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The non-uniformity present in the infrared detector and readout circuit leads to significant stripe noises in the infrared images.
The effect of these stripe noises on infrared images brings trouble to the subsequent research. The currently available algorithms
for removing infrared streak noises cannot effectively protect the non-stripe information while removing the stripe noise.
Compared with these algorithms, our algorithm uses a multi-scale wavelet transform to concentrate the streak noise by frequency
into vertical components of different scale levels. Then, our algorithm analyzes the unique properties of the streak noise compared
to the ideal vertical component. The denoising model of the vertical component at each level is established with its multinomial
sparsity, and the streak noise is removed by the alternating direction method of multipliers (ADMM) algorithm for optimal
calculation. To prove the usefulness of our algorithm, we carried out a large series of real experiments, comparing it with the most
advanced algorithms in terms of both subjective determination and objective indices. The experimental results fully demonstrate

the superiority and effectiveness of our algorithm.

1. Introduction

Due to the craft as well as the material, non-uniformity exists
between the readout circuits of each channel in the infrared
detector. These characteristics are reflected in the image as
stripe noise, which degrades the image quality and creates
resistance to subsequent studies [1-3], such as image rec-
ognition, image recovery, and target classification. There-
fore, it is significant to investigate the ways to remove the
stripe noises as well as retain the detailed information in the
infrared images. The main idea of this paper lies in maxi-
mizing the extraction of stripe noise from infrared images
and maximizing the retention of all information in the
images.

Until now, stripe noise removal algorithms can be di-
vided into three main categories after scholars’ research:
filtering processing method, statistical matching method,
and model optimization method.

The earliest application of the filter processing method
dates back to 1987 when Quarmby used the a priori

knowledge of streak noise in the frequency domain to design
filters to remove the streak noise [4]. As the research
deepens, wavelet transform gradually plays an increasingly
important role in the filter processing method [5-8]. These
filtering methods based on wavelet transform take advantage
of the wavelet transform’s ability to extract local frequencies
in an image to make a distinction between high-frequency
components and low-frequency components, and then
further eliminate stripe noises. Although this type of filtering
processing method has the advantages of a simple algorithm
and easy application, there are still two shortcomings: On the
one hand, this kind of method can extract the stripe noise
from the original image only when the stripe noise has
strong regularity and does not lose the effective information;
on the other hand, this kind of method is easy to mistake the
edge information and texture information when the target
information is complex, and the original information is lost,
and even “artifacts” will be produced.

The statistical matching method is widely adopted in
engineering because of its simple algorithm and high
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operational efficiency. The application of this type of method
can be traced back to the processing of MOS-B ocean image
data as early as [9]. As an example, the method considers
each image element in the detector to have the same average
output level for the same radiation input. From there, the
corresponding correction factor for each pixel is calculated,
including the gain factor and bias factor. These correction
coefficients are used to obtain the denoised image. With the
development of this type of method, it has been gradually
refined by scholars according to the application scenarios.
For example, the local constant statistics method combined
with neural networks [10]. This method assumes that the
mean and variance of each row of pixels using different
channel readout circuits are equal, and uses these as the
expected values of local statistics to correct for streak noise
in the image. The local column equalization method com-
bined with wavelet transform is also one of the methods
that emerged during the development process [11]. This
method concentrates the streak noise components in the
vertical components of each level of the wavelet transform
and then removes the streak noise by the column equal-
ization method. Although the above three methods have
achieved excellent results in their respective application
scenarios, it is difficult to remove the noise satisfactorily in
the case where the streak noise presents an uneven distri-
bution in the image.

The model optimization method, as one of the most
advanced methods in the current field of infrared image
streak noise removal, is based on the establishment of
mathematical models and is widely adopted by scholars. The
use of this class of methods can be traced back to 2004 when
Antonin Chambolle constructed the cost function according
to the ideal image characteristics and found the denoised
image that minimizes the cost function by the steepest
gradient descent method [12]. Later, some scholars built on
this model and introduced a better denoising effect by using
the L1 parametric description of the grayscale difference
between the ideal image and the original image [13]. Some
other scholars combined the three major types of methods,
used frequency domain filtering to extract the streak noise
component at high frequencies, and constructed a mathe-
matical model with the gradient equilibrium of the ideal
image to finally achieve the streak noise removal [14].
Currently, the most representative algorithm is the streak
noise removal model based on group sparsity. The algorithm
uses the L1 parametric representation of group sparsity of
streak noise and obtains a better denoising effect [15].

