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Abstract: Infrared small target detection is a challenging task with important applications in the field
of remote sensing. The idea of density peaks searching for infrared small target detection has been
proved to be effective. However, if high-brightness clutter is close to the target, the distance from
the target pixel to the surrounding density peak will be very small, which easily leads to missing
detection. In this paper, a new detection method, named modified density peaks searching and local
gray difference (MDPS-LGD), is proposed. First, a local heterogeneity indicator is used as the density
to suppress high-brightness clutter, and an iterative search is adopted to improve the efficiency in
the process of searching for density peaks. Following this, a local feature descriptor named the local
gray difference indicator (LGD) is proposed according to the local features of the target. In order to
highlight the target, we extract the core area of the density peak by a random walker (RW) algorithm,
and take the maximum response of the minimum gray difference element in the core region as
the LGD of the density peak. Finally, targets are extracted using an adaptive threshold. Extensive
experimental evaluation results in various real datasets demonstrate that our method outperforms
state-of-the-art algorithms in both background suppression and target detection.

Keywords: infrared small target; density peaks; local gray difference; remote sensing

1. Introduction

Infrared search and track systems (IRST) have been widely used in early warning,
precise guidance, remote sensing and other fields [1]. Due to the large imaging distance,
infrared small targets occupy quite a few pixels in the image, which leads to a lack of
obvious texture features and shape information. All of these reasons make the detection
of infrared small targets very difficult [2,3]. In addition, the targets usually hide under
strong noise and complex background clutter, leading to a small signal-to-noise ratio of
the image [4]. There is also some target-like interference in the image, such as pixel-sized
noises with high brightness (PNHB) [5,6]. These factors greatly increase the difficulty of
detection. Therefore, robust infrared small target detection is considered to be an extremely
challenging task. In order to detect targets accurately in various backgrounds, a large
number of methods have been developed over the past decades [7–11].

Conventional single-frame-based detection methods segment small targets from in-
frared images using a spatial or frequency filter, such as a top-hat filter [12,13],
max-mean/max-median filter [14], wavelet filter [15] or two-dimensional least mean
squares (TDLMS) filter [16]. These methods can easily capture targets in simple uniform
scenes, but they are sensitive to noise and cannot achieve satisfactory results with complex
backgrounds [17,18]. In order to better suppress the noise in complex background, methods
based on robust principal component analysis (RPCA) have been proposed, such as an
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infrared patch-image (IPI) model [19], nonconvex rank approximation minimization joint
l2,1 norm (NRAM) [20] and partial sum of the tensor nuclear norm (PSTNN) [21]. Based on
the nonlocal self-correlation property of the infrared image background and the sparsity of
small targets [5], these methods transform the infrared small target detection problem into
the optimization problem of recovering low-rank and sparse matrices. However, the target
image recovered by RPCA-based methods still retains some edge structures, as the strong
edge has similar sparse characteristics as the target image.

With the development of human visual system (HVS) theory, many HVS-based meth-
ods have been proposed. These methods try to describe local features with different feature
descriptors, such as a local contrast measure (LCM) [22], improved LCM (ILCM) [23],
multiscale patch-based contrast measure (MPCM) [24] and neighborhood saliency map
(NSM) [25]. However, when multiple targets are close to each other, all targets will be
missed by these methods. In order to enhance detection performance, methods utilizing
both local contrast and gradient features were proposed to distinguish real targets from
strong clutter, such as a double-neighborhood gradient (DNGM) [26], fast adaptive mask-
ing and scaling with iterative segmentation (FAMSIS) [27] and absolute directional mean
difference (ADMD) [28].

In addition, many joint methods that combine HVS features with other techniques
were proposed to detect small targets. For example, the methods based on ring top-hat
transformation (RTH) exploited contrast information in the top-hat transform through
different ring structuring elements [29,30]. Deng et al. [31] designed a multiscale gray
difference weighted image entropy (MGDWIE) detector, which used entropy as a weighting
function for local contrast. Xia et al. [32] proposed a modified random walks (MRWs)
algorithm, which applied the random walker (RW) [33] algorithm in small target detection.
Subsequently, Qin et al. [34] proposed a method based on a facet kernel and random walker
(FKRW) to segment targets and backgrounds in local images. Qiu et al. [35] proposed a
pixel-level local contrast measure (PLLCM) to subdivide small targets and backgrounds
at the pixel level by RW. However, the detection performance and running speed of HVS-
based methods usually restrict each other; in other words, more time is consumed by more
sophisticated feature descriptors. Inspired by the idea of density peak clustering (DPC) [36]
in cluster analysis, DPS-GVR [37] takes the pixel intensity as the density and regards
the small target as a high-density center point surrounded by a number of low-density
points. It searches for the density peaks in the whole image, and then real targets will be
identified using sophisticated local features. Compared with other joint methods, DPS-GVR
has the advantages of better detection performance and higher computational efficiency.
However, the density is defined based on the isolated pixels in DPS-GVR, which ignores the
correlation between neighboring pixels. Zhu et al. proposed a local feature-based density
peaks searching method (LF-DPS) [38], combined the local tetra pattern (LTrP) and the
second-order LTrP to generate the density feature map. Although LF-DPS is adaptable to
clutter better compared to DPS-GVR, the calculation of LTrP features consumes more time.

