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ABSTRACT Ship detection in synthetic aperture radar (SAR) images is an important and challenging work
in the field of image processing. Traditional detection algorithms usually rely on handmade features or
predefined thresholds, the different performance is obtained with varying degrees of prior knowledge, and
it is difficult to take advantage of big data. Recently, deep learning algorithms have found wide applications
in ship detection from SAR images. However, due to the complex backgrounds and multiscale ships, it is
hard for deep networks to extract representative target features, which limits the ship detection performance
to a certain extent. In order to tackle the above problems, we propose an improved YOLOv4 (ImYOLOv4)
based on attention mechanism. Firstly, to achieve the best trade-off between detection accuracy and speed,
we adopt the off-the-shelf YOLOv4 as our basic framework because of its fast detection speed. Secondly,
a thresholding attention module (TAM) is introduced to suppress the adverse effect of complex backgrounds
and noises. Besides, we embed channel attentionmodule (CAM) into improvedBiFPN as the feature pyramid
network (FPN) to better enhance the discrimination of the multiscale target features. Finally, the decoupled
head with two parallel branches improves the performance of classification and regression. The proposed
method is evaluated on public SAR dataset and the experimental results demonstrate that it has higher
efficiency and feasibility than other mainstream methods, yielding the accuracy of 94.16% at intersection
over union of 0.5 and 58.19% at intersection over union of 0.75.

INDEX TERMS Ship detection, SAR, attention, decouple head, YOLOv4.

I. INTRODUCTION
With the continuous improvement of space remote sensing
imaging technology, high-resolution and wide-scale remote
sensing images are becoming more and more enriched and
facilitate a large range of applications. Remote sensing appli-
cations make remote sensing images into plug and play prod-
ucts, which are widely used in all aspects of social and eco-
nomic life, such as traffic control [1], [2], geological and min-
eral exploration [3], environment monitoring [4], and urban
construction [5]. As the key target of marine monitoring and
wartime attack, the detection of ships has an important practi-
cal value for both civil and military fields [6]–[10]. In recent
years, many researches in this field have prioritized synthetic
aperture radar (SAR) images and ship detection in SAR
images has become one of the most important remote sens-
ing applications [11]–[16]. Compared with optical sensors,
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SAR is an active microwave remote sensing imaging sensor,
which has the all-day and all-weather surveillance capabil-
ities, making it possible to continuously monitor targets at
sea [17]–[20]. Therefore, it is very important to study the ship
detection in SAR images.

Many studies have been carried out about ship detec-
tion in remote sensing images in recent years [21]–[24].
Traditional feature extraction methods are usually based on
handmade features such as scale-invariant feature transform
(SIFT) [25], histogram of oriented gradient (HOG) [26] and
local binary patter (LBP) [27], followed by shallow classi-
fication modules, e.g., support vector machine (SVM) [28],
extreme learning machine (ELM) [29], and Adaboost [30].
Most of the traditional algorithms show great performance
for ideal-quality images. However, they are highly depen-
dent on manual feature extraction and availability of prior
knowledge such as predefined thresholding and the distri-
butions of sea clutters, let alone the influence of complex
backgrounds and noises. As a result, their generalization
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ability is weak, and the detection performance is far from
satisfactory.

In recent years, driven by extensive remote sensing images,
deep learning methods have achieved great success in object
detection. State-of-the-art deep learning-based ship detection
methods include one-stage and two-stage detectors. The one-
stage detectors directly convert the object detection into a
regression problem which is fast running. You only look once
(YOLOv1) [31] as the end-to-end algorithm for object detec-
tion processes the input images only once, and this reduces
the computational redundancy and improves the detection
speed; Single Shot Detector (SSD) [32], RetinaNet [33],
YOLOv2 [34], YOLOv3 [35], and the latest YOLOv4 [36]
are the typical one-stage detection algorithms; In two-stage
detectors, the first stage generates a set of candidate pro-
posals while filtering out the majority of negative locations,
the second stage classifies the proposals into background
or foreground. Region CNN (R-CNN) [37] introduces deep
learning methods to the field of object detection and out-
performs most of the traditional detection methods; Sub-
sequently, a series of two-stage algorithms are proposed,
such as Faster R-CNN [38], Mask R-CNN [39], and Cascade
R_CNN [40]. Compared with the one-stage detectors, the
two-stage detectors offer high positioning accuracy with low
running speed.

