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Abstract: Deep space optical communication (DSOC) is becoming a hot topic. Pulse position
modulation (PPM) is an effective tool to realize DSOC benefiting from the feature of high
sensitivity. In this paper, we analyze 2× 1 optical PPM systems with photon-counting detectors,
where the distance difference between the two links causes asynchronous superpositions at the
receiving end. Two synchronization algorithms are proposed to estimate the time offsets of
the two links, which are the optimal Global Maximum Likelihood Estimation (GMLE) and the
suboptimal Integer Comparison - Fractional Likelihood Estimation (ICFLE). The complexities
of the two methods are also compared. In order to measure the two proposed algorithms, the
Cramer-Rao bounds (CRB) are derived. According to simulation results, both the two proposed
algorithms approach the deduced CRBs. Furthermore, an equivalent experiment is designed to
verify the feasibility and effectiveness of the proposed algorithms. It’s also indicated that the
proposed algorithms may be utilized in practical systems.
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1. Introduction

Deep space optical communication (DSOC) can provide high transmission rates than traditional
radio frequency (RF) techniques [1,2]. By utilizing narrow pulses, the pulse position modulation
(PPM) has the ability of reaching the required data rates. Benefiting from the feature of high
sensitivity, the PPM scheme has become an effective tool to realize DSOC [3]. One of the
typical applications is the NASA’s Lunar Laser Communication Demonstration (LLCD) mission,
which has made a great success that the lunar orbiter was able to realize the 622Mb/s laser
communication between the moon and the ground by only 0.5 watts of laser power [4]. In order
to detect a PPM symbol, the receiver determines whether there is a pulse in the current slot,
where the photon-counting detectors are widely employed [5,6].

1.1. Related works

To the best of the authors’ knowledge, the existing works on the optical PPM systems can be
divided into two categories, which are perfect synchronous receivers and imperfect asynchronous
receivers, respectively. In the first category, it’s assumed the perfect synchronization happens,
where most literature focuses primarily on performance analysis. In Ref. [7], bit error rate (BER)
expressions of the M-ary PPM scheme variations against the changes in different parameters are
investigated , where a Gaussian laser beam propagates in non-Kolmogorov turbulence. Ref. [8]
has conducted an exhaustive symbol error rate (SER) analysis of the optical spatial PPM MIMO
(multi-input multi-output) system over arbitrarily correlated Gamma-Gamma turbulent fading
channels. In Ref. [9], the performance analysis of L-ary PPM with an avalanche photodiode
(APD) receiver is investigated for a ground-station-to-low-Earth-orbit laser link, where spatial
diversity is implemented in the transmitter side, i.e., the multiple-in single-out (MISO) scenario.
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In the second category, the imperfect synchronization schemes are analyzed, where several
imperfect compensation methods are presented. Ref. [10] proposes a modified channel likelihood
algorithm for optical communication systems where photon-counting events are impaired by
undesirable dead time and jitters. Ref. [11] evaluates the BER performance of optical waves
propagating in the non-Kolmogorov coronal turbulence, where coronal turbulence is considered
during superior solar conjunction. Ref. [12] analyzes the asynchronous sampling effect between
the reference clock in the PPM transmitter and the slave clock in the receiver, where a new error
probability expression is derived for the occurrence of slot-period misalignment. A dynamic
slot period realignment technique is further proposed to mitigate the slot-period misalignment
problem. In Ref. [13], the phase modulation jitter is estimated with the help of a maximum
a posteriori probability (MAP) estimator, which approaches the minimum probability of error
performance. In Ref. [14], a maximum likelihood estimator is established to obtain the slot offset
between the transmitter and the receiver.

Diversity technique is designed to provide diverse replicas of transmitted symbols [15–17].
Different from RF systems, it has been proved that the repetition codes (RC) outperform orthogonal
space-time block codes (OSTBC) in intensity modulation/direct detection (IM/DD) optical links
[18]. As a result, diversity technique with RC scheme can be further utilized to improve the
reliability in PPM DSOC systems.