In this paper, we propose a method named modified density peaks searching and
local gray difference. First, a modified density peaks searching (MDPS) is applied to select
candidate target points from the image. The “concentration effects” are circumvented
by the local heterogeneity indicator in MDPS and the algorithm efficiency is improved
by iterative search. Subsequently, a local gray difference indicator (LGD) based on the
local feature differences between small targets and the background is designed to describe
the local contrast of candidate points. Finally, targets are extracted using an adaptive
threshold. Note that our method is different from [37,38]; the density is defined based on
the isolated pixels in [37], and the LTrP and the second-order LTrP are adopted to generate
the density map in [38]. Our method takes the LHI as density. Furthermore, the LGD used
to highlight real targets in our method is also different from the fused feature adopted
in [38]. The calculation strategy we designed enables our method to run in less time than
other methods based on density peaks searching. The main points of this paper can be
summarized as follows:
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1. A local heterogeneity indicator is proposed as a density feature to suppress high-
brightness clutter;

2. The efficiency of the algorithm is improved by iterative search;
3. The LGD is proposed to describe the local contrast of candidate points, which high-

lights the targets better.

The remainder of this article is organized as follows. Section 2 reviews the density
peaks searching algorithm. Section 3 presents the proposed method. Section 4 describes
the experimental setup and results. Section 5 summarizes the conclusions.

2. Density Peaks Searching
2.1. Density Peaks Searching

Density peaks searching and maximum-gray region growing (DPS-GVR) is a method
for infrared small target detection proposed in [37], which can detect targets with different
scales in images effectively. Inspired by density peak clustering [36] (DPC), density peaks
searching (DPS) is a novel candidate target-points extraction strategy based on the definition
of “density” and “δ-distance” for every pixel point. Using DPS, all pixels are converted to
the feature space composed of density ρ and δ-distance. In the ρ–δ space, the density peaks
are selected and their corresponding pixels in the original image are taken as candidate
target points. A local feature named maximum-gray region growing (GVR) is then used to
extract the real target. The density and δ-distance of pixel i are defined as

ρi = gi (1)

δi = min(dij) (2)

where gi is the intensity of the pixel i, j is the pixel whose density is larger than ρi, and dij
represents the Euclidean distance between pixel i and j. The δ-distance of the pixel with the
highest density is defined as δi = maxj(dij). When using DPS, pixels with large ρ and δ are
considered more likely to be target points. The density peaks clustering index γ for each
pixel can be calculated by

γ = ρ× δ (3)

All pixels are sorted in descending order according to γ, and the first np pixels are
taken as the density peaks, denoted as s1, s2, . . . , snp. This procedure is called “density
peaks searching”.

2.2. Shortcomings of DPS-GVR

DPS can select the candidate targets effectively and has a natural capability of mul-
tiscale target detection. However, when the target is dim or close to background clutter
with high-brightness (the δ-distance of the target pixel is small), it is possible to miss the
target when extracting candidate points, which is called the “concentration effect.” Figure 1
shows a few density peaks extracted by DPS in some representative infrared images. It can
be seen that the “concentration effect” makes the δ of target pixel very small, resulting in
missing detection.

Density peaks are found by DPS based on image intensity, so it is difficult to apply DPS
to infrared images with strong noise, especially for PNHB in infrared images. As PNHB
satisfies two characteristics of density peaks, relatively high density and relatively large
distance from higher-density pixels, the algorithm tends to regard PNHB as a density peak.
When multiple PNHBs exist in the image, DPS will miss the real target.

In those scenes with strong background clutter, the enhancement effect of GVR on the
target is not significant. Using the GVR value as a feature to distinguish candidate points
may sometimes lead to false detection or missing detection. Therefore, a new feature that
can significantly enhance the target is needed. In addition, we found that in the process of
calculating δ-distance, the elements in windows of 3 × 3 should be sorted several times,
which takes some unnecessary time.
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Figure 1. Some scenes where small targets are missed by the DPS. (a) The target is close to the
clouds; (b) There are buildings near the target; (c)The target is on the sunlit lake. The first row shows
candidate targets extracted by DPS, blue circles mark density peaks, and red boxes mark targets that
are missed in the image. The second row shows the ρ–δ feature space of each image, with density
peaks represented by blue dots and target points marked by red circles.

3. Proposed Method

In this section, a method is proposed to improve the existing problems of DPS-GVR.
As shown in Figure 2, our method consists of two main stages: extracting candidate
targets with modified density peaks searching (MDPS) and distinguishing true targets from
candidate targets with a local gray difference (LGD) indicator. The small target detection
method based on MDPS-LGD is introduced in detail below.
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3.1. Modified Density Peaks Searching

To overcome the shortcomings of DPS, we propose the modified density peaks searching
(MDPS). A novel local heterogeneity indicator is employed to improve DPS for better clutter
suppression ability, and a fast computation strategy is designed to calculate δ-distance.

