain
degree of improvement can be obtained, the decrease
in accuracy caused by measurement noise still cannot
be ignored. In addition, the inappropriate switching
threshold will lead to a decrease in accuracy as well.
Thus, an NN-assisted VBL-SVSF scheme is proposed to
further improve the performance of the VBL-SVSF
method.

3.2 | NN-assisted filtering scheme

In the VBL-SVSF method, the concept of state error
covariance matrix is introduced into the original SVSF
method [34], which is defined as

Pk ¼
eE eT1 e1
� � � � � eE eT1 e8n

� �
..
. . .

. ..
.

eE eT8ne1
� � � � � eE eT8ne8n

� �
2664

3775
8n�8n

, ð12Þ

ei ¼XKi� X̂Ki, ð13Þ

where eE eTi ej
� �

represents the mean of eTi ej. XKi and X̂Ki

are the ith elements of the true state vector XK and the
estimated state vector X̂K , respectively. To minimize the
diagonal elements of state error covariance matrix PK , an
optimal time-varying smoothing boundary layer ΘKþ1 is
derived as follows. The a priori state vector is updated
according to the system model 7 at first:

X̂Kþ1 Kj ¼ X̂K Kj , ð14Þ

where X̂K Kj is the estimated state vector in previous itera-
tion. Next, the a priori state error covariance matrix is
obtained:

PKþ1 Kj ¼ PK Kj þWK , ð15Þ

where PK Kj is the a posteriori state error covariance
matrix in the previous iteration. Then, the residuals vec-
tors of system are calculated as

eZ,Kþ1 Kj ¼ZKþ1�HKþ1X̂Kþ1 Kj , ð16Þ

eZ,K Kj ¼ZK �HKX̂K Kj : ð17Þ

And the optimal time-varying smoothing boundary
layer ΘKþ1 can be calculated as

ΥKþ1 ¼HKþ1PKþ1 Kj HT
Kþ1þVKþ1, ð18Þ

EKþ1 ¼ μ eZ,K Kj
		 		

absþ eZ,Kþ1 Kj
		 		

abs, ð19Þ

ΘKþ1 ¼ E
�1
Kþ1HKþ1PKþ1 Kj HT

Kþ1Υ
-1
Kþ1


 �-1
, ð20Þ

where EKþ1 is the diagonal matrix constructed with EKþ1

and μ is a positive coefficient. The calculated optimal
time-varying smoothing boundary layer ΘKþ1 of the
PHUVS system is always a diagonal matrix as
ΘKþ1 ¼ diag θ1ð ÞKþ1 θ2ð ÞKþ1 � � � θ8ð ÞKþ1

� �
, and it is a

measurement of the disturbance caused by modeling
uncertainty and noise as well.

Compare the calculated VBL ψKþ1 with a threshold
ΘS which is determined based on prior knowledge of
system; when ΘKþ1 ≤ΘS, the optimal VBL-based gain is
calculated as

KKþ1 ¼Hþ
Kþ1EKþ1Θ�1

Kþ1: ð21Þ

It means that the optimality of estimation can be pur-
sued by this VBL-based gain when the interference is

3438 GU ET AL.
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limited. When ΘKþ1 >ΘS, the interference is considered
serious and the conservative SVSF gain is switched to
maintain the robustness of estimation as follows:

KKþ1 ¼Hþ
Kþ1diag EKþ1 ∘Sat

eZ,Kþ1 Kj
Θ


 �h i
� diag eZ,Kþ1 Kj

� �� ��1
, ð22Þ

where Sat �ð Þ represents a saturation function [34, 35]
and Θ � ℝ8�1 is the standard boundary layer in SVSF.
The a posteriori state error covariance matrix can be
updated by the selected filtering gain KKþ1 as

PKþ1 Kþ1j ¼ I�KKþ1HKþ1ð ÞPKþ1 Kj I�KKþ1HKþ1ð ÞT
þKKþ1VKþ1K

T
Kþ1: ð23Þ

Finally, the estimated state vector X̂Kþ1 Kþ1j can be
obtained by filtering gain:

X̂Kþ1 Kþ1j ¼ X̂Kþ1 Kj þKKþ1eZ,Kþ1 Kj : ð24Þ

Although switching between the optimal VBL-based
gain and the robust SVSF gain can achieve a balance
between optimality and robustness in theory, the
decrease in filtering accuracy caused by measurement
noise still cannot be ignored. In addition, inappropriate
gain switching threshold ΘS will affect the accuracy as
well. Thus, X̂Kþ1 Kþ1j can be considered as a conservative
suboptimal estimation of the state vector of system. The
relationship between the desired state vector XKþ1 and
the suboptimal estimated state vector can be defined as