After analyzing the above three major types of infrared
image stripe noise removal of algorithms, we can learn that
the goal of current algorithms tends to focus on the removal
of stripe noise, and little consideration is given to the in-
formation loss in non-stripe noise regions. This leads to the
current phenomenon that there is still a slight streak noise in
the denoised image, and the removal effect is not good, or
some information is lost in the denoised image, which re-
duces the image quality. In the model optimization method,
scholars regard the stripe noise as additive noise. And the
noise removal problem is converted into the noise extraction
problem, in other words, the noise estimation problem
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[16-18]. To solve this status quo, based on previous research,
this paper will aim to remove streak noise while ensuring
that the information in the non-streak noise region is not
affected, fully exploit the a priori information of the streak
noise, and propose practical stripe noise removal algorithms
for infrared images.

In this paper, we analyze the proposed algorithm with
the example of streak noise in the vertical direction. The
stripe noise removal in the horizontal direction is the same
as the stripe noise removal in the vertical direction.

Firstly, multi-scale wavelet transform, which can separate
spatial information and frequency characteristics into vertical
components of different scale levels, is adopted to preserve
non-stripe noise information. Moreover, the streak noise is
concentrated in the vertical component of each level. Due to
its special structuredness, there is a clear distinction between
the streak noise and the ideal vertical component at all levels.
Then, due to the significant convexity and sparsity of the L1-
norm, it is used to construct the optimal model of streak noise
in this paper. This method is also known as sparse repre-
sentation. Finally, this paper presents a new infrared stripe
noise removal method based on multi-level wavelet transform
and multinomial sparse representation, capable of effectively
preserving non-stripe noise information. In addition, the
alternating direction method of multipliers (ADMM), a
classical method for solving decomposable convex optimi-
zation problems, is applied to solve the model in this paper
[19, 20]. The proposed method has the following advantages:

(1) In this paper, we utilize the multi-scale wavelet
transform to separate most of the non-stripe noise
information into other components of the different
scale levels except the vertical component, which can
effectively protect this information from being
smoothed by the algorithm.

(2) In this paper, we utilize the sparsity and convexity of
the L1-norm to construct an algorithmic model with
a sparse representation of the gradient sparsity and
global sparsity specific to the stripe noise in the
vertical component of each level. This is able to
extract the maximum amount of stripe noise.

(3) According to the different intensities of multi-stage
stripe noise in different scales, regular terms with
different sizes are selected to ensure that the stripe
noise in each vertical component is removed to the
maximum extent.

2. Algorithm Composition

Due to the specificity of stripe noises in spatial distribution,
this section aims to discuss the importance of two com-
ponents of the proposed method: multi-scale wavelet
transform and multinomial sparse representation.

2.1. Multi-Scale Wavelet Transform of Infrared Images with
Stripe Noises. For infrared images containing vertical stripe
noise, wavelet transform can extract the stripe noise and can
gradually refine the image at multiple scales by local analysis
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FiGure 1: The first-level wavelet transform of the infrared image containing vertical streak noise. (a) Infrared image containing vertical
stripe noise. (b) First-level approximate component. (c) First-level horizontal component. (d) First-level vertical component. (e) First-level

diagonal component.

of spatial frequency. The streak noise in the image can be
extracted to the maximum extent. Figure 1 shows the first-
level wavelet transform of the infrared image containing
vertical streak noise.

The first-level wavelet transform can be described by the
following formula:

I.=cA. +cH,.+cV,. +cDy, (1)

where I, cA,, cH,, ¢V, and ¢D, are the original infrared
image containing vertical stripe noise, the first-level ap-
proximate component, the first-level horizontal component,
the first-level vertical component, and the first-level diagonal
component, respectively. “. =" denotes wavelet transform
and wavelet inverse transform, not mathematically

equivalent. “.+” means the set of all components in the same
level, not mathematically addition.

As shown in Figure 1(d), the high-frequency stripe
noises in the original infrared image are extracted into the
vertical component. The remaining lower frequency stripe
noises are retained in the approximate component, as shown
in Figure 1(b). Then, we can extract the stripe noise from this
first-level approximate component to the second-level
vertical component by wavelet transform. The formula
which describes second-level wavelet transform is as follows:

CA,. =cA, +cH,. +cV,. +cD,, (2)

where cA,, cH,, ¢V,, and cD, are the second-level ap-
proximate component, the second-level horizontal



component, the second-level vertical component, and the
second-level diagonal component, respectively. The multi-
scale wavelet transform can be described by the following
formula:

€A, ;.=cA,. +cH, +cV,. +cD,. (3)

In practical application, the proportion of noise com-
ponent of image is pretty low, and so it is difficult to observe
the existence of stripe noise in the high-level vertical
component after multi-scale wavelet transform. Therefore,
in this paper, our proposed method is denoised only for the
vertical components of all levels.