1.2. Motivation and contribution

Although there are several papers considering the optical PPM systems in diversity mode
[8,9,19–21], most of these papers make the assumption of perfect synchronization. In addition,
the papers focusing on imperfect synchronization mainly consider the point-to-point scene. To
the authors’ best knowledge, there is no existing paper discussing the imperfect synchronization
issue in optical PPM MISO systems with photon-counting detectors. As a result, this paper
studies a 2 × 1 MISO optical PPM system with a photon-counting receiver, where the distance
difference between the two links causes asynchronous superpositions of signals at the receiving
end. Motivated by the estimation methods in Ref. [13,14], this paper is committed to estimate the
values of the timing offsets, where each offset is determined by the receiver and corresponding
transmitter. The main contributions are summarized below.
■ Different from abovementioned literatures on the synchronization issue of point-to-point

scenes, this paper considers the synchronization problem in 2 × 1 MISO optical PPM systems
with photon-counting receivers.

■ Two algorithms are proposed to estimate the offsets, which are the optimal Global Maximum
Likelihood Estimation (GMLE) algorithm and the suboptimal Integer Comparison - Fractional
Likelihood Estimation (ICFLE) algorithm. We also compare the complexities of the two
algorithms.
■ The Cramer Rao bounds (CRB) are further deduced to evaluate effectiveness of the proposed

algorithms. It’s verified by simulations that the two algorithms both approach the derived CRB.
■ An equivalent experiment is set up, which indicates that the proposed algorithms have the

potential to be employed in practical systems.

1.3. Paper structure

The remainder of this paper is organized as follows. The system structure is described in Sec.
2. The proposed optimal GMLE and suboptimal ICFLE algorithms are illustrated in Sec. 3.1
and Sec. 3.2, respectively. In addition, the estimation bias and complexity analysis are given
in Sec. 3.3. In order to measure the two proposed algorithms, the CRBs are derived in Sec. 4.
We provide simulation results and the equivalent experimental results in Sec. 5.1 and Sec. 5.2,
respectively. In the end, the conclusions are drawn. It’s also mentioned that the variables are
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illustrated as the lowercase italic forms. Besides, all the vectors have the lowercase bold forms.
For ease of reading, definitions of the main variables are summarized in Table 1.

Table 1. Definition of main variables

Symbol Definition

τ1,τ2 Timing offset between TX-1 (or TX-2) and the receiver RX

i1, i2 Integer part of τ1,τ2

ε1, ε2 Fractional part of τ1,τ2

Kb Average number of background photon counts

Ks Average number of signal photon counts per symbol

N Number of integration symbols

M, P Number of data slots (or guard slots) per symbol

λn(τ1,τ2) Intensity function for the n-th slot

xp [n] Number of photons in the n-th slot of the p-th received symbol

yn Cyclic addition of xp [n] with p = 0, 1, 2, . . . , N − 1

•̂ Estimated value of •

Cε1 , Cε2 Cramer-Rao bounds for ε1, ε2

2. System model

The system model is illustrated in Fig. 1. In the 2 × 1 MISO system described in Fig. 1, two
optical links are established with the data modulated by PPM, i.e., TX-1 to RX and TX-2 to RX.
According to Fig. 1, τ1 (or τ2) is supposed to be the timing offset between TX-1 (or TX-2) and
the receiver RX, which has been normalized by a slot interval. As a positive real number, τ1 and
τ2 can be divided into integer part and fractional part, as shown in Eq. (1).

τ1 = i1 + ε1, i1 = ⌊τ1⌋ ; τ2 = i2 + ε2, i2 = ⌊τ2⌋ , (1)

where ⌊•⌋ denotes the round down operator. In an arbitrary PPM symbol, there are M data slots
and P guard slots, where log2M data bits are carried. This paper assumes the guard slots are
longer than the offsets difference, i.e., |τ2 − τ1 | <P. In other words, the guard slots guarantee
to eliminate the inter-symbol interference (ISI). However, the data slots still asynchronously
superimpose in one PPM symbol. Due to the existence of τ1 and τ2, the receiving end becomes
no longer ideal. The number of signal photons in each time slot is determined by the number of
signal photons from TX-1 and TX-2. Owing to the reciprocity of τ1 and τ2, this paper assumes
that the distance of the TX-2-to-RX link is longer than the TX-1-to-RX link. Let’s take the
TX-1-to-RX link as an example. The mean number of photon counts is equal to (1 − ε1) ·Ks +Kb
in the i1-th slot, while the average number of photon counts is equal to ε1 ·Ks +Kb in the i1 + 1-th
slot. Kb and Ks are supposed to be the mean number of background photon counts and the
average number of signal photon counts per symbol, respectively.