XKþ1 Kþ1j ¼ X̂Kþ1 Kþ1j þ eX̂Kþ1 Kþ1j , ð25Þ

where eX̂Kþ1 Kþ1j is the unknown estimation error caused
by the measurement noise of system. In order to realize
an accurate estimation of the state vector and improve
the robustness to unknown disturbances, a generalized
RBF NN is integrated into the VBL-SVSF method. This
RBF NN has a convincing ability to fit nonlinear
mapping relationships and shows excellent training
speed and accuracy. It is designed to play the role as a
corrector for estimating and compensating the estimation
error eX̂Kþ1 Kþ1j .

As illustrated in Figure 2, RBF NN has a three-layer
structure including input layer and hidden layer and
output layer. Each neuron of the hidden layer is con-
nected to all neurons of the input layer, and the output of
the ith hidden layer neuron is calculated by a basis func-
tion as

ni ¼ f Ψk,Φið Þ, ð26Þ

where Ψk � ℝl�1 is the input vector of the kth training
sample and Φi is the center of the basis function. The
Gaussian basis function is defined as

f Ψk,Φið Þ¼ exp � 1
2σ2

Ψk�Φik k
� 


, ð27Þ

where σ represents the standard deviation of the basis
function. Ψk�Φik k denotes the Euclidean distance
between the input vector Ψk and the center of basis func-
tion Φi, and it can be obtained as

FIGURE 2 The structure of RBF

neural network
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Ψk�Φik k¼ ΨT
k �ΦT

i

� �
Ψk�Φið Þ: ð28Þ

The output of the output layer neuron is the weighted
linear sum of the output of each hidden layer neuron.
For example, at the kth training sample, the output of the
jth output layer neuron is calculated as

ykj ¼ω0þ
XI

i¼1

ωijni: ð29Þ

where ω0 is an additional adjustable threshold. ωij is the
connection weight between the ith hidden layer neuron
and the jth output layer neuron. Mature parameter
learning algorithms, including regularization method
[41], fast hybrid method [42], and gradient descent
method, can be adopted to determine the center of basis
function Φ and update the connection weights ω between
the hidden layer and the output layer. The gradient
descent method is realized through the following iterative
process:

Γ¼ 1
2

XN
n¼1

XM
m¼1

dnm-ynmð Þ2, ð30Þ

ωij kþ1ð Þ¼ωij kð Þ�η1
∂Γ

∂ωij kð Þ , ð31Þ

Φi kþ1ð Þ¼Φi kð Þ�η2
∂Γ

∂Φi kð Þ , ð32Þ

where dnm and ynm are the desired output and the actual
output of mth output layer neuron with nth training sam-
ple, respectively, η1 and η2 are the learning rates. The gra-
dient descent method may encounter the problem of
local minimum. When its fitting ability is not satisfactory,
regularization method and fast hybrid method can be
adopted instead.

The complete robust filtering scheme assisted by RBF
NN is illustrated in Figure 3. The inputs of this NN-based
state error corrector is designed as

ΨKþ1 ¼ ΘT
Kþ1 eT

X̂Kþ1
eTZ,Kþ1 Kj

h iT
, ð33Þ

where ΘKþ1 is a column vector constructed by the
diagonal elements of the optimal time-varying smoothing
boundary layer ΘKþ1. eX̂Kþ1

is defined as the difference
between the estimated state vectors of two adjacent
periods:

eX̂Kþ1
¼ X̂Kþ1 Kþ1j -X̂Kþ1 Kj ¼ X̂Kþ1 Kþ1j -Z�1X̂Kþ1 Kþ1j , ð34Þ

where Z�1 represents a unit of time delay. eZ,Kþ1 Kj is the
residuals vector of system introduced in Equation 16. The
output of this state error corrector is êX̂Kþ1 Kþ1j which is
considered as an estimation of eX̂Kþ1 Kþ1j in Equation 25.
Thus, the optimal estimated state estimation based on
this NN-assisted robust filtering scheme is denoted as

eXKþ1 Kþ1j ¼ X̂Kþ1 Kþ1j þ êX̂Kþ1 Kþ1j , ð35Þ

FIGURE 3 The block

diagram of neural-network-

assisted robust filtering scheme
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where the estimation error caused by measurement error
of image features has been compensated. According toeXKþ1 Kþ1j , the more accurate estimated total Jacobian can
be obtained and the performance of the PHUVS system
can be improved as well.