2.2. Multinomial Sparse Representation. To better build a
denoising model that conforms to the characteristics of
streak noise, it is necessary to analyze the characteristics of
streak noise and ideal vertical components from multiple
angles to build the corresponding regular terms. Figure 2
shows the difference between the ideal vertical component
and the noisy vertical component by taking the first-level
vertical component and the streak noise within it as an
example.

2.2.1. Directionality. Figure 2 shows the property differences
between stripe noise in the vertical component of the
original image and the ideal vertical component. From the
comparison of Figures 2(e) and 2(g), we can observe that the
streak noise is significantly much smoother than the ideal
vertical component in terms of the gradient in the vertical
direction. Figure 2(e) also exhibits high sparsity. We con-
strain this sparsity of the stripe noise using the L0-norm
which describes the sparsity extremely well [21, 22].
Therefore, the established regular term is as follows:

Pl (Nn) = dyNnO’ (4)
where d,, denotes the convolution operator in the vertical
direction, N, denotes stripe noises in the ng,-level vertical
component. Models containing LO-norms with non-
convexity have difficulty in computing extrema. In contrast,
the L1-norm, although slightly less descriptive of sparsity
than the LO-norm, is easier to compute [23, 24]. Hence,
formula (4) can be optimized as:

P, (Nn) :dyan' (5)

There are many model optimization methods that use
the root mean squared error or squared error as the fidelity
term to protect the valid information in an image [25]. These
fidelity terms are shown in formulas (6) and (7):

PZ(Nn):rVn_NiZ’ (6)

P,(N,) =(rv2 - N2)", (7)

where 1V, is the n,,-level vertical component of original
image. A, — N, is essentially the ny -level ideal vertical
component dV,. Formulas (6) and (7) neither take into
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account the characteristics of ideal vertical component dV,
nor noise N,. From the comparison between Figures 2(f)
and 2(h), we can conclude that the ideal vertical component
is smoother in terms of the horizontal gradient. Therefore,
we can adopt the smoothed horizontal gradient of the ideal
vertical component as the fidelity term, which is also sparsely
represented by the L1-norm:

P,(N)=d,rV, —d,N,,. (8)

Moreover, Figure 2(j) further corroborates the strong
sparsity of the ideal vertical component in the horizontal
direction. Thus, formula (8) can ensure the smoothness of
the denoised image in the horizontal direction.

2.2.2. Structuredness. Figure 2(d) shows that the streak noise
in the vertical components at all levels is with overall
sparsity. We constrain this sparsity of the stripe noise using
the LO-norm which describes the sparsity extremely well.
Thus, we can obtain:

P, (Nn) = Ny 9)

The same principle as formula (4), models containing
LO-norms with nonconvexity have difficulty in computing
extrema. Therefore, L1-norms are used to replace LO-norms
as:

P;(N,)=N,,. (10)

Moreover, Figure 2(h) further corroborates the high
sparsity of the stripe noises in the ideal vertical component.
Thus, formula (10) ensures that stripe noises are not ex-
cessively removed.

3. Methodology

In this section, the three regular terms proposed in Section 2
are generalized to propose the stripe noise removal model
for infrared images. In addition, the ADMM algorithm is
applied to solve this model.

Figure 3 illustrates the flow of our proposed algorithm.
Firstly, our method performs a multi-level decomposition of
the infrared image using the multi-scale wavelet transform,
so that the streak noise of different frequencies is extracted
into different levels of vertical components. Then, these
vertical components are denoised. Finally, the image is
reconstructed by multiple wavelet inverse transform to
obtain a clean image. The denoising of these different levels
of vertical components is achieved by a multinomial sparse
representation model. In this section, we will elaborate on
the model and the optimization process. The process of
wavelet decomposition is detailed in the reference [7].