With the rapid development of SAR sensors, the volumes
of SAR images are getting larger and the data are easier
to obtain which lead to the possibility of deep learning
algorithms for SAR object detection. However, some chal-
lenges still exit: 1) complex backgrounds on land and strong
backscatters usually result in missing detections and false
alarms, and 2) ships are often clustered and the shapes of
targets in SAR images have an extreme aspect ratio. Most
of all, small ship objects restrict deep networks to extract
representative target features, which further limits the ship
detection performance. Researchers in deep-learning com-
munity for ship detection in SAR images have made a lot of
attempts to exploit CNN-based ship detection frameworks.
Based on the original Faster R-CNN, researchers have made
some typical improvements such as adding hard negative
mining [41] and dense connection [42]. There are also some
methods dedicated to building a more complex structure to
improve the performance for some tough problems like dense
small ships [43]. Zhao et al. proposes a cascade coupled
convolutional network with attention mechanism to detect
ships which shows a promising result for small objects [44].
A novel dense pyramid network with attention weighting
is utilized and solves the problem of multiscale ship detec-
tion [45]. Besides, some training techniques such as training
from scratch are also introduced in the SAR ship detection
problem, and the final results outperform other pretrained
ship detectors [46]. To achieve real-time ship detection in
SAR images, some methods based on one-stage detectors
have been gradually explored. For instance, Wang et al. [47]
applies the end-to-end RetinaNet to SAR ship detection,
and constructs a multi-resolution and complex background

dataset, achieving a high detection accuracy. Du et al. [48]
uses two identical sub-networks to extract features from the
input SAR image and the corresponding saliency map at
the same time, then the salient features are integrated to the
deep CNN features. Zhang et al. [49] introduces a channel
attention module and a spatial attention module in the high-
speed and high-precision SAR ship detection network and
obtains very excellent detection performance. As far as we
know, most of the researches either focus on high-accuracy
or high-speed, and only a few researches focus on both.
However, both of two indicators are very import for SAR ship
detection.

In this paper, we propose a novel one-stage ship detector
named improved YOLOv4 (ImYOLOv4) based on atten-
tion mechanism [50] for accurate ship detection in SAR
images. Firstly, to achieve the best trade-off between detec-
tion accuracy and speed, we adopt the off-the-shelf YOLOv4
as the inspiration of our basic detection framework. Secondly,
we design a thresholding attention module (TAM) that is
embedded in very first layer of the network to perform denois-
ing in the image-level. The TAM block can adaptively learn a
set of thresholding according to the global information of the
image to suppress noises, avoiding the invalid data flow of
the network. Besides, in order to improve the detection per-
formance of multiscale ships, we obtain the optimal sizes of
multiscale anchors by K -means [51] clustering according to
the SAR dataset, and we improve the state-of-the-art feature
pyramid network (FPN) BiFPN [52] with channel attention
module (CAM) to complete the fusion operations. Finally,
we use a decoupled head structure to deal with the ship
classification and bounding box regression tasks separately.
Based on these novel techniques above, our experiments on
the public SAR Ship Detection Dataset (SSDD) [53] show
that ImYOLOv4 could significantly improve the detection
performance on the ship targets with multiscale sizes in front
of complex backgrounds.

The main contributions of this paper are as follows:
(1) A novel one-stage ship detector named ImYOLOv4

based on attention mechanism is proposed which meets the
requirement for both high-accuracy and high-speed detection.

(2)We design an embedded TAM block to perform denois-
ing due to the considerations of complex backgrounds and
strong backscatters for SAR ship detection.

(3) We integrate the CAM block with BiFPN module as
the feature pyramid structure to better complete the fusion
operations for the salient feature maps. The CAM block helps
ImYOLOv4 pay more attention to the targets of interest,
which ensures the effectiveness of detecting small ships.

(4) We replace the YOLO’s head with a decoupled head to
deal with the ship classification and bounding box regression
tasks separately, the decouple head is validated on public
SAR dataset and the comparison results confirm its improve-
ment of detection performance.

The rest of this paper is organized as follows.
Section 2 briefly reviews the related work that are close to our
method. Section 3 introduces the framework of our proposed
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FIGURE 1. End-to-end framework of ImYOLOv4.

method in detail. Dataset and implementation settings are
described in Section 4. A series of experiments and results
are presented in Section 5. Finally, we summarize this paper
in Section 6.