4 | ADAPTIVE SERVO GAIN WITH
Q-LEARNING

The convergence speed, positioning accuracy, and stabil-
ity of the system are affected by the servo gain λ. Thus, a
self-adjusting adaptive servo gain is a feasible solution of
this problem. The Q-learning strategy that does not require
complex rules and detailed prior knowledge of the envi-
ronment is the most suitable choice for adaptive adjust-
ment of the servo gain [40, 43]. In this section, a novel
Q-learning strategy is proposed to adjust the servo gain of
the PHUVS system and its details is introduced as follows.

4.1 | Q-table and updating law

Q-learning establishes a mapping relationship, which
refers to how much reward value will be obtained when
taking a certain action a in a certain state Se. This map-
ping relationship can be summarized as a Q-table and
the reward value of the state-action pair is defined as
Q Se,að Þ. During training, the Q Se,að Þ is continuously
updated until a converged Q-table is obtained and the
update law of the Q Se,að Þ is denoted by

Qkþ1 Ske ,ak
� �¼Qk Ske ,ak

� �
þβ rþ γmax

akþ1
Qk Skþ1

e ,akþ1
� ��Qk Ske ,ak

� �� �
,

ð36Þ

where β represents the learning rate and 0 ≤ β ≤ 1; γ is
a reward factor and 0≤ γ ≤ 1. The r is determined
through a well-designed reward function. After taking
action ak in state Ske , the state reaches Skþ1

e and
max
akþ1

Qk Skþ1
e ,akþ1

� �
is the maximum reward value that

can be achieved in state Skþ1
e by taking an action akþ1.

In actual application, the optimal strategy of adaptive
adjustment of servo gain is achieved as

π Ske
� �¼ arg max

a
Q Ske ,a
� �

, ð37Þ

which means that the action is selected with the
maximum reward value in each state according to the
converged Q-table.

4.2 | Selection and partition of state
space

In our proposed PHUVS system, a controller that directly
controls the robot joints based on the estimated total
Jacobian matrix is designed. Due to this issue, when the
robot has much degrees of freedom, the dimension of the
gain matrix will become very large. If different gains are
used in each dimension of the gain matrix and indepen-
dent Q-learning strategy is designed to adjust each gain,
it will cause a great workload. Thus, a servo gain matrix λ
which is consistent in all dimensions is adopted as

λ¼
λ1 � � � 0

..

. . .
. ..

.

0 � � � λn

2664
3775
n�n

,λ1 ¼ λ2 ¼ �� �λn: ð38Þ

And a Q-learning strategy is designed to adjust the
gain a in all dimensions simultaneously.

The gain matrix is closely related to the task function
error and total Jacobian. Considering the problem of
computational complexity and dimension matching, task
function error is inappropriate to being selected as the
state space of Q-learning. Instead, the inner product of
task function error s is chosen as the state space

Se ¼ Se Se ¼ sTs
		� �

: ð39Þ

According to the distribution characteristics of the
norm of task function error sTs during servo process, par-
tition method of state space is designed. The interval in
the middle of the state space can be divided as follows:

Siþ1
e ¼ Smax�10�i,Smax�10�iþ1

� �
, i¼ 1,2, � � �,n�1,

ð40Þ

where Smax represents the order of magnitude of the max-
imum value of sTs and n is the corresponding orders of
the magnitude. The intervals at the beginning and the
end of state space are defined as

S1e ¼ Smax,þ∞f g, ð41Þ

Snþ1
e ¼ 0,Smax�10�nþ1

� �
: ð42Þ

4.3 | Action space and reward function

Servo gain is the target to be adjusted by Q-learning, and
it is naturally chosen as the action space. An excessive
servo gain will lead to the instability of system, and the
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resulting violent movement of the robot can even damage
the mechanical structure of the system. Conversely, a too
small servo gain will make the convergence time of the
system too long and reduce the efficiency of the system.
Thus, an action set with m gains is given as the action set
a¼ ai i¼ 1, � � �,mjf g.