3.1. Model. The previous section analyzed the characteristics
of the streak noise compared to the ideal vertical component
at all levels and  proposed  three  terms
P,(N,),P,(N,), an dP;(N,) for its directionality and
structure. The three terms are combined to gain an
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FIGURE 2: Some properties of stripe noises. (a) Ideal image. (b) The first-level vertical component of the original image. (c) Ideal first-level
vertical component. (d) Stripe noises in (b). (e) Vertical gradient of (d). (f) Horizontal gradient of (d). (g) Vertical gradient of (c). (h)
Horizontal gradient of (c). (i) Ratio of the L1-norm for each column of (d) in the L1-norm for the vertical gradient of (b). (j) Ratio of the L1-
norm for each row of (c) in the L1-norm for the horizontal gradient of (b).



The second-level wavelet transform

Computational Intelligence and Neuroscience

The third-level wavelet transform
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FIGURE 3: Flowchart of the proposed algorithm.

optimizable model for the removal of streak noise in the
ny,-level vertical component:

Nn = argnﬁfin{dyan +An1Nn1 +)Ln2dxrvn _denl}’ (11)
where # denotes the level of multi-scale wavelet transform,
A,y and A, denote the parameters of the regular terms,
which are assigned different weights to each term. Since the
streak noise is additive noise, we extract the streak noise in
the 7y, -level vertical component by formula (11), and then
the ny,-level denoised vertical component can be obtained by
the following formula:

dv,=rV,—N,. (12)
Finally, each level denoised vertical component dV,, is
combined with the other unprocessed rV, to perform a step-

by-step wavelet inversion transform to obtain a recon-
structed clean image:

dA,  =.cA,. +cH, +dV, . +cD,
: , (13)
I;=.cA,.+cH,.+dV,. +cD,

where Iy denotes denoised clean image, =. denotes wavelet
inversion transform.

3.2. ADMM Optimization. In the model optimization
method, scholars often use the derivative to obtain the

optimal result. However, formula (11) constructed based on
the L1 parametrization is not a continuously divisible func-
tion, and it is difficult to find the extreme value. The ADMM
algorithm is a more widely used method in machine learning
to find the optimal solution to constrained problems, and the
parts of unconstrained optimization are optimized separately.
Thus, in this paper, ADMM is used to solve formula (11) and
the detailed procedure is shown below.

To convert the unconstrained problem into a con-
strained one, we introduce three variables, namely,
G,=d,N,, T,=N,, andU, =d,rV,—d.N,. Then, for-
mula (11) is converted to the formula as below:

argN ’gl)i%l’ {Gnl + )Lannl + AnZUnl}
-t Y (14)
st.G,=d,N,,T, =N, andU, =d,rV, —-d,N,.

Following the principle of ADMM algorithm, formula (14)
should be transformed into an augmented Lagrangian function:

arg min G, +1, m,Tll(dyNn - Gn)

ot Y n

Tnl +/\n2Un1 +
+ mi (Nn - Tn) + ”1:3 (deVn - den - Un)
p}’lld N G

+@Nn—Tﬁz+p"3d "V, -d.N, -U%,
2

(15)
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where m,,;,m,,,and m,; denote the Lagrange multipliers of
the three constraints; p,;,p,,, andp,; are three penalties.
Due to the concept of alternating minimization of different
variables of the ADMM algorithm [26], formula (15) can be
transformed into four subitems for repeated solutions as
follows:

(a) G,, subitem
_ . T pnl
G, = argrrélnnGn1 + mnl(dyNn - Gn) —d,N, G
(16)

The formula (12) in Reference [27] describes the
optimization results for the X in the form of the
following formula:

. 2
argm)}nX—Bz+2/1X1. (17)

It can be directly obtained that
X = soft(B,A) = sign(B)max(|B| - A,0), (18)

where sign denotes a symbolic function whose
function is to take the sign of a number. max denotes
the function to find the maximum value. Thus,
formula (16) can be converted into

G, = argrréinG +p”1d N,-G,+ (19)

pn12

Based on formulas (17) and (18), the optimal solu-
tion of formula (19) is

k
G = soft(d N¥ ) %), (20)
nl Fnl

where k denotes the count of its iterations.
(b) T, subitem

Tn =arg II%II] /\annl + mz;z (Nn - Tn) + %Nn - TELZ

(21)
Like the G,, problem, it works out as follows:
Tk+l — SOft(N + N2 mnl A}’ll) (22)
Pr2 Pn2
(c) U,, subitem
U, = argminA,,U,, + me (drV, —d.N, -U,)
(23)