II. RELATED WORK
Deep learning-based methods have made a significant
advancement in the field of SAR ship detection. Based on
deep learning, researchers have introduced methods that have
shown good performance in order to get better detection
results. In terms of the better balance between high-accuracy
and high-speed, Ma et al. [54] designs an Accelerated-
YOLOv3 method which aims to reduce the computational
time with relatively competitive detection accuracy by con-
structing a new architecture with less layers and channels.
Chang et al. [55] proposes an enhanced GPU based deep
learning method called YOLOv2-reduced to detect ship from
SAR images, and the authors prove themethod canmake a big
leap forward in improving the detection performance. These
models with fewer number of layers sacrifice the accuracy
to achieve a trade-off between detection accuracy and speed.
The latest YOLOv4 has the highest accuracy in real-time
target detection algorithms and offers us the use for reference,
and the experiments show its best-practice for ship detection
in SAR images.

In order to achieve accurate detection under poor image
quality and complex backgrounds, some improvements have
been proposed. Han et al. [56] studies how the detection
performance varies from images with different complexity,
backgrounds, surroundings, and quality. Fu and Wang [11]
designs a fast ship detection method which consists of two
cascade deep convolutional networks: scene classification
network (SCN) and single shot detector (SSD), the SCN can
quickly eliminate the sub-images that may not contain ships,
and then the remaining sub-images are input into the SSD
to implement refined ship target detection. Sun et al. [57]
introduces a category-position module based on attention
mechanism to improve the positioning performance in com-
plex scenes by generating guidance vectors. Wang et al. [58]
proposes a mask to guide attention maps, which performs

well in the instance segmentation field. Masks are used to
enhance ship position information in ship detection field and
to eliminate the influence of complex backgrounds. These
improvements usually bring a large amount of redundant
information that greatly affect the detection efficiency. Differ-
ent from the relatedworks, we design a lightweight embedded
TAMbased on attentionmechanism to filter the adverse effect
of noises.

To ensure the ability of detecting multiscale ships,
Lin et al. [59] proposes a new network architecture based
on the Faster R-CNN by using squeeze and excitation
mechanism to enhance the salient features of ship targets.
Kang et al. [60] discloses a contextual region-based convolu-
tional neural network with multilayer fusion, the framework
fuses the deep semantic and shallow high-resolution features,
improving the detection performance for small-sized ships.
Sun et al. [61] introduces a novel bi-directional feature fusion
module to the YOLO framework to efficiently aggregate mul-
tiscale features which can be helpful for detecting multiscale
ships. Cui et al. [45] designs a feature pyramid network inte-
grating dense attention mechanism, which made the features
extracted by the network contain rich resolution and semantic
information, and the proposed method proved to be suitable
for multiscale ship detection. A receptive pyramid network
extraction strategy and attention mechanism are also proved
to be effective in the ship detection task, but the processing
efficiency is low due to the complex model structure [62].
Although the CNN-based detection algorithms can automati-
cally capture the features of ships, the detection performance
of these existing methods still needs to be improved. In this
paper, the proposed ImYOLOv4 integrates the CAM block
with BiFPN module as the feature pyramid structure to better
complete the fusion operations for multiscale ship detection,
and the salient feature maps will not make the deep CNN
features disappear. The details of ImYOLOv4 model are
introduced in Section 3.

III. METHODOLOGY
The proposed method will be described in detail in this
section. First, the overall framework of ImYOLOv4 is
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FIGURE 2. Complex backgrounds and strong backscatters disturb the
detection of ships.

introduced. Afterwards, the mechanism of every key mod-
ule will be explained. Other strategy validated efficient for
detection such as K -means clustering for anchor box will be
described at last.

A. OVERALL FRAMEWORK
The overall scheme of the proposed method and the net-
work architecture of ImYOLOv4 are illustrated in Figure 1.
Firstly, the resized input image (taking 416 as an example) is
send into the TAM to perform denoising operations. Next,
we adopt CSPDarknet53 [36] as the backbone to extract
feature maps at three different branches. Then, the multi-
scale feature maps are feed into FPN structure to obtain
fused features. Specifically, the outputs (P3, P4, and P5) of
CSPDarknet53 are transported to the ImBiFPN module to
generate corresponding salient feature maps (P3’, P4’, and
P5’). In ImBiFPN module, we apply up-sampling and down-
sampling operations by the factor of 2 and merge the feature
maps of same spatial resolution via concatenation, given to
the fact that different inputs should have different weights,
we design the CAM_Concat Unit by using CAM to obtain
channel-wise coefficient tensor while concatenating. In the
end, the decoupled head with two parallel branches is used
to predict a 3D tensor detection result of bounding box,
object, and classifications. The whole detection pipeline of
ImYOLOv4 is in a single network, so it can be optimized end-
to-end directly.