ε- greedy strategy is adopted to determine the
corresponding actions during the training of Q-learning.
This strategy is an improvement of the greedy strategy, in
order to explore more possible actions. It chooses actions
according to the maximum value of Q-table with a proba-
bility of 1-ε and randomly choose actions with a probabil-
ity of ε. The probability ε is defined as ε¼ μn, where μ is
a constant probability and n is the number of training
times. This means that at the beginning of training, more
random actions are selected to explore more possibilities.
As the training progresses, the value of the Q-table
becomes more and more convincing, so more select
actions based on the Q-table.

The purpose of adjusting the servo gain is to acceler-
ate the convergence speed without affecting the perfor-
mance of system. Thus, the reward function is designed
separately based on the following two different conditions

1. When the task function is moving away from the
desired value after selecting an inappropriate servo
gain, a worst reward value should be given as a pen-
alty to avoid choosing this gain again.

2. When the task function is approaching the desired
value, a changing reward value should be given. The
closer the current task function is to the desired value,
the better the value of the reward function should be
determined.

In summary, the reward function is designed as

r¼
�5r0, if Δs>0

�r0 sTk sk
� �

= sT0 s0
� �� �1=2

,else,

(
ð43Þ

where r0 is a constant positive value and s0 is the initial
value of the task function error. sk is the norm of task
function error in the kth iteration of the training process
and Δs is defined as Δs¼ sTk sk� sTk-1sk-1.

5 | THE FRAME OF PHUVS WITH
NN-ASSISTED FILTERING SCHEME
AND Q-LEARNING

The frame of this PHUVS system is illustrated in
Figure 4. A discrete proportional controller is designed as

Δq¼�λJþt s, ð44Þ

where Δq is the joint angle increment obtained by dis-
cretizing the joint velocities _q through sampling time ΔT.
Jþt is the Moore–Penrose pseudoinverse of the total Jaco-
bian Jt estimated by this proposed NN-assisted filtering
scheme. The singularity and ill-condition problems of the
total Jacobian that may appear in the servo process can
be dealt with by the singular value filtering method [23].
λ is the adaptive servo gain adjusted by the proposed Q-
learning strategy.

The training sample set of this RBF-NN-based correc-
tor is obtained through the original VBL-SVSF cycle and
the RBF NN is trained offline. The norm of task function
error sTs in the PHUVS system is adopted as the real-time
state in the training of Q-learning and the reward func-
tion is calculated by the task function error s as well.
Trained with the proposed PHUVS system, a converged
Q-table can be obtained for adaptive adjustment of
servo gain.

In addition, the estimated initial total Jacobian Jt can
be calculated by performing several trial movements as
J0 ¼ Δh1,Δh2, � � �Δhn� �

8�n Δq1,Δq2, � � �Δqn½ ��1
n�n.

Δh1,Δh2, � � �Δhn are the corresponding change in task
function brought by n steps linearly independent trial
movement Δq1,Δq2, � � �Δqn.

FIGURE 4 The structure of our proposed

PHUVS system
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6 | RESULTS AND DISCUSSIONS

6.1 | Simulations

In this section, several simulations are carried out to ver-
ify our proposed PHUVS method with NN-assisted robust
filtering scheme and Q-learning. The simulation system
consists of a 9-DOF manipulator independently designed
by our team and an eye-in-hand camera with a resolution
of 1280�960. The structure of the manipulator is shown
in Figure 5, and the DH parameters of the manipulator
are given in Table 1. Various settings of the simulations,
such as target size and measurement errors of image fea-
tures, are set according to the actual working conditions

FIGURE 5 Manipulator structure and link

coordinate systems of 9-DOF manipulator

TABLE 1 D-H parameters of 9-DOF manipulator

Joint qn αn�1 an�1 dn Limit

1 q1 0 0 0 ±90�

2 q2 90� 165.5 0 ±90�

3 q3 �90� 165.5 0 ±90�

4 q4 90� 165.5 0 ±90�

5 q5 �90� 165.5 0 ±90�

6 q6 90� 165.5 0 ±90�

7 q7 �90� 165.5 0 ±90�

8 q8 90� 165.5 0 ±90�

9 q9 �90� 165.5 0 ±90�

GU ET AL. 3443
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in order to simulate the performance of the system
under actual working conditions [44]. As shown in
Figure 6A, the target is composed of multiple rings, and
the center of the ring is used as the feature points.
According to affine invariance, the ratio of the inner ring
to the outer ring and the distance from the solid circle in
the middle are used to encode the feature points. As
shown in Figure 6B, clear image of the target can be
obtained in a well-lit laboratory environment with low
noise, and the sufficiently accurate measurement of fea-
ture points can be obtained based on multiple measure-
ments and averaging by using robust ideal feature fitting
method [44]. However, as shown in Figure 6C, when the
interference caused by illumination and image noise
existed, the measurement error of image features cannot
be ignored. In order to test the performance of the pro-
posed method, random measurement errors of image
feature with different statistical characteristics are added
during the simulations.