+ %dxrvn ~d.N,-U>,

It can be solved that

7
iy A
Ukt = soft(d v, -d N~ Lz) (24)
pn3 Pn3
(d) N,, subitem
N, —argmmm (dN G)+m,T12(Nn—Tn)
mly(d vV, - d.N, -U,)+2 Pua,N, -G,
+@Nn—Tﬁ2+P”3d V,—d.N, - U,
2
(25)
Formula (25) can be simplified as
= argmln {P”Id N, -G, + Lt p"ZN -T,
Pnl 2 2
mn22 Pn3 mn32
+—= +—=d rV,-d.N,-U, + .
P2 2 Pn3 2
(26)

Through direct derivation of formula (26):
pnldg ®dy ® NEH + pn2Nﬁ+l + pn3dz; ®dx ® NZH

_ dT Gk _ My Rl _ M
= Pn1 ( o TP\ Ln s (27)

+ pn3d§ ® (dern - U];'l + %),
n3

where ® is the symbol that characterizes the con-
volution. Since it is difficult to find derivatives di-
rectly for functions containing convolution, the
Fourier transform is used in this paper to transform
convolution in the time domain to multiplication in
the frequency domain to facilitate implementation:

[P F(dy). x F(d,)) + P + praF (dy ). * F (d)].

* F(N) = p F(d)). *J<Gk+l ?)
nl

") 1 (),

n2
s 9(dern - Uﬁ“ + %)
Pn3

By left division of the matrix, we obtain

+ PnZ‘c/j(T]:zH -
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T k+1 k1 T k1
g(NkJrl) _ [pnlg(dy) * e%—(GnJr - mnl/Pnl) + PZgT(TnJr - ng/an) + PS‘G;(dx) * e?—(dxr‘/n - (Jn+ + mn3/pn3)] (29)
= T T :
! [pnlg(dy) * g(dy) T P2 +pn3‘g(dx)' * e?—(dx)]
Then, the inverse Fourier transform was introduced
to obtain the formula for streak noises N, in the
ny,-level ideal vertical component 1V,
T k+1 k1 T k+1
Nk+1 _ 971 { [pnlg(dy) * g(GnJr - mnl/pnl) -*—/)2'9:(’11;;r - mnz/an) + p3g(dx) * g(dxrvn - lJn+ + mnS/an)] }
- T T >
! [pnlg(dy) * LO}(dy) P2 +pn3g(dx)' * g(dx)]

(30)
where “. *” denotes the point-to-point multiplica-  algorithm [28, 29], MRD (mean relative deviation), which
tion between matrices.”./” denotes the point-to-  characterizes the degree of information loss in the non-stripe
point division between matrices. “#” stands for the noise region of the image after denoising [29, 30], and ID
Fourier transform that converts the time domain to ~ (image distortion), which reflects the fidelity level of the
the frequency domain; “% ! represents the inverse  algorithm [15, 31]. The definitions of these three metrics are
Fourier transform that converts the frequency do-  shown in formulas (32)-(34). According to their definitions,
main to the time domain. It is worth noting that all ~ we can learn that the higher the value of NR and ID, the
matrices need to be normalized before the operation. ~ lower the value of MRD, and the better the algorithm is.
In addition, the iterative formula for Lagrange N
multipliers is as follows: NR = ﬁo’

1
ktl k kel Akl
mt = my +p(d, N -G (32)
k+l _ Kk K+l _ k1 k
My = My + P (N, = T5) (31) N =) meanP (1),
ml:gl = m]23 + pn3(dxrvn - deﬁH - U]:L+1)' =0
where N, denotes the value of N in the image before
Finally, the stripe noises N5*! in the ny,-level vertical ~ denoising and N, denotes the value of N in the image after
component were obtained, and the denoised image  denoising. u; represents all frequencies where the streak
I, was calculated by formula (13). noise is located. P denotes the power spectral density at a
. certain frequency.
4. Experimental Results MN |
1 Zi— gi
To demonstrate the practicality and superiority of the al- MR D = MN £ g x 100%, (33)
i=

gorithm proposed in this paper, we designed the control
experiments in this section by taking into account the three
state-of-the-art methods that currently exist. These three
infrared image streak noise removal algorithms are multi-
scale guided filtering method (MSGF) [7], gradient equal-
ization method based on wavelet transform (WAGE) [11],
and full variational method based on guided filtering
(TVGF) [14]. Allimage data in the experiments were actually
taken. The tool used is a cooled medium-wave surface array
infrared camera model TB640-CL from LUSTER. The image
resolution is 640 * 512.