B. THRESHOLDING ATTENTION MODULE
The radar receives echo signals from ground, including
ground-based clutter and detection targets because of its
unique imaging technique. As a coherent imaging system,
SAR inevitably generates speckle noises from the complex
backgrounds, resulting in the missing detection of weak ship
targets. Besides, the metal materials and the superstructure
of the ships usually produce strong backscatters which will
reshape the ship appearances in the SAR images and interfere
with the detection process. Figure 2(a) and 2(b) show the
noises mentioned above respectively.

Considering the adverse effect of these noises, we design
an embedded TAM block to perform denoising in the image-
level. In TAM block, we integrate the thresholding algo-
rithm and attention mechanism to automatically learn a set
of thresholding which can be used to transform the near-
zero to zero for signal reconstruction. Compared with the
traditional SAR feature enhancementmethods, TAMdoes not

require high expertise in signal process and its lightweight
architecture has additional advantage of lower computational
complexity and memory consumption.

As for a SAR image obtained by radar system, it can be
decomposed as follows:

Y = X + N (1)

whereX is the considered scene,N is noisematrix of the same
size as X which denotes the difference between the recon-
structed image and real scene. Considering the sparsity of
SAR image, we can recover the considered scene by dealing
with the following optimization problem:

∧

X = min
X
{‖Y − X‖22 + µ ‖X‖1} (2)

the optimization problem can be solved by iterative threshold-
ing algorithm, however, the number of iterations has a great
impact on the sparsity and precision of the considered scene.
Inspired by LeakyReLu [63] activation function, we would
like to optimize the function by equation (3):

∧

X =


Y − µ, Y > µ

0, |Y | ≤ µ
1
α
(Y + µ), Y < −µ

(3)

where µ is the thresholding used to filter the noises, α gives
us a non-zero gradient so that useful negative features can be
well preserved.

Figure 3 illustrates the detailed architecture of TAM block
which is designed upon the transformation mapping between
the input X ∈ RC×H×W and its reconstruction feature map
∧

X ∈ RC×H×W . We adopt the channel attention module to
generate a channel-wise thresholding tensor µ ∈ RC×1×1.
Specifically, we first squeeze the input along the spatial
dimension H × W by using both average pooling and max
pooling operations to obtain two channel tensors of RC×1×1,
then, we merge the two tensors via element-wise summation
and forward the output s to a network which consists of
two fully connected (FC) layers. To reduce the complexity
of TAM, the activation size of the first FC layer is set to
RC/r×1×1, where r is the reduction ratio. A sigmoid function
is also employed at the end of network as a simple gating
mechanism to get a scaled output tensor z of (0,1). Finally,
to prevent the thresholding from being neither negative nor
too large, we obtain the product µ by element-wise multi-
plication from the scaled tensor z and the global information
tensor s. Therefore, the thresholding is expressed as:

µ =
1
2
(z • s) (4)

C. FEATURE PYRAMID NETWORK
For deep learning-based detection methods, FPN [64] plays
an important role in solving the multiscale problems and
acts as a feature extractor with the consideration of the low-
level high-resolution and high-level low-resolution seman-
tic meaning. In general, more intensive sampling can get
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FIGURE 3. The architecture of TAM.

FIGURE 4. Structure of CAM block.

more detailed features, while more sparse sampling can more
clearly reflect the overall trend. Fusing features of different
scales can capture ample semantic information which help
improve the accuracy of ship detection.

After the multiscale feature maps are extracted by
CSPDarknet53 network, we forward them to the ImBiFPN
structure to complete the fusion operations for salient fea-
ture maps. As depicted at the left-bottom of Figure 1, there
are two main data flows in ImBiFPN, the bottom-up down-
sampling and top-down up-sampling pathways. And the
CAM_Concat Unit completes the feature fusion of the same
spatial resolution. In the process of concatenating, we apply
CAM block to automatically learn the channel-wise attention
coefficients which denote the significant degree of different
inputs. As shown in Figure 4, we first squeeze the concate-
nated feature map along the spatial dimension H × W by
using max pooling operation to focus on what is important
in the given input. Then, two FC layers and a simple gating
mechanism via sigmoid function are employed to obtain
the final channel attention map Xc. Finally, we also add a
residual input for the consideration of preventing the problem
of gradient-vanishing. After element-wise multiplication and
summation operations, we generate the refined output Xo of
CAM block:

Xo = X + Xm = X + Xc • X (5)

In summary, there are two differences between BiFPN and
our ImBiFPN. The one is that the input of ImBiFPN is 3-level
multiscale feature maps obtained by CSPDarknet53 network,

while the input of BiFPN is 5-level features, the same goes
for the output of both FPN structures. The second is that we
design a weights generator by using CAM block to assign
the different importance of inputs while concatenating. These
improvements reduce the network parameters while maintain
the BiFPN performance.

D. DECOUPLED HEAD
In object detection, the conflict between classification and
regression tasks is a well-known problem. The two different
tasks which share almost the same parameters in YOLO head
could hurt the detection process. This is inspired by the nature
insight that for one instance, the features in some salient
area may have rich information for classification, while these
around the boundary may be good at bounding box regres-
sion. Based on that case, we design a decoupled headwith two
branches to solve the object functions from different spatial
dimensions. As depicted at the right-bottom of Figure 1,
we first use a convolutional layer with kernel size 1 × 1 to
perform the dimension reduction. Then, in the up branch,
a two-layer fully connected network is employed to obtain the
classification-specific output Cls. While in the down branch,
two shared 3 × 3 convolution and two 1 × 1 convolution
operations are used to obtain the regression-specific outputs
Reg and Obj. Finally, the outputs of two branches are merged
into a tensor for the task of ship prediction.

E. K-MEANS CLUSTERING
Anchor box mechanism for object detection was proposed to
solve the problem of multitarget in one predicted box and
has been used in many detectors. There are 9 predefined
anchor boxes in our method for different scale detection.
K -means clustering is adopted on the overall SSDD data
to automatically find the prior boxes. Most ships in SAR
images are small and weak targets, which occupy few pixels
and have lower contrast. If we use the standard Euclidean
distance of the conventional K -means algorithm, the bound-
ing boxes with larger scale generate more error than the
smaller scale boxes, which will lead to missed detections of
small and sparse ships. What we want in the final detection
are the priors that will lead to high intersection over union
(IoU) scores, thus, the distance metric in this paper can be
expressed as:

d(anchor box, cluster centroid)

= 1− CIoU(anchor box, cluster centroid) (6)

where d(anchor box, cluster centroid) is the new distance
metric that needs to be minimized, and CIoU(anchor box,
cluster centroid) means the CIoU [65] values of the anchor
box and different cluster centroids. The specific size of
anchor boxes for three scales are shown in Table 1. The opti-
mal cluster centroids obtained by K -means are significantly
different than previous hand-picked anchor boxes and have
better performance for both precision and recall on SAR ship
detection.
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TABLE 1. Detailed information of scaled anchor boxes.

TABLE 2. Statistical distribution of the ship size.

IV. DATASET AND IMPLEMENTATION SETTINGS
A. DATASET
The dataset used in this paper is a SAR dataset for ship
detection published by the Digital Earth Laboratory of the
Aerospace Information Research Institute, Chinese Academy
of Sciences. SSDD is generated from 102 Gaofen-3 [66]
images and 108 Sentinel-1 [67] images. As for Gaofen-3, the
resolution of these images involves 3m, 5m, 8m and 10mwith
Strip-Map (UFS), Fine Strip-Map 1 (FSI), Full Polarization 1
(QPSI), Full Polarization 2 (QPSII) and Fine Strip-Map 2
(FSII) imaging mode, respectively. The Sentinel-1 imaging
modes include S3 Strip-Map (SM), S6 SM and IW-mode.

The SSDD has 43819 ship chips and 59535 ship targets
in total. The pixel of each image is 256 × 256. The ship
targets are marked in a similar format to Pascal VOC [68].
The statistical distribution of the ship size over the SSDD
is presented in Table 2, where ‘‘Size’’, ‘‘Min’’ and ‘‘Max’’
mean ship pixels, minimum ship size andmaximum ship size,
respectively. ‘‘Number’’ represents the total number of ships,
‘‘Percentage’’ denotes the percentage of the ship in whole
ship targets.