Since the photons from TX-1 and TX-2 are superimposed on each other, the number of photons
after superposition still keeps the Poisson distribution. We define xp [n] (n = 0, 1, 2, . . . , M+P−1)
to be the number of photons in the n-th slot of the p-th received symbol. In order to estimate τ1
and τ2, the observed slots are binned into a vector y = [y0, y1, . . . , yM+P−1] by cyclic additions
with the period of M + P, The n-th element in y is yn =

∑︁N−1
p=0 xp[n], where N is defined as the

number of integration symbols. Obviously, yn also obeys Poisson distribution, whose probability
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Fig. 1. The system structure of an M-to-1 OWC system.

mass function (PMF) is given in Eq. (2),

Pyn |τ (yn | τ) =
1

yn!
λn(τ1, τ2)yn exp (−λn(τ1, τ2)) , (2)

where the vector τ is short for [τ1, τ2]. λn(τ1, τ2) is the intensity function for the n-th slot,which
is shown in Eq. (3).

λn(τ1, τ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − ε1)
N
M Ks + NKb, n = i1 mod (M + P)

N
M Ks + NKb, n = i1 + 1, . . . , i2 + 1, i1 +M + 1, . . . , i2 +M − 1 mod (M + P)

(2 − ε2)
N
M Ks + NKb, n = i2 mod (M + P)

2N
M Ks + NKb, n = i2 + 1, . . . , i1 +M − 1 mod (M + P)

(1 + ε1) N
M Ks + NKb, n = i1 +M mod (M + P)

(ε2)
N
M Ks + NKb, n = i2 +M mod (M + P)

NKb, n = i2 +M + 1, .., M + P − 1, 0, . . . , i1 − 1 mod (M + P)
(3)

For an intuitive description the intensity function, Fig. 2 gives two examples of λn(τ1, τ2), with
τ = [2.5, 6.2] in Fig. 2(a) and τ = [14.5, 18.2] in Fig. 2(b). So far, we can summarize the
problem to be solved is to estimate the values of τ1 and τ2 according to the observation space
of photons {xp [n]}p in these slots. In order to minimize the influence of noise, we cyclically
add the observed {xp [n]}p to transform into an equivalent observation vectors y. Two proposed
algorithms will be further depicted in Sec. 3. It should be mentioned that our proposed algorithms
can be applied in the receiver of a 2 × 1 MISO optical PPM system just after a photon-counting

(a) 𝜏1 = 2.5, 𝜏2 = 6.2 (b) 𝜏1 = 14.5, 𝜏2 = 18.2

Fig. 2. Two examples of λn(τ1, τ2).
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detector. The detector detects the measured photons’ number in each slots, which provides
the input of the corresponding module of the GMLE algorithm (or the ICFLE algorithm). In
the sequel, our algorithm sends the estimated offsets to the subsequent equalization module to
eliminate the interference.

(a) (b)

Fig. 3. An example of likelihood functions, (a)L (τ1, τ2; y) (b) L (ε1, ε2; y, k1, k2).

3. Estimation algorithms

3.1. Optimal GMLE algorithm

On the basis of Eqs. (2) and (3), the log likelihood function L (τ1, τ2; y) can be obtained by Eq. (4).
The likelihood function in this section characterizes the magnitude of the joint distribution
function for the timing offsets τ1 and τ2, when the number of photons within each slot is obtained.

L (τ1, τ2; y) =
∑︂M+P−1

n=0
log Pyn |τ (yn |τ1, τ2 )

=
∑︂M+P−1

n=0
yn · log [λn (τ1, τ2)] − λn (τ1, τ2) − log [yn!]