The processing results of each algorithm need to be
evaluated. There are two methods of evaluation: one is
subjective evaluation, which is mainly through the human
eye to observe the degree of stripe noise removal and the
level of information protection in non-stripe noise regions in
the image; the other is objective indexes, and three evalu-
ation indexes that are widely recognized by researchers in
this field are selected in this section, namely: NR (noise
reduction), which reflects the denoising ability of the

where i is the number of the pixel in the image, g; represents
the gray value of the pixel at point i in the image before
denoising, and z; represents the gray value of the pixel at
point i in the image after denoising. MN represents the
resolution of the images.

ID=S,/S,
N-1

S= Z meanP(uj) ’ (34)
j#1

where S, denotes the value of § in the image before denoising
and §; denotes the value of § in the image after denoising. u;
represents all frequencies where the non-stripe noise in-
formation is located. P denotes the power spectral density at
a certain frequency.

The three evaluation indices mentioned above are no-
reference evaluation indices, and these evaluation metrics
are often used when there is no-reference image. For some
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experiments with reference image, it is more convincing to
evaluate the algorithm using the full-reference evaluation
indices, such as the peak signal-to-noise ratio (PSNR) [32]
and structural similarity (SSIM) [33, 34]. PSNR can indicate
the algorithm’s ability to remove noise from an image, and
SSIM can reflect the algorithm’s ability to protect image
details. Therefore, we adopt these two metrics to determine
the parameters in our approach as follows.

4.1. Parameter Analysis

4.1.1. The Optimal Number of Transform Stages. Aiming at
the practical application of multi-scale wavelet transform in
infrared image stripe noise removal, the following experi-
ments with reference images are designed to explore the
optimal number of transform stages in the application, so
that the algorithm can achieve excellent denoising perfor-
mance with the simplest possible computational procedure.

Firstly, numerous clean reference images without stripe
noise are selected, and random vertical noise images with the
intensity of the actual non-uniform stripe noise are gen-
erated. The stripe noise is combined with these reference
images randomly and coupled into several new images
containing stripe noise. Then, the multi-scale wavelet
transform is applied to the reference image and the noisy
image at the same time to obtain the vertical components
and other components at each level. Finally, the vertical
components of all levels obtained by the multi-scale wavelet
transform of the reference image are replaced by the vertical
components of all levels obtained by the multi-scale wavelet
transform of the corresponding image with stripe noise.
Then inverse transformation is carried out to achieve image
reconstruction step by step.

Figure 4 illustrates one of the multi-scale wavelet
transform reconstruction experiments. Figures 4(c) and 4(d)
show the reconstructed image after three-level wavelet
transform and ten-level wavelet transform, respectively. We
can observe that there is no significant streak noise in either
image, and it is difficult to judge subjectively the quality of
these two images. Moreover, in Figures 4(e) and 4(f), we are
capable of concluding that after the number of wavelet
transform stages exceeds three, the increase in the number of
stages has little effect on the improvement of PSNR and
SSIM metrics. Therefore, we let n = 3, which allows our
method to simplify the computational process while satis-
fying the denoising performance requirements.

4.1.2. Other Parameters. According to the previous section,
n = 3. Therefore, a total of three different levels of vertical
components need to be denoised. Moreover, there are six
regular terms which need to be analyzed in this algorithm.
Using Figure 4(a) as the experimental image and Figure 4(b)
as the reference image, we explore the relationship between
the coefficients of the regular terms at each level and the
performance of the algorithm and seek the optimal coefficient
values. Figure 5 shows the relationship of the peak signal-to-
noise ratio (PSNR) and regular terms A;;, A5, A5, 455, A5, and
As,. From the results, we can observe that there is a strong

correlation between the denoising performance of the algo-
rithm and the selection of the regular term coefficients, and
there is an optimal value of the coefficients that all the al-
gorithms need to obtain the best denoising performance.
Based on the experimental results, it was set that A,;, = 1.3,
A, = 0.8, by = 0.9, 1, = 0.6, Ay, = 0.7 and A4, = 0.5. Sim-
ilarly, we set the penalty term parameters to p;; = p;, =
P13 = 0.20, 3y = pyy = pa3 = 0.14, p3; = p3, = p33 = 0.08.