From Table 2 and Figure 5, we can see that the dataset
has the following characteristics. Firstly, there are multiscale
SAR ships in these chips, and the size conversion range is
large. Small ships and medium ships account for a large
proportion of whole targets. Secondly, there are complex
backgrounds in the ship chips. Some of ships are on the open
sea, some in the port. All of these have brought difficulties to
ship detection, and put forward higher requirements for the
performance of ship detection. In the experiment, we split
the training, validation and testing set randomly according
to rate of 7:2:1. The training set and the validation set are
used for training models and the testing set is used for testing
models.

FIGURE 5. Samples of ship chips. (a), (b), (c) and (d) are from Gaofen-3
images. (e), (f), (g) and (h) are from Sentinel-1 images.

B. EVALUATION METRICS
In order to quantitatively evaluate the detection performance
of ImYOLOv4, we adopt four widely used criteria, namely,
precision, recall, mAP (mean Average Precision) and F1
score. The precision measures the value of detections that are
true positives and the recall measures the value of positives
over the number of ground truths.

precision =
TP

TP+ FP
(7)

recall =
TP

TP+ FN
(8)

where TP, FP and FN represent the number of true positives,
false positives and false negatives.

As for detection, a higher precision and a higher recall
are both expected. However, the two metrics are a pair of
contradictory indicators. It means that a higher precision will
result in a lower recall and a higher recall will result in a lower
precision. F1 score is then used which can comprehensively
combine precision and recall. A higher F1 score indicate a
more ideal detection performance. F1 score is defined based
on the harmonic average of precision and recall:

F1 = 2×
precision× recall
precision+ recall

(9)

Precision, recall and F1 score are all calculated based on the
single point threshold. AP can solve the limitations of single
point threshold and get an indicator that reflects the global
performance. AP is obtained by the integral of the precision
over the interval from recall=0 to recall=1, that is, the area
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TABLE 3. AP50 with different parameter values of TAM.

under the precision-recall (PR) curve.

AP =
∫ 1

0
P(R)dR (10)

C. IMPLEMENTATION SETTINGS
All experiments are implemented using the deep learning
framework Pytorch and executed on a PC with TITAN
XP GPU (11G memory), the PC operating system is
Ubuntu 16.04. At the beginning of network training, we use
the parameters pre-trained on ImageNet to initialize the net-
work. Then, we utilize the end-to-end training strategy to
train our model, in which the gradient descent algorithm
is used to fine-tine the network weights. The weight decay
and momentum are set to be 0.0001 and 0.9. The reduction
parameter r and α used for gradient preserved in TAM block
are set to 16 and 0.1 which will be explained in the following
experiments. Smooth-L1 [36] Loss function is applied to
calculate classification loss and a total of 2k iterations are
performed for training our ImYLOLv4 model.

V. EXPERIMENTS AND RESULTS
A. PERFORMANCE OF TAM
In this section, we first examine the impact of parameters
r and α and select the best combination of parameters for
TAM module. The parameter r is designed to decrease the
calculation complexity of the fully connected layers and
α guarantees that most neurons won’t be dead during the
training process. We measure the AP50 (IoU=0.5) and AP75
(IoU=0.75) in the case of different parameter values and list
the results in Table 3 and Table 4. As we can see from the
results, adding the parameters brings the improvements in
both AP50 and AP75 compared with condition when r =
1 and α = 0. And we can find out that the combination of
r = 16 and α = 0.1 obtains the best detection precision.
The reduction parameter r avoids overfitting caused by too
many training parameters to a certain extent, and α expands
the values of the activation function in the part of less than
the thresholding -µ, which further demonstrates that avoiding
neurons being dead is more important than obtaining sparsity.

To verify the effectiveness of TAM, we conduct exper-
iments comparing the detection performance between

TABLE 4. AP75 with different parameter values of TAM.