(4)

Since the sums of the second terms (or the third terms) are constant, which can be ignored.
Under normal thinking, our next step is to find the partial derivatives of τ1 and τ2 to solve their
values. However, L (τ1, τ2; y) is not differentiable if either τ1 or τ2 is an integer, which is shown
in Fig. 3(a). What’s more, λn (τ1 − i, τ2 − j) , (i, j = 0, 1, . . . , M + P − 1) is not equal to the cyclic
shift of λn (τ1, τ2) , which is different from the circumstance λn(τ) = λ0((τ − n) mod (M + P))
in a point-to-point communication scenario in Ref. [14]. Fortunately, when τ1 and τ2 are in the
integer intervals ( τ1 ∈ (i, i + 1), τ2 ∈ (j, j + 1), i, j = 0, 1, . . . , M + P − 2), the likelihood function
L (τ1, τ2; y) is both differentiable for the variables τ1, τ2. For the convenience of representation,
this paper defines the range ⟨i, j⟩ as the abbreviation of the integer interval τ1 ∈ (i, i + 1),
τ2 ∈ (j, j + 1) . As a sum of concave functions of affine functions, the likelihood function keeps
concave in each integer interval [22]. Our proposed GMLE algorithm comes into being, where
we first estimate potential values for τ1 and τ2 in each integer interval of interest, and choose the
final correct value in these sets of potential values.

To describe the likelihood function within each interval, L (ε1, ε2; y, k1, k2) is defined to
be the log likelihood function in the integer interval τ1 ∈ (k1, k1 + 1), τ2 ∈ (k2, k2 + 1), i.e.,
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L (ε1, ε2; y, k1, k2) = L (τ1, τ2; y)
|︁|︁
τ1∈(k1,k1+1),τ2∈(k2,k2+1) , which is simplified by Eq. (5).

L (ε1, ε2; y, k1, k2) = C + yk1 · log
[︁
(1 − ε1)

N
M Ks + N · Kb

]︁
+ yk2 · log

[︁
(2 − ε2)

N
M Ks + N · Kb

]︁
+yk1+M · log

[︁
(1 + ε1) N

M Ks + N · Kb
]︁
+ yk2+M · log

[︁
ε2

N
M Ks + N · Kb

]︁ ,

(5)
where C represents the parts unrelated to ε1 and ε2. An example of L (ε1, ε2; y, k1, k2) is
illustrated in Fig. 3(b) with k1 = i1, k2 = i2. Intuitively, the function L (ε1, ε2; y, k1, k2) is
differentiated and concave.

The next thing we need to do is to find the estimates of ε1 and ε2 in the selected range ⟨k1, k2⟩.
The partial derivatives of ε1 and ε2 are derived in Eqs. (6) and (7), respectively.

∂L

∂ε1
= −yk1

N
M Ks

(1 − ε1)
N
M Ks + N · Kb

+ yk1+M

N
M Ks

(1 + ε1) N
M Ks + N · Kb

(6)

∂L

∂ε2
= −

yk2
N
M Ks

(2 − ε2)
N
M Ks + N · Kb

+
yk2+M

N
M Ks

ε2
N
M Ks + N · Kb

(7)

By setting the partial derivatives to 0, the estimated values in the interval ⟨k1, k2⟩ is obtained,
shown in Eqs. (8) and (9), respectively.

ε̂1,⟨k1,k2 ⟩ =

(︁
y(k1+M) mod (M+P) − yk1

)︁ (︁ N
M Ks + N · Kb

)︁
N
M Ks

(︁
yk1 + y(k1+M) mod (M+P)

)︁ (8)

ε̂2,⟨k1,k2 ⟩ =
2y(k2+M) mod (M+P)

N
M Ks +

(︁
y(k2+M) mod (M+P) − yk2

)︁
N · Kb

N
M Ks

(︁
yk2 + y(k2+M) mod (M+P)

)︁ (9)

Therefore, the final estimation values τ̂1 and τ̂2 can be obtained by

τ̂1 = î1 + ε̂1,⟨î1,î2⟩ , τ̂2 = î2 + ε̂2,⟨î1,î2⟩

s.t.
(︂
î1, î2

)︂
= arg max(k1,k2) L (ε1, ε2; y, k1, k2)

|︁|︁
ε1=ε̂1,⟨k1,k2 ⟩

,ε2=ε̂2,⟨k1,k2 ⟩

. (10)

The pseudo-code diagram for the proposed GMLE algorithm is given in Tab.2.