The training sample set of the RBF NN is collected
from simulations of the VBL-SVSF method. The optimal
time-varying smoothing boundary layer ΘKþ1 �ℝ8�1,
state estimation increment eX̂Kþ1

�ℝ72�1, system residuals
vector eZ,Kþ1 Kj �ℝ8�1, and the corresponding output
eX̂Kþ1 Kþ1j �ℝ72�1 can be obtained in each iteration of these
simulations. In this paper, a total of 557 pairs of input–
output samples are collected to train the NN. According
to the dimension of the task function and the DOF of the
manipulator, the input layer of the NN is a fixed struc-
ture with 88 neurons and the output layer has 72 neurons.
After the training of NN, a hidden layer with 500 neurons
is obtained and the mean square error between the
desired output and the actual output can reach 1:2�10�6

which demonstrates the convincing fitting ability of the
trained RBF NN to training samples set.

The main purpose of visual servo is to control the end
effector of manipulator move from the initial pose to the

desired pose. Performances under different initial pose
errors including pure translation, pure rotation, and gen-
eral motion will be simulated.

1. Pure translation: The initial pose error between the
initial pose and the desired pose of the manipulator is
defined as

Δx Δθ½ � ¼ �230mm 150mm 350mm 0 ∘ 0 ∘ 0 ∘½ �:

2. Pure rotation: The initial pose error between the ini-
tial pose and the desired pose of the manipulator is
defined as

Δx Δθ½ � ¼ 0 0 0 �10 ∘ �20 ∘ 45 ∘½ �:

3. General motion: The initial pose error between the
initial pose and the desired pose of the manipulator is
defined as

Δx Δθ½ � ¼ �450mm 260mm 100mm �30 ∘ �5 ∘ 36 ∘½ �:

The positioning error after the task function con-
verges is the most typical indexes to compare different
visual servo systems [21]. Therefore, translation error xe
and orientation error θe are selected as the performance
index to verify the superiority of our proposed method. In
order to test the robustness in the actual working
environment, different levels of positioning errors of
image features are added in each simulation according
to actual condition. The gain switching threshold of

FIGURE 6 (A) Design drawing of the target, (B) target image collected in a normal environment, (C) target image collected in a noisy

environment with insufficient light
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the VBL-SVSF method is defined as ΘKþ1 ¼ 103�
diag 1 1 5 1 1 5 0:1 0:1ð Þ and an optimal fixed servo
gain λ¼ 0:02 is selected after several attempts. In order to
make the test results more reasonable and convincing,
take the mean values of 50 simulations as the test result
for comparison.

The positioning error of the KF method, VBL-SVSF
method, and proposed method in different initial pose
error are tested under different statistical characteristics
of measurement error of image features. All the test
results of the three methods are shown in Table 2. Vj j
represents the mean value of the measurement errors of
image and σ represents the standard deviation. It's obvi-
ous that our proposed method shows the most convinc-
ing performance. The proposed method shows the best
positioning accuracy than the KF method and VBL-SVSF
method regardless of the statistical characteristics of mea-
surement errors of image feature. This is because the sta-
tistical characteristics of the system measurement noise
caused by the measurement error of the image feature
points are difficult to determine. Thus, the optimality of
the KF method will be lost and its accuracy for estimating
the total Jacobian matrix will be greatly reduced as well.
The VBL-SVSF method shows better accuracy than the
KF method by introducing the optimal time-varying
smoothing boundary layer into the SVSF method. How-
ever, its performance in positioning accuracy is still insuf-
ficient. Compared with VBL-SVSF method, our proposed
robust filtering scheme introduces an RBF NN to play the
role of a corrector to compensate the estimation error
caused by measurement noise. According to the test
results, its better performance in accuracy and robustness
can be verified.