3.1.1. Local Heterogeneity Indicator

The pixel intensity is defined as density in the density peaks searching algorithm.
If the intensity of pixel j in clutter is larger than the intensity of target pixel i (that is to say,
the distance dij between i and j is small), the δi will also be small. Therefore, simply defining
pixel intensity as density could lead to missing detections. A new definition of density
is needed so that bright clutter is suppressed while targets are enhanced. Additionally,
since the densities for every pixel in the image need to be calculated, the calculation of
density should be fast enough. Infrared small targets usually have different shapes with
no obvious texture features. However, they tend to appear as heterogeneous and compact
regions when compared with the surrounding background pixels [34,39]. Considering
that “heterogeneity” is an important distinction between target pixels and background
pixels, we construct a local heterogeneity indicator (LHI) as the density feature. Firstly,
a 5 × 5 mean filter is applied to smooth the image and reduce the influence of PNHB. For
the smoothed image denoted as g, the local heterogeneity measure of pixel i is defined as

ILH(i) = max(gi −mean(W\i), 0) (4)

in which W is a l × l local window centered on i, W\i represents the region in W except
the center pixel i, and mean(W\i) represents the mean of elements in W\i. LHI counts
the difference between pixel i and its surrounding pixels. For the target pixel, its intensity
must be greater than most of the pixels in the local window, and the ILH will be very large.
If i is located at the edge of the high-brightness background or clutter, the intensity of some
pixels in the local window is close to the intensity of i, and the others are smaller than i.
In this circumstance, the value of the mean (W\i) will be slightly smaller than i. Compared
with the case that pixel i is the target pixel, the ILH will be smaller. If i is located inside the
bright background and clutter, mean(W\i) will be close to gi and ILH will be close to 0. Thus,
LHI can effectively suppress background clutter with high-brightness and enhance target.

In order to verify the effectiveness of LHI, LHI is used to process the local image
around the target (purple box) in Figure 1a. As shown in Figure 3, Figure 3a is a 3D
schematic diagram of the local image of Figures 1a and 3b shows the processing results.
It can be seen that high-brightness clutter is suppressed and the target is enhanced.
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Figure 3. Detection results of Figure 1a. (a) 3D schematic diagram of the local image around the
target; (b) The processing result of LHI; (c) Results of new density peaks searching; (d) The position
of the target point in ρ–δ space; (e) The value of density peaks clustering index γ.

Based on the analysis above, we changed the definition of density in the DPS as
shown in Equations (5) and (6), where LHI is taken as the density in Equation (5) and γ is
calculated in Equation (6). The new peak density searching algorithm is used to detect the
target in Figure 1a. As shown in Figure 3d, the target pixel is away from background pixels
in ρ–δ space, while background clutter and noise are perfectly suppressed in Figure 3e.
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ρLH = ILH (5)

γ = ρLH × δ (6)

3.1.2. Modified Density Peaks Searching Algorithm

The δ-distance of every pixel needs to be calculated when searching for density peaks,
and we found that the elements of 3 × 3 windows are repeatedly sorted in the calculation
strategy [37], causing a lot of unnecessary time consumption. We present a new calculation
strategy that iteratively scales the image to obtain the δ-distance for every pixel. At each
iteration, we sort the density from large to small, and process points with larger density
first. In this way, the density map is only sorted once in each iteration, which reduces
the computation time effectively. The schematic diagram of the computational strategy
is shown in Figure 4a. For the original input density map ρ, the detailed algorithm to
calculate the δ-distance is as follows:
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Let D(1) = ρ, S(1) = 0, k = 1. The following iterative process is repeated until the size of
D(k) is equal to 1 × 1.

1. All of elements in D(k) are sorted from large to small, and the index of the sorted
elements are represented as Ides;

2. Traverse Ides, for each element (i, j) in Ides, execute 3, until all elements in the signed
matrix S(k) are 1. Then stop the traversal and execute 4;

3. Let S(k) (i, j) = 1. As shown in Figure 4b, U(i, j) represents an area of 3 × 3 window
centered at (i, j) in D(k), for each point (s, t) in U(i, j), if S(k) (s, t) = 0: let S(k) (s, t) = 1,
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D(k) (s, t) = 0, the corresponding points of D(k) (s, t) and D(k) (i, j) in ρ are denoted as p
and q, respectively. The δ-distance of point p can be calculated by Equation (7)

δp = dρ
pq (7)

4. Scale D(k) to half of the original, keep the points larger than 0 in D(k). Every element
in the result D(k+1) can be calculated by Equation (8); the area represented by V(i, j) is
shown in Figure 4b. Define the signed matrix S(k+1); every element in S(k+1) can be can
be calculated by Equation (9). Then let k = k + 1.