Table 2. The pseudo code diagram of the proposed optimal GMLE
algorithm. cmc

GMLE Algorithm

1: Calculate the vector y by cyclicly adding xp [n] (n = 0, 1, 2, . . . , M + P − 1).

2: for k1 = 0, 1, 2, . . . , M + P − 1 do
3: for k2 = k1 + 1, k1 + 1, 2, . . . , k1 + P do
4: Obtain fractional part ε̂1,⟨k1 ,k2 ⟩

by Eq. (8).

5: Obtain fractional part ε̂2,⟨k1 ,k2 ⟩
by Eq. (9).

6: Calculate L

(︂
ε̂1,⟨k1 ,k2 ⟩

, ε̂2,⟨k1 ,k2 ⟩
; y, k1, k2

)︂
in interval ⟨i, j⟩ by Eq. (5).

7: end for
8: end for
9: Derive final estimated values τ̂1 and τ̂2 by Eq. (10).
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3.2. Suboptimal ICFLE algorithm

The GMLE algorithm described above needs to estimate each possible ⟨k1, k2⟩ interval, find the
possible values for τ̂1 and τ̂2, and then determine the final estimation by choosing among the
sets of possible values that maximizes the likelihood function. In order to reduce the amount
of computation, we propose a suboptimal ICFLE algorithm. Let’s recap Eq. (2), there will be
P − (i2 − i1) − 1 continuous noise slots, due to λn(τ1, τ2) = NKb, n = i2 +M + 1, . . . , M + P −

1, 0, . . . , i1 − 1 mod (M + P) . This circumstance can be clearly seen in Fig. 2. Although the
value of i1 is changing, as long as the value of i2 − i1 remains unchanged (i2 − i1 = 4 in Fig. 2),
the number of noise time slots is a fixed value (3 slots). In other words, if we find the consecutive
time slots with a few photons, i1 and i2 can be estimated. These consecutive time slots’ numbers
are defined by a vector f. Then the estimation on i1 and i2 can be obtained by Eq. (11).

î1,sub = mod (f (end) + 1, M + P) ; î2,sub = mod (f (1) − M − 1, M + P) (11)

After estimating the integer parts, the fractional parts can be derived in the way similar as GMLE,
given in Eqs. (12) and (13).

ε̂1,sub =

(︂
y(î1,sub+M) mod (M+P) − yî1,sub

)︂ (︁ N
M Ks + N · Kb

)︁
N
M Ks

(︂
yî1,sub

+ y(î1,sub+M) mod (M+P)

)︂ (12)

ε̂2,sub =
2yî2,sub+M

N
M Ks +

(︂
yî2,sub+M − yî2,sub

)︂
N · Kb

N
M Ks

(︂
yî2,sub

+ yî2,sub+M

)︂ (13)

At this point, we can obtain the estimates τ̂1,sub = î1,sub + ε̂1,sub and τ̂2,sub = î2,sub + ε̂2,sub by the
suboptimal ICFLE algorithm. The pseudo-code diagram for the proposed ICFLE algorithm is
given in Tab.3.

Table 3. The pseudo code diagram of the proposed suboptimal ICFLE
algorithm. cmc

ICFLE Algorithm

1: Calculate the vector y by cyclicly adding xp [n] (n = 0, 1, 2, . . . , M + P − 1).

2: Find the consecutive time slots f with a few photons in y.

3: Obtain the estimated integer parts i1 and i2 by Eq. (11).

4: Obtain fractional part ε̂1,sub by Eq. (12).

5: Obtain fractional part ε̂2,sub by Eq. (13).

6: Derive final estimated values τ̂1,sub = î1,sub + ε̂1,sub, τ̂2,sub = î2,sub + ε̂2,sub.