The interference of measurement noise on the servo
process cannot be ignored as well, especially in the case
of large initial pose error that combine translation error
and rotation error. Taking the above case of general
motion as an example, the performance of each method
under different levels of features measurement errors was
simulated. As shown in Figure 7, when measurement
errors of image features with Vj j ¼ 0:08 and σ¼ 0:1 are
added, the camera trajectories in Cartesian space and the
feature trajectories in the image plane of all the three
methods are still smooth. In Figure 8A,B, when the simu-
lations are carried out under measurement errors of
image features with Vj j ¼ 0:12 and σ¼ 0:15, although all
three methods can successfully converge, the feature tra-
jectories and the camera trajectories of both the KF
method and VBL-SVSF method show obvious distur-
bances. In comparison, as shown in Figure 7C, our pro-
posed robust filtering scheme maintains smooth image
trajectory and camera trajectory, which proves the anti-
interference ability of our proposed method. When the
measurement errors of image features are increased to
Vj j ¼ 0:16 and σ¼ 0:2, the fluctuations of the feature tra-
jectory and camera trajectory of the KF method and the
VBL-SVSF method have become more serious as shown
in Figure 9. In actual work, such fluctuations will bring
many undesirable effects to the system which may result
in the failure of the servo task, and sometimes it may
even result in the damage to the mechanical structure of
the visual servo system. Therefore, these fluctuations
should be avoided as much as possible. As can be seen in
Figure 8C, our proposed method not only has a better
feature trajectory in image plane but also a smooth cam-
era trajectory in Cartesian space. In other words, our

TABLE 2 Positioning errors of different method

Task Method

Noise

Vj j ¼ 0:08,σ¼ 0:1 Vj j ¼ 0:12,σ¼ 0:15 Vj j ¼ 0:16,σ¼ 0:2

xe θe xe θe xe θe

Pure translation KF 0.3651 0.0005 0.7993 0.0021 1.2124 0.0034

VBL-SVSF 0.1733 0.0002 0.3323 0.0001 0.5338 0.0014

Proposed method 0.0841 6�10�6 0.1338 4�10�5 0.2279 0.0003

Pure rotation KF 0.2902 0.0005 0.7403 0.0016 1.3801 0.0029

VBL-SVSF 0.1834 0.0003 0.3667 0.0009 0.7058 0.0016

Proposed Method 0.1295 0.0001 0.2532 0.0005 0.5634 0.0012

General motion KF 0.8946 0.0019 1.3334 0.0030 2.1645 0.0052

VBL-SVSF 0.5359 0.0012 1.0350 0.0024 1.4724 0.0034

Proposed method 0.4070 0.0009 0.6979 0.0015 0.8944 0.0020

Note: xe is in millimeter and θe is in radian. Bold values highlight the results of our proposed method.
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proposed filtering scheme suppresses the occurrence of
fluctuations in the servo process and shows more con-
vincing anti-interference ability.

In the case of large initial pose error, the selection of
servo gain is important. When the task function is far
from the desired value, a large servo gain will cause the
system to be unstable, while a small servo gain can
ensure the stability; when the task function is close to the
desired value, a small servo gain will cause the system to
converge slowly, while a large servo gain can speed up
the convergence and improve the positioning accuracy.
Still taking the above case of general motion as an exam-
ple, the Q-learning strategy is used to adaptively adjust
the servo gain of our proposed visual servo system. The
state space of Q-learning is divided into six intervals.
According to several simulations, the reasonable range of
servo gain is roughly determined, and the action set is
designed in a uniformly distributed manner as

a¼ 0:02 0:05 0:1 0:15 0:2 0:25 0:3f g:

The reward factor is set as γ¼ 0:8 to fully consider the
current rewards, and the learning rate of Q-learning is
selected as β¼ 0:5 to balance the existing knowledge and
the current rewards. To explore more possibilities, the
probability of randomly choosing an action in Q-table is
set as ε¼ 0:9n, and it will decrease as the number of
training n increases. The parameter of reward function is
defined as r0 ¼ 100. The training will be iteratively car-
ried out until a convergent Q-table can be obtained. In
each episode, if the norm of the task function error is less
than a threshold 0.02, the episode will stop and the
iteration numbers of servo process will be recorded.
The training results of the Q-learning strategy for adap-
tive servo gain are shown in Figure 10. It represents
the change in the number of iterations required for the
system to converge during the process of training. The

FIGURE 7 Simulation results of general motion case with noise Vj j ¼ 0:08 and σ¼ 0:1. The first, second, and third rows are the results

of (A) the KF method, (B) the VBL-SVSF method, and (C) our proposed method, respectively. The first, second, and third columns are

(1) image feature trajectories, (2) camera trajectories in Cartesian space, and (3) image feature errors, respectively
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Q-table was trained 100 times and converged at the
76th times.