D(k+1)(i, j) = max
(s,t)∈V(i,j)

D(k)(s, t) (8)

S(k+1)(i, j) =

{
1, if D(k+1)(i, j) = 0
0, otherwise

(9)

Finally, for the point i in D with the highest density, let δi = maxj(dij).
We propose an algorithm called modified density peaks searching (MDPS) for candi-

date target selection in infrared images. LHI is taken as density and the δ-distances of pixels
are calculated by iteratively scaling the image in MDPS, as shown in Algorithm 1. According
to this flowchart, we can analyze the computational complexity to explain how the designed
strategy can improve the efficiency. As mentioned above, the elements of 3 × 3 windows
are repeatedly sorted to calculate the δ-distance of the elements in the windows [37].
For a frame with N pixels, the complexity of this process is O(3.1699N). The complexity
of traversing the sorted density map in our algorithm is O(N). It can be seen from the
complexity that the efficiency of the algorithm is improved through our calculation strategy.

Algorithm 1 Modified Density Peaks Searching.

Input: Infrared image I ε Rw×h

Output: Candidate target pixels set C
1: Initialize: ρ = 0w×h, δ = 0w×h.
2: Calculate the density ρ according to Equation (5).
3: D(1) = ρ, S(1) = 0, k = 1, [m, n] = size(D(1)).
4: while m > 1 or n > 1
5: Sort all elements in D(k) in descending order. The index vector of the sorted result is Ides.
6: for each index (i, j) in Ides do
7: S(k) (i, j) = 1.
8: for (s, t) in U(i, j) do
9: if S(k) (s, t) = 0
10: S(k) (s, t) =1, D(k) (s, t) = 0, calculate δ by Equation (7)
11: end if
12: end for
13: end for
14: Generate matrix D(k+1) = 0m/2×n/2, S(k+1) = 0m/2×n/2.
15: The value of the pixel (i, j) in the D(k+1) is obtained by (8).
16: The value of the pixel (i, j) in the S(k+1) is obtained by (9).
17: [m, n] = size(D(k+1)), k = k + 1.
18: end while
19: For the last pixel i in D(k), δi = maxj(dij).
20: Calculate the density peaks clustering index γ according to (6).
21: Sort all the pixels by γ in descending order.
22: Output candidate target pixels set C with the first np pixels.
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3.2. Local Gray Difference Indicator

In order to choose real targets from candidate targets (density peaks), we designed
a feature called the local gray difference indicator (LGD) which is more effective than
GVR. First, the local image is segmented using a random walker algorithm [33], and the
region closely related to the candidate pixels is extracted, which is called the “core region”.
Following this, we constructed a minimum gray difference element (MGDE), and the
maximum response of the core region to the MGDE is taken as the LGD of candidate pixels.

Figure 5 shows two local image blocks around the candidate pixels found by the MDPS.
Figure 5a,b are two local images containing both target and background, respectively.
The candidate pixel selected by MDPS is usually the maximum point of the local image,
but there are some differences between the target pixel and the background pixel. As shown
in Figure 5a, there are obvious differences between the target area and the surrounding
background in all orientations. For the image in Figure 5b, the difference between the
central pixel and the surrounding background is small in a certain orientation (see the
arrow in Figure 5b), showing consistency in this direction. Therefore, the characteristic of
the target area can be used to distinguish the target from the background.
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Figure 5. Target and background pixels in candidate targets are processed with LGD. (a) Local block
containing target pixel; (b) Local block containing background pixel. The first column is the original
images, where the green and red boxes are pixels labeled as 1 and 2, respectively. The second column
is the 3D schematic of original images. The third column shows the pixels labeled as 1 with the RW
algorithm. MGDE is shown in the fourth column.

Image segmentation can be realized by using an RW algorithm with a small number
of labeled pixels, that is, the probability that an unlabeled pixel belongs to every label is
calculated by the RW algorithm. The RW algorithm is able to exploit the characteristics of
the target region. Similar to the work in [32,34], we apply RW in the local region which
contains d × d pixels and has a center on the candidate pixel. Figure 6a shows the labeling
strategy we designed. The candidate pixels are labeled as class 1, and the minimum
value points on the four sides (E1, E2, E3 and E4) of the local region are labeled as class 2.
The local image blocks in Figure 5 are segmented using the labeling strategy. In Figure 5a,
since the gray value of pixels in the target area are significantly higher than those of the
surrounding background pixels, these pixels are labeled as class 1. In Figure 5b, the pixels
within the smoothed regions in the local block are labeled as class 1. We refer to the set of
points labeled as class 1 as the “core area.” The procedure of calculating the LGD for each
candidate pixel is as follows.
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Figure 6. Schematic diagram of LGD. (a) Labeling strategy, E1–E4 are the four sides of the local area,
the center pixel is labeled as class 1, and the minimum points on the four sides are labeled as class 2;
(b) Local structure for computing MGDE.

Denoting the kth point in candidate target set C as ck. The RW algorithm is applied to
segment the local image block centered on ck, and Ak represents the core area of this block.
As shown in Figure 6b, for every point p in Ak, the local block centered on p is divided
into m regions {Φj

p | j ε [1, m] }, where Φj
p represents the set of points whose Chebyshev

distance from point p is equal to j, as shown in Equation (10).