3.3. Estimation bias and complexity analysis

In this subsection, we first prove that the proposed estimation algorithms are unbiased, and
then compare their complexities. To facilitate discussion, we study the unbiased estimation of
the fractional parts. The estimated unbiasedness will be verified in the numerical results. The
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mathematical expectation of the estimated values are

E [ε̂1] =

(︁
E
[︁
y(i1+M) mod (M+P)

]︁
− E

[︁
yi1

]︁ )︁ (︁ N
M Ks + N · Kb

)︁
N
M Ks

(︁
E
[︁
yi1

]︁
+ E

[︁
y(i1+M) mod (M+P)

]︁ )︁ =
2ε1 N

M Ks
(︁ N

M Ks + N · Kb
)︁

2 N
M Ks

(︁ N
M Ks + N · Kb

)︁ = ε1,

(14)

E [ε̂2] =
2E

[︁
y(i2+M) mod (M+P)

]︁ N
M Ks +

(︁
E
[︁
y(i2+M) mod (M+P)

]︁
− E

[︁
yi2

]︁ )︁
N · Kb

N
M Ks

(︁
E
[︁
yi2

]︁
+ E

[︁
y(i2+M) mod (M+P)

]︁ )︁
=

2ε2 N
M Ks

(︁ N
M Ks + N · Kb

)︁
2 N

M Ks
(︁ N

M Ks + N · Kb
)︁ = ε2.

(15)

Since all the elements of the vector y satisfy the Poisson distribution, the following mathematical
expectations can be obtained, which are E

[︁
y(i1+M) mod (M+P)

]︁
= (1 + ε1) N

M Ks + N · Kb, E
[︁
yk2

]︁
=

(2 − ε2)
N
M Ks + N · Kb, E

[︁
yk2

]︁
= (2 − ε2)

N
M Ks + N · Kb , E

[︂
yy(i2+M) mod (M+P)

]︂
= ε2

N
M Ks + N · Kb.

By substituting these mathematical expectations into Eqs. (14) and (15), we can get E [ε̂1] = ε1,
E [ε̂2] = ε2. That is to say, the proposed estimations are unbiased.

In complexity analysis, we only consider operations between variables, and do not consider
operations between variables and constants and between constants and constants, because the
complexities of the latter two cases is much less than the operations between variables. The
complexity comparison is given in Tab.4. As can be seen from Tab.4, the suboptimal ICFLE
requires fewer operations than GMLE, which is caused by two reasons. First, the ICFLE algorithm
only needs to estimate the fractional part once, while GMLE has to estimate the fractional part
P2 + MP−M − P times. More importantly, in the ICTLE algorithm, there is no need to calculate
the likelihood function value, so the logarithmic operations are omitted.

Table 4. Complexity analysis of two proposed algorithm.

Operation GMLE ICFLE

Multiplication 4P2 + 4MP − 4M − 4P -

Division 2P2 + 2MP − 2M − 2P 2

Addition 12P2 + 12MP + N − 12M − 12P − 1 (P−1)P
2 + N + 6

Logarithm 4P2 + 4MP − 4M − 4P -

Comparators P2 + MP − M − P M2+P2−M−P
2

4. Cramer Rao Bounds

In order to evaluate the performance of the proposed estimation algorithms, CRB should be
illustrated, which is the lower bound of the mean square errors (MSE) of the estimated values.
The CRB is the inverse of Fisher information matrix [23]. The Fisher information matrix is given
in Eq. (16).

J =
⎡⎢⎢⎢⎢⎣
E
[︂
−

∂2L(ε1,ε2;y,k1,k2)

∂ε2
1

]︂
0

0 E
[︂
−

∂2L(ε1,ε2;y,k1,k2)

∂ε2
2

]︂ ⎤⎥⎥⎥⎥⎦ (16)

Then the CRB matrix Cε is derived in Eq. (17),

Cε = J−1 =

⎡⎢⎢⎢⎢⎣
Cε1 0

0 Cε2

⎤⎥⎥⎥⎥⎦ , (17)
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where Cε1 and Cε2 represent the CRB for ε1 and ε2, given in Eqs. (18) and (19), respectively.