After the training of Q-learning, a convergent Q-table
can be obtained for self-adjusting the servo gain during
servo process. As in the previous simulation, our pro-
posed system with adaptive servo gain is tested under dif-
ferent level of measurement error of image features. The
number of iterations required for the system to converge
are listed in Table 3, and the positioning error are shown
in Table 4. These results are the mean values of 50 simu-
lations. It's obvious that the system with adaptive servo
gain shows faster convergence speed and further
improves the positioning accuracy. The performance of
the system with adaptive servo gain under different levels
of measurement error of image feature is shown in
Figure 11. Compared with the system using a fixed gain
as shown in Figures 7–9, the system with adaptive gain
shows smooth feature trajectory and camera trajectory as

well. However, it achieves convergence with fewer itera-
tions, which is much faster than the system with fixed
servo gain. This illustrates that while the adaptive servo
gain speeds up the convergence speed, it does not result
in the loss of robustness and anti-interference ability. As
a conclusion, the advantages of our proposed system with
robust filtering scheme and adaptive servo gain can be
fully verified.

6.2 | Experiments

In order to evaluate the performance of the proposed
method in the actual working environment, experiments
based on 9-DOF robot are conducted. As shown in
Figure 12, the experimental platform is arranged to simu-
late the case that achieving the alignment of the two
manipulators based on visual servo system. The

FIGURE 8 Simulation results of general motion case with noise Vj j ¼ 0:12 and σ¼ 0:15. The first, second, and third rows are the results

of (A) the KF method, (B) the VBL-SVSF method, and (C) our proposed method, respectively. The first, second, and third columns are

(1) image feature trajectories, (2) camera trajectories in Cartesian space, and (3) image feature errors, respectively
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cooperative target with nine feature points is installed at
the end-effector of Universal Robot, and the camera with
resolution 1280�960 is mounted at the end-effector of
9-DOF manipulator. In order to simulate the actual
working condition, the initial pose error is set to the more
common case of general motion that combines transla-
tion error and rotation error

Δx Δθ½ � ¼ �250mm 300mm 100mm �30 ∘ �3 ∘ 30 ∘½ �:

A training sample set that contains 403 pairs of
input–output samples is used for training the NN-based
corrector. The trained NN has an input layer with 88 neu-
rons, a hidden layer with 350 neurons, and an output
layer with 72 neurons. The state space of Q-learning is

FIGURE 9 Simulation results of general motion case with noise Vj j ¼ 0:16 and σ¼ 0:2. The first, second, and third rows are the results

of (A) the KF method, (B) the VBL-SVSF method, and (C) our proposed method, respectively. The first, second, and third columns are

(1) image feature trajectories, (2) camera trajectories in Cartesian space, and (3) image feature errors, respectively

FIGURE 10 Q-learning convergence result for simulation
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TABLE 3 The number of iterations

required for the system to converge
Method

Noise

Vj j ¼ 0:08,σ¼ 0:1 Vj j ¼ 0:12,σ¼ 0:15 Vj j ¼ 0:16,σ¼ 0:2

Fixed gain 367 402 428

Adaptive gain 176 188 217

Note: Bold values highlight the results of our proposed method.

TABLE 4 Positioning errors

Method

Noise

Vj j ¼ 0:08,σ¼ 0:1 Vj j ¼ 0:12,σ¼ 0:15 Vj j ¼ 0:16,σ¼ 0:2

xe θe xe θe xe θe

Fixed gain 0.4070 0.0009 0.6979 0.0015 0.8944 0.0020

Adaptive gain 0.2436 0.0004 0.3762 0.0007 0.5576 0.0011

Note: xe is in millimeter and θe is in radian. Bold values highlight the results of our proposed method.