Φj
p =

{
q
∣∣max(|px − qx|,

∣∣py − qy
∣∣) = j

}
(10)

In order to describe the contrast of the pixel p, we construct a vector s ε Rm, and each
element sj in s is defined as

sj =
1
K

K

∑
i
(gp − gj

i) (11)

where gj
i represents the ith maximal gray value in region Φj

p, and gp is the gray value of
point p. K represents the number of pixels considered to eliminate the influence of outliers
and is set to 2 or 3. sj describes the minimum gray difference between pixel p and Φj

p.
The minimum gray difference element (MGDE) of p is defined as

MGDEp =

{
s · abs(s), if s · abs(s) >

(
gp
τ

)
0, otherwise

2

(12)

where abs(·) represents the absolute value of each element in the original vector, and
the parameter τ is the background suppression factor. Considering that the intensity of
background pixel is lower than the pixel in small target center, the value of τ is chosen to
be between 5 and 10. The local gray difference indicator (LGD) of ck is defined as

Ik
LGD = max

p∈Ak
(MGDEp) (13)

If ck is a small target, the MGDE of the central pixel of the target will be large since
the brightness of the small target is higher than the neighborhood in all directions, and the
Ik
LGD will also be large. If ck is the background pixel, all components of s are close to 0

due to the directional consistency, and the Ik
LGD will be small. Considering that the size of

small targets in infrared images is usually less than 9 × 9 pixels, the parameter d is set to
11 and m to 5, so that the local block will contain a small target completely. Column 4 of
Figure 5 shows the MGDE of the target block and background block. It is clear the MGDE
of the target block is significantly higher than background block. The ILGD of target and
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background pixel are 24,360 and 751, respectively. Therefore, the features of target and
background can be distinguished to identify the real target by using LGD.

To extract effective targets from candidate points, we merge two adjacent candidate points
into one, and take the larger ILGD between them as the LGD of the candidate point. Specifically:
for any two candidate points ci and cj, if there exists a point pi ε Ai with Upi ∩ Ai 6= Ø, remove
the candidate point with smaller ILGD from the candidate points set C.

3.3. Implementation of the Proposed Method

From the discussion above, it can be seen that the LGD of the real target is much larger
than the background. Therefore, a simple threshold operation is used to extract the real
target, and it can be defined as

T = mean(ILGD) + λ ∗ std(ILGD) (14)

where mean(·) and std(·) represent mean and standard deviation, respectively, and λ is a
given parameter. Candidate points whose LGD are greater than the threshold T are selected
as detected small targets.

On the basis of the above work, we propose a small target detection method based on
MDPS and LGD, as shown in Algorithm 2. MDPS-LGD consists of three main steps:
(1) Obtaining the set C of candidate target points by MDPS. (2) Calculating the core
area Ak for each candidate target ck. (3) Extracting the real target through the threshold
in Equation (14).

Algorithm 2 The Proposed Detection Method Based on LGD.

Input: Infrared image I ε Rw×h

Output: Detection result
1: Obtain candidate target pixels set C according to Algorithm 1.
2: for any ck ε C do
3: Obtain core area Ak by RW algorithm.
4: for any p ε Ak do
5: Compute the MGDEp according to (12).
6: end for
7: Compute the Ik

LGD according to (13).
8: end for
9: Extract targets from candidate target pixels using adaptive threshold in (14).

4. Experimental Results and Analysis

In this section, we first introduce test datasets, baseline methods for comparison,
and evaluation metrics. Then, the anti-noise performance of our method is analyzed.
Finally, we test the performance of each method through qualitative and quantitative
experiments. All experiments were conducted in MATLAB R2020a on a PC with 4.3 GH
Intel i5-10400 processor and 16 GB RAM.

4.1. Experimental Setup
4.1.1. Datasets and Baseline Methods

To demonstrate the effectiveness and robustness of the proposed method, we used
four infrared image sequences with different backgrounds, and their details are presented
in Table 1. Seq.1 consisted of 100 single-frame images, every of them containing one or more
targets, complex backgrounds with significant strong edges and sources of interference.
Seq.2–4 were sequences containing successive images. Seq.2 contained 300 frames, and each
frame had one target whose size was less than 6 × 6. Seq.3 contained 180 frames, and each
frame had one target whose size was larger than 6 × 6. In Seq.4, every frame contained
two close targets, and there were PNHB and stripe noises in the images. The minimum
distance between targets in all frames of the dataset was greater than 10 pixels.
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Table 1. The details of four real image sequence.

Frame Number Frame Size Targets Target Size Background Clutter Description

Seq.1 100 278 × 360, 128 × 128 141 3 × 3 to 9 × 9 Building, sea, etc. Heavy noise, salient
strong edges

Seq.2 300 256 × 256 300 3 × 3 to 5 × 5 Cloudy sky Irregular cloud

Seq.3 180 256 × 256 300 6 × 6 to 11 × 11 Sea Sea-level background
with much clutter

Seq.4 100 256 × 256 200 10 × 3, 3 × 2 Sky Banding noise, PNHB

The baseline methods for comparison included both conventional methods includ-
ing MPCM [24], IPI [19] and NRAM [20] and some state-of-the-art methods including
PSTNN [21], DNGM [26], MKRW [34] and DPS-GVR [37]. FKRW is a detection method
based on facet kernel filtering and random walker. IPI, NRAM, and PSTN are RPCA-based
methods, and MPCM and DNGM are HVS-based multiscale detection methods. Table 2
shows all the methods used in the experiments and their parameter settings.