Cε1 =

(︁
1 − ε2

1
)︁
K2

s + 2MKsKb +M2K2
b

2K2
s
(︁ N

M Ks + N · Kb
)︁ (18)

Cε2 =

(︁
2ε2 − ε

2
2
)︁
K2

s + 2MKsKb +M2K2
b

2K2
s
(︁ N

M Ks + N · Kb
)︁ (19)

As can be seen from Eqs. (18) and (19), the CRB Cε1 (or Cε2) can be determined by fractional
part of the offset ε1 (or ε2), average number of background photon counts Kb, average number of
signal photon counts per symbol Ks, the PPM order M and the number of integration symbols N.
To compare Cε1 and Cε2 , we take the difference of Cε1 and Cε2 in Eq. (20).
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(20)

In this sequel, the relationship between Cε1 and Cε2 is deduced.⎧⎪⎪⎨⎪⎪⎩
Cε1<Cε2 , if ε1 + ε2>1

Cε1>Cε2 , if ε1 + ε2<1
(21)

5. Numerical performance

5.1. Simulation results

In this subsection, simulation results are illustrated. During the simulation, the default values
of Ks and Kb are 0.25 and 5 × 10−5, respectively. Every PPM symbol has M = 16 data slots
and P = 8 guard slots. The number of integration symbols N is set to 105 by default. Figs. 4
and 5 show the MSE performance versus integration symbols N and the MSE performance
versus average number of signal photon counts per symbol Ks. Among them, Figs. 4(a) and 5(a)
show the results of estimating τ1, while Figs. 4(b) and 5(b) depict the results of estimating τ2.
According to Figs. 4 and 5, both the proposed GMLE and ICFLE algorithms gradually approach
the CRB with the increasing of integration symbols N (or average signal photon counts per
symbol Ks), which shows the effectiveness of the proposed algorithm. It’s also found that the
suboptimal ICFLE is worse than the optimal GMLE in the case of either fewer signal photons or
fewer integration symbols. However, the gap between the optimal GMLE and suboptimal ICFLE
gets smaller with the horizontal axis increases. The reason is that the situation of fewer signal
photons (or fewer integration symbols) represents a low signal-to-noise ratio scene (SNR). The
estimated values of the integer parts î1,sub, î2,sub by ICFLE have a large probability to deviate
from the true value i1, i2, resulting in a large MSE value. However, with the increase of SNR, the
estimated integer parts are gradually accurate, which makes that the ICFLE algorithm gradually
close to the GMLE algorithm.

The CRBs for τ1 and τ2 are illustrated in Fig. 6, where cases of ε1 = ε2, ε1 = 2ε2, 2ε1 = ε2
are analyzed in Fig. 6(a), 6(b) and 6(c), respectively. According to Fig. 6, their CRBs change
in opposite directions as ε1 and ε2 increase. Among them, Cε1 is inversely correlated with
ε1, and Cε2 is positively correlated with ε2. The reasons for this phenomenon are as follows.
Looking back at Eqs. (18) and (19), we can ignore Kb under large SNR conditions, resulting
in Cε1 ∝

(︁
1 − ε2

1
)︁
, Cε2 ∝

(︁
2ε2 − ε

2
2
)︁
. Besides the monotonicity of CRBs, we can obtain

from Fig. 6 that the curves in each case cross at ε1 + ε2 = 1, which verifies Eq. (20), i.e.,
Cε1 − Cε2 ∝

[︂ (︁
1 − ε2

)︁2
− ε2

1

]︂
= 0

|︁|︁|︁
ε1+ε2=1

. It’ also obtained that Cε1 is larger than (or smaller

than) Cε2 if ε1 + ε2>1 (or ε1 + ε2<1), which verifies Eq. (21).
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(a) Estimation for 𝜏1 (b) Estimation for 𝜏2

Fig. 4. MSE versus number of integration symbols N.

(a) Estimation for 𝜏1 (b) Estimation for 𝜏2

Fig. 5. MSE versus number of signal photon counts per symbol.

5.2. Experimental results

In this subsection, an equivalent experiment is built, which is shown in Fig. 7. As illustrated in
Fig. 7, electrical signals from the AWG (Arbitrary Wave Generators, Tektronix 70002A) are first
amplified and then modulated into optical signals. The product models of the amplifier, laser
and modulator are IXblue DR-AN-10-MO, EM4 EM650, IXblue MX-LN-10-PD, respectively.
Benefiting from analog characteristics of AWG’s output, the AWG has the ability of simulating
the Poisson distribution. The received optical signals are converted into current signals by the
an APD, which are further converted into voltage signals with the help of the trans-impedance
amplifier (TIA). The amplified electrical signal is finally collected by an oscilloscope (Tektronix
DPO7354). To simulate a photon counting receiver, we first accumulate the sampled electrical
signals in each time slot. The accumulated results are further normalized to the number of
photons in each time slot. The normalized coefficient can be considered as a photon energy,
which is chosen as Eequi = 0.00378V in this paper. Although this value may be much larger than
the true energy of a photon after photoelectric conversion, this value serves as a benchmark in
our equivalent experiment to normalize the rest of the values.