4.2. Experimental Contents. For the purpose of demon-
strating, the practicality and superiority of the proposed
algorithm, we took four infrared images with streak noise
from different scenes as the experimental targets. A scene
inside a laboratory is shown in Figure 6(a), which contains
a computer screen with a high gray, a file cabinet, and a
columnar object with a small gray difference from the
background. The subject photographed in Figure 6(b) is a
person, in addition to a tube with vertical characteristics
that are not clearly distinguished from the background in
the figure. Figure 6(c) is taken of a parking space, consisting
mainly of parked cars, trees with vertical features, and
bushes with detailed information. Figure 6(d) shows a
group of distant buildings, which contains a large amount
of information about horizontal and vertical directions.
The brightness of the subject target and the contrast of the
streak noise are different in all four images, and there are
some structural features in the images. The practicality and
effectiveness of the proposed algorithm can be fully
demonstrated.

The denoising results of the four algorithms for
Figure 6(a) are shown in Figure 7. As shown in Figure 7(a),
the MSGF has the poorest denoising effect compared with
other methods, so that some streak noises remain in the
image. As shown in Figure 7(b), there are a few incon-
spicuous streak noises that remain in the image denoised by
WAGE. As shown in Figure 7(c), the TVGF is comparable to
the WAGE in terms of stripe noise removal. But in regions
with low gray values, TVGF leads to significant detail loss,
which indicates that it does not provide sufficient infor-
mation protection in non-stripe noise regions. As shown in
Figure 7(d), it can be clearly observed that the streak noise is
better removed, and no over-smoothing. Figures 7(e)-7(h)
show the mean power spectral density (RMPSD) of rows in
Figures 7(a)-7(d) and the RMPSD of Figure 6(a), respec-
tively, where the x-axis represents the normalized frequency
and the y-axis represents the value of the RMPSD. It can be
clearly observed that Figures 7(e) and 7(f) have a pulse at the
frequency of a large pulse in the original image, signifying
that a few streak noises have still remained. In Figures 7(g)
and 7(f), it can be observed that all pulses are effectively
smoothed. This phenomenon illustrates the TVGF and our
approach has excellent streak noise removal capability in this
infrared image.

The denoising results of the four methods for Figure 6(b)
are shown in Figure 8. In Figure 8(a), it can be clearly
observed that there is a large amount of streak noise that is
not removed. This can prove the weak ability of MSGF to
remove the streak noise without regularity. In Figure 8(b)
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FIGURE 4: Multi-scale wavelet transform reconstruction experiments. (a) Image with streak noise. (b) Reference image. (c) Reconstructed
image after three-level wavelet transform. (d) Reconstructed image after ten-level wavelet transform. (e) The relationship between the
number of wavelet transform stages and PSNR. (f) The relationship between the number of wavelet transform stages and SSIM.

after WAGE denoising, it can be observed that a small
amount of streak noise is still present. In Figure 8(c), it can
be observed with the naked eye that there is a loss of edge
information in the vertical direction of the figure. In
Figure 8(d) after the denoising of our algorithm, neither
significant streak noise nor information loss can be ob-
served. In both Figures 8(e) and 8(f), we can see that spikes
still exist at frequencies where streak noise often appears,
which indicates that the streak noise has not been completely
removed. In contrast, TVGF performs well with our method
in terms of RMPSD. Combined with the above analysis, our
algorithm performs the best in denoising this image.

The denoising results of the four algorithms for
Figure 6(c) are shown in Figure 9. In Figure 9(a), we can
clearly see that some of the noise is not removed. This shows
that the MSGF is not as good as the other methods. This
conclusion is further supported by Figure 9(e). In
Figure 9(b), we cannot observe a clear residue of streak
noises, but in Figure 9(f) we can still observe the presence of
a smaller pulse, which indicates that the WAGE does not
achieve the expected denoising effect. As shown in
Figure 9(c), information about the details of the bush was
smoothed. And Figure 9(g) implies that the stripe noises in
the original image have been effectively removed. We can
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F1GURE 5: Relationship between parameters and PSNR. (a) Relationship between A,; and PSNR. (b) Relationship between 1,, and PSNR. (c)
Relationship between A,; and PSNR. (d) Relationship between A,, and PSNR. (e) Relationship between A;; and PSNR. (f) Relationship
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Figure 6: Continued.
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FIGURE 6: Experimental images. (a) Laboratory. (b) Person. (c) Parking space. (d) Buildings.
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F1GURE 7: Denoising effects of different methods on an image of laboratory. (a) MSGF. (b) WAGE. (c¢) TVGF. (d) Our approach. (e) MSGF.
(f) WAGE. (g) TVGEF. (h) Our approach.
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F1Gure 8: Denoising effects of different methods on an image of a person. (a) MSGF. (b) WAGE. (c) TVGF. (d) Our approach. (e) MSGF. (f)
WAGE. (g) TVGF. (h) Our approach.
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FIGURE 9: Denoising effects of different methods on an image of a parking lot. (a) MSGF. (b) WAGE. (c) TVGF. (d) Our approach. (e)
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- e
¥ ey BE