Table 2. Parameter setting of eight methods.

Methods Parameter Setting

MKRW K = 4, p = 6, β = 200, window size: 11 × 11
IPI patch size: 50 × 50, sliding setp:10, λ = 1/

√
max(m, n), ε = 10−7

NRAM patch size: 50 × 50, sliding setp:10, λ = 1/
√

max(m, n), ε = 10−7, γ = −0.002
PSTNN patch size: 50 × 50, sliding setp:40, λ = 0.6/

√
min(n1, n2) ∗ n3, ε = 10−7, γ = −0.002

DNGM N = 3
MPCM N = 3, 5, 7, 9, L = 3

DSP-GVR np = 20, nk = 0.0015 × mn
Proposed l = 4, d = 11, m = 5, τ = 8

4.1.2. Evaluation Metrics

For a comprehensive comparison, we evaluate the performance of small target detec-
tion algorithms from three aspects: image quality, detection accuracy, and running speed.
The quality of the enhanced image output by detection algorithms can be quantitatively
described with background suppression factor (BSF) and contrast gain (CG) [5]. In general,
BSF and CG are defined as follows:

BSF =
σr

σe
(15)

CG =
CONe

CONr
(16)

where σr and σe represent the standard deviation of original image and enhanced image,
respectively. CONr and CONe represent the contrast of original image and enhanced image.
Contrast (CON) is defined as

CON = |mt −mb| (17)

where mt is the average value of the target pixels, mb is the average value of the background
pixels in the neighboring region of the target. The neighboring region is defined as a region
that is less than 16 pixels away from the center of the target. By using DPS-GVR, we can
get the GVR values of candidate pixels, except the enhanced image. Thus, the GVR of
the candidate pixel is used to define the enhanced image during evaluation. Specifically,
the enhanced image Ie of DPS-GVR is defined as

Ie(i) =
{

GVR(i), i is candidate pixel
0, otherwise

(18)

Likewise, MGDE is used to define the enhanced image in our methods. Considering
the definition above, only the candidate points in the enhanced image are not equal to 0.
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In order to evaluate the target enhancement ability of these methods better, we define a
new contrast as

CON = |Mt −mb| (19)

where Mt represents the maximum value of the target pixels, and we use the contrast
defined above to calculate CG. Furthermore, in order to describe the noise intensity in the
image, the signal-to-clutter ratio (SCR) of the image is defined as

SCR =
CON

σ
(20)

where σ represents the standard deviation of image intensities in the neighboring area of
target. The detection performance of the algorithm is evaluated by the receiver operat-
ing characteristic (ROC) curve. The vertical coordinate of the ROC curve represents the
detection probability Rd, and the horizontal coordinate represents the false alarm rate Rf,
which are defined as follows:

Rd =
number of true detections

number of total actual targets
(21)

R f =
number of false detections
number of total detections

(22)

The ROC curve shows the trade-off between true detection and false detection.
Specifically, the algorithm with the ROC curve closer to the upper left corner has bet-
ter performance. We calculated the area under the curve (AUC) to quantitatively compare
the ROC curves.

4.2. Anti-Noise Performance

As described in Section 3.1, DPS is less robust to noise in images, especially to PNHB.
It is necessary to evaluate the method based on the DPS proposed above. We selected
four infrared images from Seq.1, and added Gaussian white noise to them; the mean value
and the variance of Gaussian white noise were 0 and 0.005, respectively. In Figure 7,
the first row shows the original images, the second row shows the images after adding
noise, and the processing results of the proposed method are shown in the third row.
After adding white Gaussian noise, the targets in the image became indistinguishable.
However, the proposed method can enhance the target effectively. We repeated the above
experiment 100 times and recorded the average SCR of original images and processed
images. The results of the experiment are shown in Table 3. It can be seen that the SCR
of the images decreases significantly after adding noise. In all four scenes, the SCR of the
enhanced images processed by our method are greater than 20, and most of the clutter and
noise in the images are suppressed. This shows that our method has a certain degree of
anti-noise ability.

Table 3. Average SCR of the images in Figure 7.

Original Image Enhanced Image Nosie-Added Image Enhanced Image

Figure 7a 2.8262 31.5807 1.7068 27.3232
Figure 7b 6.3872 23.0794 3.4259 22.9246
Figure 7c 5.8426 21.6889 2.8987 21.0840
Figure 7d 7.2077 26.3750 2.1380 24.2110
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Figure 7. The processing results of the proposed method for the four noise-added images.
(a–d) 4 infrared images selected from Seq.1. The first row and second show the original im-
ages and noise-added images, respectively. The third row displays the enhanced images of our
proposed method.