In order to build a 2× 1 MISO system within a short distance, we utilize a beam-splitter with
the splitting ratio to be 50:50. With the help of the beam-splitter, the optical signals from two
transmitters are combined and further coupled into the receiver’s fiber, which is depicted as the
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(a) 𝜀1 = 𝜀2 case (b) 𝜀1 = 2𝜀2 case.

(c) 2𝜀1 = 𝜀2 case.

Fig. 6. The relationship of CRB-1 and CRB-2.

Fig. 7. 2×1 MISO platform(left), experimental scene (middle), verification of optical path
difference(right).
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blue line and the red line in the left part of Fig. 7. The adjustable optical attenuator (YOKOGAWA
AQ2200) guarantees that the signals coupled into the fiber from two optical paths have the same
power. The path difference |τ1 − τ2 | is created by an extra 5m long fiber. It’s also mentioned that
the timing offsets τ1 and τ2 can be adjusted by setting the start point of the acquisition process
in the oscilloscope. In other words, the equivalent experiment is valid to simulate the practical
scene with long distance. Since the refractive index of the fiber core is approximately 1.5, the
path difference |τ1 − τ2 | brought by a 5m fiber is approximately 25ns, which can be verified in
the right part of Fig. 7.

The MSE results of τ̂1, τ̂2, |τ̂2 − τ̂1 | are given in Figs. 8(a), 8(b) and 8(c), respectively. As can
be seen from Fig. 8, the MSEs decrease with increasing integration symbols’ number N. Besides,
it’s also observed that the GMLE outperforms ICFLE, where their gap gradually narrows with
the increasing of N. These two phenomena are consistent with the previous simulation results in
Sec.5.1.

(a) (b) (c)

Fig. 8. MSE of estimated values in experiments.

In order to describe the estimation results more intuitively, we show 200 samples estimated by
GMLE algorithm in Figs. 9(a) and 9(b), where N is set to be 10000 and 50000, respectively. The
estimated samples consist of τ̂1, τ̂2 and |τ̂2 − τ̂1 |. The similar conclusion can be drawn that the
MSE of estimated values with larger N(N = 50000) is smaller than the MSE of estimated values
with fewer N (N = 10000). In addition, the mean values of τ̂1, τ̂2 are equal to 0.726 and 3.2425,
respectively. What’s more, the mean value of |τ̂2 − τ̂1 | is equal to 2.5165 slots. Due to the slot
rate is set to be 100Msps, the precise value of offsets difference is 25.165ns, which verifies the
rough value of 25ns in the right part of Fig. 7. So far, through the experimental results, we can
conclude that our proposed GMLE and ICFLE algorithms are feasible and effective.

(a) 𝑁 = 10000 (b) 𝑁 = 50000

Fig. 9. Samples of estimated values by GMLE.
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6. Conclusion

This paper is devoted to estimating the time offsets in 2 × 1 optical MISO PPM systems with
photon-counting receivers. We first prove that the likelihood function is not differentiable at
integer points, but is differentiable at every integer interval. Two estimation algorithms are further
proposed, which are the optimal GMLE and the suboptimal ICFLE, respectively. According
to the numerical results, both the two proposed algorithms has the ability of approaching the
deduced CRBs under the condition of large SNR. Meanwhile, the GMLE algorithm outperforms
ICFLE in low SNR situations, which results from the fact that estimated values’ integer parts by
ICFLE have a large probability to deviate from their true integer values in low SNR cases. It’s
also proved that the CRB Cε1 is larger than (or smaller than) Cε2 if ε1 + ε2>1 (or ε1 + ε2<1).
An equivalent experiment is also built to verify the feasibility and effectiveness of the proposed
algorithms. Besides, the complexity analyses imply that the proposed algorithms are potential to
be utilized in practical systems.
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