10 T r 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3r

2t 2|

0 0 0.2 0.4 0.6 0.8 1 0 0 0.2 0.4 0.6 0.8 1
—— Before denoise —— Before denoise
—— After denoise —— After denoise

(e) (f)

FiGgure 10: Continued.



16

—
(=)

— A

O = NN W Rk 1NN 0 O

0.4 0.6

—— Before denoise
—— After denoise

(g)

Computational Intelligence and Neuroscience

—_
(=}

S = N W kR 1N NI 0 O

0 0.2

—— Before denoise
—— After denoise

(h)

F1GURre 10: Denoising effects of different methods on an image of buildings. (a) MSGF. (b) WAGE. (c) TVGF. (d) Our approach. (e) MSGF.

(f) WAGE. (g) TVGEF. (h) Our approach.

TaBLE 1: Indices of different methods on different images.

Image Indices MSGF WAGE TVGE Our approach
NR 2.23 2.60 3.57 3.72
Laboratory MRD (%) 4.01 3.23 4.23 3.15
ID 0.999 0991 0.980 0.993
NR 2.02 2.51 3.58 4.05
Person MRD (%) 3.72 2.95 4.53 2.92
ID 0.999 0992 0.975 0.995
NR 2.27 2.78 3.56 3.76
Parking lot MRD (%) 3.07 2.86 3.59 2.67
ID 0.999 0993 0.982 0.994
NR 2.29 2.79 3.45 3.72
Buildings MRD (%) 4.36 3.94 5.47 3.69
ID 0999 0.991 0.971 0.994

conclude that the TVGF has excellent streak noise removal
capability, but the protection of detailed information is weak.
Figures 9(d) and 9(h) illustrate the superiority of the proposed
algorithm, which removes streak noises while preserving the
actual information in the non-streak noise region.

The denoising results of the four algorithms for Figure 6(d)
are shown in Figure 10. In Figures 10(a) and 10(b) after
denoising by MSGF and WAGE, there is still significant streak
noise, which directly demonstrates the shortcomings of these
two methods. In Figure 10(c), we observe different degrees of
blurring at the edges of all objects, which demonstrates the
shortcomings of TVGF. The images processed by our method
do not have the above-mentioned problems. The phenomena
in Figures 10(e)-10(h) are consistent with our naked-eye
observations. This shows the superiority of our method
over the other three algorithms.

The NR, MRD, and ID indices of the four sets of images
in Figures 7-10 are shown in Table 1. The best indices in each
row are bolded.

According to Table 1, we observe that our algorithm
achieves the best results in terms of NR and MRD metrics for
all images, indicating that our algorithm has excellent streak
noise removal capability with the preservation of non-streak

noise information. As for the ID, although our algorithm did
not obtain the best results, combined with the subjective
analysis in Figures 7-10, our algorithm did not cause sig-
nificant distortion and the ID value tends to be close to 1.
These results testify that our approach is excellent in the
removal of stripe noises.

5. Conclusion

This paper proposes a stripe noise removal algorithm for
infrared images, combining multi-scale wavelet trans-
form and multinomial sparse representation. The pro-
posed algorithm constructs the denoising model
following the differences in directionality and structure
between the stripe noise and the vertical components at
each level and chooses the L1-norm which describes the
sparsity well. Aimed at protecting pixels in the non-
striped noise region, the MSWT can reasonably separate
information in the vertical direction from information in
other directions, which provides maximum protection
for non-striped information in the infrared image. The
ADMM algorithm for solving the model is described in
detail. Finally, a large number of experiments are
designed to illustrate the practicality and effectiveness of the
proposed algorithm. However, there are still many diffi-
culties in the streak noise removal domain, such as stripe
noises in the oblique direction. In the future, we will focus on
the investigation of the oblique direction stripe noises in
infrared images and optimize our method to remove them.
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