4.3. Image Quality

Figures 8 and 9 show the processing results of representative images from four
sequences using different methods. We normalized the enhanced images obtained by
all methods, and marked correct detections with red boxes and false detections with
yellow boxes. It can be seen that all targets are accurately detected by the proposed
method, which achieves the best clutter suppression ability and target enhancement effect.
In contrast, those baseline methods do not show good performance on the four sequences si-
multaneously. Among all of those baseline methods, FKRW has the best target enhancement
ability, which enhances all targets from Seq.1 and removes clutter completely. However,
when using FKRW, a small residual of buildings is still in images from Seq.2, and the dim
targets from Seq.4 are missed. IPI suppresses the target hidden at the edge of clouds in
Seq.1 (b) incorrectly, and PNHB is not suppressed in the result of Seq.4. NRAM misses the
target in Seq.1 (a) and fails to suppress the PNHB of Seq.4. PSTNN successfully enhances
all targets, but the strong edges in Seq.1 (b) and Seq.1 (c) remain in the results. The clutter
suppression effect of DNGM and MPCM is the worst, especially for the clouds in Seq.1 (a)
and Seq.1 (b). Both algorithms have a large amount of clutter residue. DPS-GVR misses the
smaller targets in Seq.4, and the PNHB in Seq.4 is not suppressed.
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Figure 8. Original images and the corresponding enhanced images by the different methods for Seq.1.
The red circles indicate the position of the actual targets. The green circles mark missing detections.
The correct and false segmentation results are marked by red and yellow boxes, respectively.

Photonics 2022, 9, x FOR PEER REVIEW 15 of 19 
 

 

     

 

    

     

 

    

Figure 8. Original images and the corresponding enhanced images by the different methods for 
Seq.1. The red circles indicate the position of the actual targets. The green circles mark missing de-
tections. The correct and false segmentation results are marked by red and yellow boxes, respec-
tively. 

     

 

    

     

 

    

Figure 9. Cont.



Photonics 2022, 9, 311 15 of 19Photonics 2022, 9, x FOR PEER REVIEW 16 of 19 
 

 

     

 

    

Figure 9. Original images and enhanced images by the different methods for Seq.2–Seq.4. The red 
circles indicate the position of the actual targets. The green circles mark missing detections. The 
correct and false segmentation results are marked by red and yellow boxes, respectively. 

Table 4. Average BSF and CG using different methods on four sequences. The best-obtained re-
sults are bolded, and the second-best results are underlined. 

  FKRW IPI NRAM PSTNN DNGM MPCM DPS-GVR Proposed 

Seq.1 
BSF 311.51 32.41 94.36 28.94 175.11 23.95 42.04 329.79 

INF in BSF 0 5 20 9 0 0 0 14 
CG 5.45 5.25 5.19 5.62 6.92 7.13 5.27 6.49 

Seq.2 
BSF 639.17 424.56 102.54 36.42 305.86 15.46 41.93 2.17 × 103 

INF in BSF 12 72 127 105 0 0 0 102 
CG 8.45 9.47 10.73 9.83 10.72 11.0361 11.23 11.71 

Seq.3 
BSF 164.93 561.83 40.72 28.38 320.08 40.71 14.24 421.03 

INF in BSF 38 43 56 93 0 0 0 35 
CG 6.22 5.72 5.06 5.43 6.62 6.62 6.48 6.55 

Seq.4 
BSF 174.99 65.07 92.15 133.19 559.60 47.60 65.66 5.00 × 103 

INF in BSF 0 0 0 50 0 0 0 76 
CG 3.35 3.11 3.98 4.08 3.28 3.27 2.55 3.81 

4.4. Detection Performance 
As an improvement to the density peaks searching, we firstly compared our method 

with DPS-GVR to verify that our improvement are effective. As shown in Figure 10, re-
garding the four images are selected from Seq.1, all images have the “concentration effect” 
described in Section 3.1. DPS-GVR and our method are applied to these four images, re-
spectively. The results show that the targets are all missed by DPS-GVR. However, our 
method is able to detect targets accurately, which proves the effectiveness of our im-
proved density peaks searching by LHI. 

We also use ROC curves to evaluate the detection performance of our method and 
baseline methods. The ROC curves of the different methods of four sequences are shown 
in Figure 11. It can be seen that our method achieves the best detection performance on 
Seq.1, Seq.2 and Seq.3 compared with the baseline methods. In Seq.2 and Seq.3, our 
method obtains almost perfect curves. It is worth noting that two targets are close to each 
other in Seq.4, and PNHB is present in all frames from Seq.4. DPS-GVR suffers from the 
“concentration effect” and detects only one target per image, while our improved method 
is not affected. In conclusion, the proposed method can achieve ideal detection perfor-
mance for the four sequences. 
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In addition to qualitative evaluations based on different scenes, we further evaluate
the detection performance of the proposed method and baseline methods on four sequences
using BSF and CG. It is worth noting that the infinite value (INF) for BSF indicates that
the background in the image is completely suppressed. Table 4 shows the number of
BSF equals INF in the results obtained by every method and the average value of BSF for
images without INF; the average value of CG is also given in Table 4. The proposed method
achieves the best or second-best results on all four sequences. The background is completely
suppressed in Seq.2 for more than 100 images. Due to the presence of PNHB and stripe
noise in image of Seq.4, only PSTNN and our method are able to completely suppress the
clutter in the image. The clutter in 76 images of Seq.4 is completely suppressed by the
proposed method, which shows the robustness of our method with regard to PNHB. It can
be concluded that our method outperforms most of the baseline methods with excellent
background suppression on test datasets.