YOLOv4, ImYOLOv4 without TAM (DeTImYOLOv4) and
ImYOLOv4. For a fair comparison, we set the other hyper-
parameters consistent in the experiments. And the results
are displayed in Table 5. As we can see from the results,
adding the TAM block brings 3.18%, 0.05, 2.29% and 8.15%
increment in AP50, F1 score, precision and recall versus
DeTImYOLOv4, and outperforms YOLOv4 by 0.47%, 0.01,
2.00% and 1.00% in AP50, F1 score, precision and recall,
respectively. When IoU is set to 0.75, adding the TAM block
brings 9.49%, 0.05, 7.60% and 3.47% increment in AP75,
F1 score, precision and recall versus DeTImYOLOv4, and
outperforms YOLOv4 by 7.77%, 0.03, 6.08% and 0.81% in
AP75, F1 score, precision and recall, respectively. Specifi-
cally, we present some denoising results of ImYOLOv4 to
further demonstrate the validity of TAM. We visualize the
spatial response of the input and output feature map of TAM
block by heatmap where the blue color denotes low spatial
response, and the red indicates a high response. We resize the
heatmaps to the same size of the SAR image and the results
are shown in Figure 6. By comparing Figure 6(b), (e), and
Figure 6(c), (f), we can see that the complex background
triggers very low response and the irrelative information
brought by background can be effectively suppressed because
of TAM. While the noises are suppressed, ImYOLOv4 can
focus on and extract more discriminative features of targets,
which is very helpful for the ship detection.

In addition, as shown in Table 5, we also compare our
TAM with some state-of-the-art attention modules, such as
ECA [69], BAM [70] and CBAM [71]. We replace the TAM
block with attention modules while keeping other subnets
consistent to ImYOLOv4. By analyzing the results, TAM and
ECA obtain better performance than the other two modules,
this is mainly because that BAM and CBAM are proposed
based on optical images and irrelative spatial feature would
be falsely enhanced for SAR images. The TAM block can
adaptively learn the channel-wise thresholding according to
the global information of the image, and the experiment
results demonstrate its suitability for SAR ship detection task.

B. PERFORMANCE OF FPN
We also conduct an experiment to validate the performance
of FPN. FPN from YOLOv3 (YOLOv3FPN), PANet [36],
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TABLE 5. Comparison results with other attention modules.

TABLE 6. Performance of different FPNs.

FIGURE 6. Visualization of the intermediate features. (a), (d) are the input
SAR images. (b), (e) denote the heatmaps of the input images, and (c),
(f) denote the corresponding heatmap outputs of TAM.

BiFPN are embedded into ImYOLOv4 as substitutions of
FPN respectively. YOLOv3FPN simply contains an up-
sampling pathway for fusing the features at different res-
olutions. PANet is originally applied in the field of image
segmentation, which increases a down-sampling pathway on
the basis of YOLOv3FPN. BiFPN introduces a weighted fea-
ture fusion strategy to better balance the feature information

of different resolutions. The comparison results are listed in
Table 6. As it is seen in Table 6, different feature fusion
methods bring different detection performance. And our FPN
and BiFPN achieve better performance for salient feature
extraction which contributes to ship detection. Apart from the
precision, we also evaluate the models by the running speed.
Unlike BiFPN, our FPN uses CAM block as the weights gen-
erator, and the improvement makes our FPN achieve better
accuracy and efficiency trade-offs.

C. PERFORMANCE OF DECOUPLED HEAD
In this part of experiments, we design several variants of
decoupled head and make comparison to the YOLO head
baseline. The variants are described as follows:

1) YOLO-Head (baseline): The coupled head is widely
used in YOLO series detectors, the classification and regres-
sion tasks are solved by the single network.

2) Decoupled-Head (ours): The head splits the classifica-
tion and regression on a fully connected head and a convolu-
tion head respectively.

3) Decoupled-Conv-FC-Head: The head splits the classi-
fication and regression on a convolution head and a fully
connected head respectively.

4) Decoupled-FC-Head: Double fully connected heads
which have the same structure as the up branch of our
Decoupled-Head.
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TABLE 7. Performance of decoupled head.

FIGURE 7. Precision-recall curves of detectors. (a)-(f) denotes ImYOLOv4, YOLOv4, YOLOv3, RetinaNet,
CenterNet, and Faster-RCNN, respectively.

5) Decoupled-Conv-Head: Double convolutional heads
which have the same structure as the down branch of out
Decoupled-Head.

The comparison results between the variants are listed in
Table 7. From the results, we can observe that decoupled head
has a better performance than the single network baseline
for ship detection, this is mainly because that classification
and regression focus on the different problems, and differ-
ent branches used for different tasks are conducive to the
improvement of performance. This significant observation
motivates us to rethink the architecture of the decoupled
head. By comparing the variants of decoupled head, we can
conclude that the fully connected head is more suitable for
classification while the convolutional head has more advan-
tage on the task of regression.

D. COMPARISON WITH STATE-OF-THE-ART METHODS
In this section, we compare our ImYOLOv4model with some
state-of-the-art object detection models on SSDD, including
RetinaNet, CenterNet [72], YOLOv3, YOLOv4,

and Faster-RCNN. The experimental results are displayed
in Table 8, and Figure 7 shows the precision-recall curves of
all the detectors.