FIGURE 11 Simulation results of our proposed system with adaptive servo gain. 1st, 2nd and 3rd rows are the results with (A) noise

Vj j ¼ 0:08 and σ¼ 0:1, (B) noise Vj j ¼ 0:12 and σ¼ 0:15, (C) Vj j ¼ 0:16 and σ¼ 0:2, respectively. The first, second, and third columns are

(1) image feature trajectories, (2) camera trajectories in Cartesian space, and (3) image feature errors, respectively
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divided into six intervals. According to the initial error
set in the experiments, the action set of Q-learning is
designed as

a¼ 0:02 0:05 0:1 0:15 0:2 0:25 0:3f g:

The training of Q-learning is carried out in simulation
environment, and then the obtained convergent Q-table
is applied to the experiment. The parameters of Q-
learning are the same as in simulation, and the training

process are shown in Figure 13. The Q-table was trained
100 times and converged at the 65th time.

The experiments were carried out in two cases. In case
1, these methods are tested in a normal laboratory envi-
ronment. In case 2, interference was added by adjusting
the light condition in environment. All test results in two
cases are shown in Table 5, and the results are the mean
value of 10 tests. In actual experiments, due to the various
slight errors in the system, the positioning error appears
to be more serious than simulations. However, our pro-
posed method still shows better positioning accuracy than
the KF method and VBL-SVSF method. The perfor-
mances of these methods under two different cases are
shown in Figures 14 and 15. In case 1, the camera trajec-
tories in Cartesian space and the feature trajectories in
the image plane of all these methods are still acceptable.
However, in case 2, the camera trajectories and the fea-
ture trajectories of the KF method and VBL-SVSF method
are obviously affected. The performance of our proposed
method is still acceptable and show relatively smooth fea-
ture trajectory and camera trajectory. Thus, the robust-
ness of the proposed method can be verified. The
performance of our proposed system with adaptive servo
gain adjusted by Q-learning can be seen in Table 5 and
Figures 14 and 15. The average number of iterations
required for the system to converge is shown in Table 6.
Obviously, compared with the system with fixed servo

FIGURE 12 Experiment

platform

FIGURE 13 Q-learning convergence result for experiment
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TABLE 5 Positioning errors

Method

Normal environment Noisy environment

xe θe xe θe

KF 3.252 0.014 5.163 0.021

VBL-SVSF 2.761 0.013 4.048 0.018

Proposed method with fixed gain 2.226 0.011 3.021 0.014

Proposed method with adaptive gain 2.184 0.011 2.973 0.014

Note: xe is in millimeter and θe is in radian. Bold values highlight the results of our proposed method.

FIGURE 14 Experiment results in normal environment. The first, second, third, and fourth rows are the results of (A) the KF method,

(B) the VBL-SVSF method, (C) our proposed method, and (D) our proposed method with adaptive servo gain, respectively. The first, second,

and third columns are (1) image feature trajectories, (2) camera trajectories in Cartesian space, and (3) image feature errors, respectively
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gain, the system with adaptive servo gain shows a faster
convergence speed while maintaining the robustness.

7 | CONCLUSIONS

In this paper, a homography-based uncalibrated visual
servo system with NN-assisted robust filtering scheme

FIGURE 15 Experiment results in noisy environment. The first, second, third, and fourth rows are the results of (A) the KF method,

(B) the VBL-SVSF method, (C) our proposed method, and (D) our proposed method with adaptive servo gain, respectively. The first, second,

and third columns are (1) image feature trajectories, (2) camera trajectories in Cartesian space, and (3) image feature errors, respectively

TABLE 6 The number of iterations required for the system to

converge

Method
Normal
environment

Noisy
environment

Fixed gain 327 402

Adaptive gain 129 154

Note: Bold values highlight the results of our proposed method.
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and adaptive servo gain is introduced. This system adopts
a homography-based task function with robustness to
image defects, and a discrete controller based on esti-
mated total Jacobian that directly controls robot joints is
designed for obtaining the robustness to robot parameter
errors. The proposed NN-assisted robust filtering scheme
can estimate the total Jacobian between task function
and robot joints without system calibration, which means
robustness to calibration errors. In addition, compared
with original filtering methods, this scheme combined
with NN-based corrector shows better accuracy and con-
vincing anti-interference ability against the measurement
errors of image features. Then, a novel Q-learning strat-
egy for the proposed PHUVS system is proposed to make
adaptive adjustment for the servo gain. This adaptive
gain enables the system to obtain a faster convergence
rate while maintaining stability. At last, several simula-
tions and experiments are carried out and the results ver-
ify the better performance of the proposed filtering
scheme and adaptive servo gain.
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