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Abstract

Hazy image obtained in the low-light environment has the characteristics of low contrast,
non-uniform illumination, color cast and much noise. In this paper, a method is put for-
ward which can be properly applied to recover low-light hazy images. The original image is
first decomposed into glow layer and haze layer with a modified color channel transforma-
tion for glow artifacts and color balanced. A new light segmentation function is proposed
next by using gamma correction of channel difference and setting threshold levels to deter-
mine if the pixel belongs to light source regions. Then the ambient illuminance map is esti-
mated using maximum reflectance prior to computing the atmosphere light in the light and
non-light regions. Finally, a novel nonlinear image depth estimation model is established
to build the relationship between the image depth map and three image features including
luminance, saturation and gradient map for the light areas. The experimental results prove
that the dehazing algorithm is reliable for removing haze and glow artifacts of active light
sources, reducing much noise and improving the visibility.

1 INTRODUCTION

When taken in hazy weather, photos or videos engender degen-
eracy phenomenon such as color cast, poor visibility, low degree
of saturation, low contrast, and so on. The haze in a real envi-
ronment is generated by small surrounding air particles and
small drops of water which scatters the light entering the cam-
era. For some applications such as computer vision systems,
video monitoring systems, and aerial systems, the performance
of vision algorithms is severely influenced under hazy weather.
The purpose of image dehazing is to eliminate haze effects as
much as possible, which can improve the efficiency of computer
vision-based systems.

According to Narasimhan and Nayar’s theory [1], The day-
time haze model supposes that the scattered atmosphere light
captured by cameras contains both the direct transmission and
airlight [1]:

I (x ) = J (x )t (x ) + A(1 − t (x )), (1)

t (x ) = e−𝛽d (x ), (2)
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where I (x ) is the observed image at a pixel x, J (x ) is the scene
reflection or the restored image, A is the atmosphere light which
is globally constant for daytime dehazing, t (x ) is the transmis-
sion of the scene before reaching the camera, 𝛽 is an attenua-
tion coefficient scattered by particles, d (x ) is called scene depth,
J (x )t (x ) is direct transmission, and A(1 − t (x )) is airlight.

Based on the principle of daytime haze formation [1], many
methods in daytime image dehazing have been developed to
solve the ill-posed issues [2–11]. The key of their methods is
to rely on kinds of image priors. Although most existing image
methods are successful for daytime dehazing, they are not so
effective for low-light dehazing due to the multiple active scat-
tering light and low level of illumination. Different from using
the uniformly distributed daytime sunlight as the global con-
stant atmosphere light, an obvious glow effect can be produced
by active lights in low-light hazy images and the atmosphere
light cannot be identified as the global uniform. What is more,
the illumination is extremely weak and the active light glow
can cover image details which is not taken into account in the
common daytime dehazing research methods such as the dark
channel prior(DCP) [4] and the color attenuation prior (CAP)
[10]. In recent years, many novel methods are proposed such
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as color transfer [12], maximum reflectance prior [13], glow
decomposition [15], bright alpha blending [18], image multi-
scale fusion [19, 20], simultaneously dehazing and enhancement
[25]. However, color shift and light glow still exist and they are
not solved well after removing haze. In addition, the visibility
is reduced and details of images are not so clear due to the low
light environment. Low-light image enhancement methods have
developed and obtained effective results [21–24], but dehaz-
ing and enhancing are two independent issues in their research.
As a result, ambient illumination is dim and haze remains in
low-light restored images. Although the method proposed by
[25] combines dehazing process with enhancement properly,
some haze still exists in their dehazing results. According to
the above description, we find that the current mainstream low-
light image dehazing methods estimate the atmosphere light and
transmission from a global perspective, and do not consider
the difference of atmosphere light and transmission between
light source regions and non-light source regions, which will
lead to insufficient estimation accuracy. Therefore, it is neces-
sary to split the image into light source regions and non-light
source regions so that we can, respectively, estimate the atmo-
sphere light and transmission. The global atmosphere illumina-
tion is not uniform due to the existence of multiple active lights.
Most of dehazing methods use dark channel prior to handle the
transmission which results in insufficient estimation accuracy
of transmission. In order to find a more precise estimation of
transmission, we propose a nonlinear image depth model with
three features for the light source regions.