As shown in Table 8, our ImYOLOv4 model outper-
forms one-stage detector RetinaNet by 8.46% AP50 and
16.67% AP75, YOLOv3 by 3.18% AP50 and 10.04% AP75,
and YOLOv4 by 0.47% AP50 and 7.77% AP75, respec-
tively. Compared with two-stage detector Faster-RCNN,
ImYOLOv4 achieves 10.36% AP50 and 36.36% AP75 incre-
ments. Moreover, our model surpasses anchor-free detector
CenterNet by 9.97% AP50 and 25.28% AP75. In addition,
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FIGURE 8. Detection results of detectors.
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TABLE 8. Detection results of detectors.

as reflected by Figure 7, our method possesses a higher preci-
sion and recall curve than the state-of-the-art methods, which
further shows the superiority of ImYOLOv4 over the others.
When it comes to the running speed, our ImYOLOv4 is
slower than CenterNet, YOLOv3, and YOLOv4 with 42 fps,
but it is faster than RetinaNet and Faster-RCNN. In short,
ImYOLOv4 achieves the better trade-off between detection
accuracy and running speed, and we believe that the effi-
ciency and simplicity of our method will benefit ship detec-
tion applications in the future research.

To further demonstrate the effectiveness in dealing with
multiscale ship detection of ImYOLOv4, we divide the SSDD
into three sub-datasets according to Table 2 and calculate
evaluation metrics APL, APM. APS for large, medium, and
small objects, respectively. From the results shown in Table 8,
we can find out that the models present different detection
abilities for multiscale ships. This is mainly because that
the shapes of the ships in SSDD have a relatively extreme
aspect ratio, and with the deepening of the network layers, the
features of ships become weak, especially small-sized ships,
so the detection accuracy is hard to guarantee. Moreover,
to achieve a better performance, the models should take into
account the effect of the complex backgrounds and noises.
We embed TAM block to perform denoising operations and
design the FPN structure to extract salient feature maps of
small ships, which ensure the effectiveness of detecting small
ships in front of complex backgrounds.

E. ANALYSIS ON MISSING SHIPS AND FALSE ALARMS
To show the detection performance of ImYOLOv4 vividly,
we test it in some typical SAR images and the detection
results are displayed in Figure 8. The different environment
conditions include quiet sea, sea with waves, inshore land,
backscatters noises and small ship cluster. And the rectan-
gle box with different color represents different detection
result, the rectangle with green, red, blue, and yellow color
denotes the ground truth, detection target of detectors, false

alarm and missing target, respectively. In Figure 8, (a) is
the original SAR image and (b) represents the ground truth.
(c)-(h) denotes the detection results of RetinaNet, Faster-
RCNN, CenterNet, YOLOv3, YOLOv4, and ImYOLOv4,
respectively. It is clear that our ImYOLOv4 model can dis-
tinguishes the ship targets better than the state-of-the-art
methods even though the interference of complicated condi-
tions. Although our method achieves excellent performance
on SSDD, a few missing ships and false alarms still exist.
As shown in the first and third column of (h) row, non-ship
object is recognized as ship target due to similar features, and
some ships are detected as one target because of their close
distance. For missing ships, non-NMS [73] may improve the
performance by adjusting the scores of other detection boxes
so that close targets are not eliminated in the process. And
sea-land semantic segmentation method [74] could serve as a
supplement in image preprocessing which will benefit for the
false alarms.

VI. CONCLUSION
In this paper, we propose a one-stage ship detector named
improved YOLOv4 (ImYOLOv4) based on attention mech-
anism for accurate ship detection in SAR images. First,
to achieve high accuracy of ship detection, we adopt YOLOv4
as the basic framework and apply CSPDarknet53 to extract
multiscale feature maps. Then, the TAM module is designed
based on attentionmechanism to enhance the representational
power of the network by dynamic feature denoising and
recalibration. In addition, we construct a new FPN struc-
ture which combines the meaningful semantic information to
solve with the problem of multiscale ship detection. Finally,
we design a decoupled head with two branches to solve the
conflict between classification and regression tasks. Exten-
sive experimental results demonstrate that ImYOLOv4 has a
promising performance on detecting ships in SAR images,
while achieving a fast speed. We hope this report could help
scholars get better experiences in future researches.
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