Table 4. Average BSF and CG using different methods on four sequences. The best-obtained results
are bolded, and the second-best results are underlined.

FKRW IPI NRAM PSTNN DNGM MPCM DPS-GVR Proposed

Seq.1
BSF 311.51 32.41 94.36 28.94 175.11 23.95 42.04 329.79

INF in BSF 0 5 20 9 0 0 0 14
CG 5.45 5.25 5.19 5.62 6.92 7.13 5.27 6.49

Seq.2
BSF 639.17 424.56 102.54 36.42 305.86 15.46 41.93 2.17 × 103

INF in BSF 12 72 127 105 0 0 0 102
CG 8.45 9.47 10.73 9.83 10.72 11.0361 11.23 11.71

Seq.3
BSF 164.93 561.83 40.72 28.38 320.08 40.71 14.24 421.03

INF in BSF 38 43 56 93 0 0 0 35
CG 6.22 5.72 5.06 5.43 6.62 6.62 6.48 6.55

Seq.4
BSF 174.99 65.07 92.15 133.19 559.60 47.60 65.66 5.00 × 103

INF in BSF 0 0 0 50 0 0 0 76
CG 3.35 3.11 3.98 4.08 3.28 3.27 2.55 3.81

4.4. Detection Performance

As an improvement to the density peaks searching, we firstly compared our method
with DPS-GVR to verify that our improvement are effective. As shown in Figure 10,
regarding the four images are selected from Seq.1, all images have the “concentration
effect” described in Section 3.1. DPS-GVR and our method are applied to these four images,
respectively. The results show that the targets are all missed by DPS-GVR. However,
our method is able to detect targets accurately, which proves the effectiveness of our
improved density peaks searching by LHI.
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Figure 10. The detection results of the proposed method and DPS-GVR. (a–d) Four images selected
from Seq.1 with high-brightness background clutter around the target. The first row shows the result
of DPS-GVR and the second row shows the result of the proposed method.

We also use ROC curves to evaluate the detection performance of our method and
baseline methods. The ROC curves of the different methods of four sequences are shown
in Figure 11. It can be seen that our method achieves the best detection performance on
Seq.1, Seq.2 and Seq.3 compared with the baseline methods. In Seq.2 and Seq.3, our method
obtains almost perfect curves. It is worth noting that two targets are close to each other in
Seq.4, and PNHB is present in all frames from Seq.4. DPS-GVR suffers from the “concen-
tration effect” and detects only one target per image, while our improved method is not
affected. In conclusion, the proposed method can achieve ideal detection performance for
the four sequences.
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4.5. Running Speed

The main computational cost of our method comes from two parts: the calculation
of the δ-distance in the MDPS and the solution of RW algorithm. The time complexity of
MDPS is O(Nlog2(N)), where N is the total number of pixels in the image. The RW algorithm
is used to segment np local blocks with a size of d × d, complexity O(npd6) and where np
and d are fixed values. Therefore, the computational complexity of the proposed method
is O(Nlog2(N)). To demonstrate the efficiency of the proposed method, we compare the
running time of different methods on the dataset and analyze the computational complexity
of the proposed methods. Table 5 shows the average running time of different methods
on test datasets. It can be seen that the proposed method achieves the second-best results
in all four sequences, which is just slower than MPCM. However, the proposed method
performs much better than MPCM in any other metric and IPI is the most time-consuming
method. The proposed method is much faster than DPS-GVR, which reflects the advantage
of MDPS.
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Table 5. Average running time (s) of different methods.

FKRW IPI NRAM PSTNN DNGM MPCM DPS-GVR Proposed

Seq.1 0.1468 3.4239 1.0260 0.1715 2.1835 0.0331 0.3626 0.0840
Seq.2 0.2330 3.4830 1.2912 0.2806 3.1556 0.0724 0.4964 0.1336
Seq.3 0.2270 3.2550 1.2408 0.2696 3.0464 0.0732 0.5332 0.1376
Seq.4 0.1080 3.6193 1.6296 0.1542 3.1383 0.0380 0.5648 0.1322

5. Conclusions

In this paper, a single-frame infrared small target detection algorithm based on modi-
fied density peaks searching and local gray difference is proposed. In order to circumvent
the “concentration effect”, we used LHI as density to enhance the target and suppress the
influence of PNHB. Subsequently, according to the local feature differences between small
target and clutter regions around candidate points, a local gray difference indicator was
proposed to highlight targets, and real targets were extracted by an adaptive threshold.
We conducted extensive experiments on real test datasets to evaluate the robustness and
effectiveness of our method. Experimental results show that, compared to several state-
of-the-art methods, our method can suppress various types of background clutter better,
with a lower false alarm rate even under complex background conditions. At the same
time, the proposed method has a lower time cost than most of the compared methods.
In the future, the mean filter can be replaced by an order-statistic filter in the process of
constructing LHI to prevent extremely dim targets from being eliminated, and the detection
performance can be further improved by combining it with multi-frame based methods.
In addition, the speed of detection can be further improved by using parallel computing.
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