The contributions in this paper are as follows: A novel RGB
color channel transform algorithm is introduced, which can
recover color-balanced images. Based on the characteristics of
global atmospheric illumination which is not uniform due to
the existence of multiple active lights, to make the atmosphere
light and transmission estimation accurate, we propose a new
light segmentation method by setting a threshold value for the
gamma correction of channel difference to judge if the pixel
belongs to light source regions. To estimate the transmission,
we present a novel nonlinear model among three image features
of the image depth map for light source regions and use DCP to
handle the non-light areas. By converging the transmission maps
together using the above nonlinear model and DCP in a gamma
correction of channel difference manner, the refined transmis-
sion map helps reduce color distortions, noise, and halos of the
recovered image. Besides, this method can remove haze, make
the details and the edges clear.

2 RELATED WORK

Many researchers have started implementation studies on low-
light image dehazing. Pei et al. [12] proposed a color space con-
version technique from RGB to Lab as a pre-step for mapping
colors, following the modified DCP and bilateral filtering to
reduce haze. Although this technique can improve the visibil-
ity of the image, the output color looks unrealistic and has a
severe color shift. This is caused by color transfer, where only
the mathematical model is used to change the color, and no

physical model is available. Zhang et al. [13] presented a night-
time image haze model, which includes different illumination
offsets, color balanced, and haze removed. The colors appear
more realistic than [12], but this model does not take into con-
sideration the glow influence, which leads to significant image
glow artifacts. Zhang et al. [14] proposed maximum reflectance
prior assuming a value of the maximum color channel inten-
sity close to 1 with ambient illumination in daytime haze-free
images. Li et al. [15] proposed a novel low-light atmosphere scat-
tering model utilizing an atmosphere point spreading function
to express glow effects. They use a layer separation method to
decompose glow and remove haze with a dark channel prior.
The results consist of fewer glow effects, but the sky region of
the image has plenty of noise and compression artifacts, making
the restored image unrealistic. Yang et al. [17] used the method
of superpixel segmentation to estimate the atmosphere light,
and combined image layer decomposition and dark channel
prior to remove haze. While this technique obtains good dehaz-
ing results, it produces excessive intensity in the light source
area, which can cause color distortion. Yu et al. [18] presented a
Pixel-wise Alpha Blending process to estimate transmission, in
which the transmission estimated from the dark and the bright
channel priors are effectively fused into a transmission image
guided by the luminance perception weights map. Ancuti et al.
[19] evaluated the airlight on the image patches and recovered
the haze-free image using a multiscale fusion approach. Lou
et al. [26] established a linear relationship between the transmis-
sion map and haze-related features which can be worked out by
using a learning-based approach. Kuanar et al. [32] proposed a
Deglow convolution neural network to remove glow effects sig-
nificantly and utilized a DeHaze network for dehazing on top of
it. However, their methods fail to remove glow and reduce the
noise of the sky area. Besides, part of the image appears a color
shift.

Recently, deep learning methods such as machine learning,
Generative Adversarial Networks and Recurrent Neural Net-
works in image dehazing have attracted more and more atten-
tion. Tang et al. [9] researched the characteristics of haze and put
forward a random forest model to determine the best combina-
tion associated with haze. Cai et al. [30] adopted a DehazeNet
architecture to improve the quality of the restored images.
Ren et al. [31] presented to establish the mapping relationship
between hazy and the corresponding haze-free images by multi-
layer deep neural networks. Li et al. [35] recommended an end-
to-end AOD-Net in view of convolutional neural networks,
which can directly generate haze-free images. Zhang et al. [36]
improved this end-to-end model connecting pyramid dehazing
network. Despite these methods are able to restore daytime
haze-free images, they do not perform so well on low-light hazy
images. Besides, deep learning algorithms need enough training
datasets. Nevertheless, image datasets including a large number
of low-light hazy images and the appropriate actual haze-free
images are almost impossible to obtain because of the non-
uniform ambient illumination.

In this paper, we focus on problems such as atmosphere
light and transmission estimation in low-light image dehaz-
ing. To better illustrate the characteristics of low-light hazy
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FIGURE 1 Optical imaging model for low-light haze scene and physical mechanism of APSF

images, influencing factors such as glow effect and changing
illumination need to be taken into account. We propose a novel
nonlinear model for transmission estimation by learning image
depth-relevant features.

3 LOW-LIGHT IMAGE DEHAZING

The presence of active light glow leads to differences in the
characteristics of low-light scenes and daytime scenes. Figure 1
shows the low-light model used in our paper. According to
Equation (1), the optical image model for low-light haze scenes
adds an atmosphere point spread function (APSF) to a daytime
model with varying atmosphere light as [15]:

I (x ) = J (x )t (x ) + A(x )(1 − t (x )) + AL (x ) ∗ APSF , (3)

where AL (x ) is the active light sources whose intensity is con-
volved with APSF. A(x ) called atmosphere light map or ambient
illuminance map which is no longer constant, and changes with
different pixel position due to the contribution of light sources.
This model offers a valuable way to characterize low-light hazy
images with glow.

The whole process of our low-light haze removal technique
is illustrated in Figure 2. The critical step is the estimation of
atmosphere light map and refined transmission map. The details
of the process will be described in the next sections.

3.1 Glow decomposition

The glow is generated by the convolution of a light source with
APSF expressed by the Legendre polynomial [1]. According to

Equation (3), the model is simplified as:

I (x ) = T (x ) + G (x ), (4)

where T (x ) = J (x )t (x ) + A(x )(1 − t (x )) is the direct transmis-
sion and airlight, G (x ) = AL (x ) ∗ APSF represents the glow of
image. According to Equation (4), glow removal is considered
to be an image layer decomposition issue. The ambient illumi-
nation of the glow effect is decreased smoothly, and the gradient
histogram of the smooth layer has a “short tail” [16]. Therefore,
the approach in [15] can be employed to decompose glow from
the original image. The objective function E (T (x )) for glow
layer separation [15] is expressed by:

E (T (x )) = min
∑

x

(
𝜌
(
T (x ) ∗ f12

)
+ 𝜆

(
(I (x ) − T (x )) ∗ f3

)2

0 ≤ T (x ) ≤ I (x ), (5)

where f12 is the first-order filters in two directions, f3 is the
second-order Laplacian filter and the operator ∗ represents con-
volution. 𝜌(v) = min(v2, t ) is a robust function which preserves
large gradients of the original image I (x ) in the remaining haze
layer T (x ), and the parameter t is constant which is set to 0.01.
The parameter 𝜆 is important which related to the smooth-
ness of the glow layer. When minimizing the objective function
E (T (x )), we can get the remarkable lay separation effect.

The presence of haze usually scatters the actual light resulting
in color deviation. Correcting color is a necessary step after
glow decomposition. Some methods such as gamma correction,
white balance correction are suitable for daytime images but
cannot deal with the color shift and glows well. Zhang et al.’s
maximum reflectance prior(MRP) method [14] often produces
glow effects around artificial light sources. Li et al.’s color
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2626 LV ET AL.

FIGURE 2 The whole process of our dehazing method

FIGURE 3 The result for color calibration. (a) Original low-light image. (b) Zhang’s [14] color-corrected hazy image. (c) Li’s [15] color-corrected hazy image.
(d) Our result

balanced constraint method [15] still has a color-shift and halos
in the edges. Therefore, a novel color transformation method
is proposed to solve the color shift problem. Figure 3 shows
our result after using the color channel transformation method
compared with other color correction methods. Inspired by the
gray world assumption method proposed in [27], the image is
firstly separated into three RGB color channels. These color
channels are, respectively, transformed as follows:

Gray =
1
3

(∑
Tr(x ) +

∑
Tg(x ) +

∑
Tb(x )

)
, (6)

Tr ′ (x ) =
Gray∑

Tr(x )
× Tr (x ), (7)

Tg′ (x ) =
Gray∑

Tg(x )
× Tg(x ), (8)

Tb′ (x ) =
Gray∑

Tb(x )
× Tb(x ), (9)

where Gray is the average value of RGB channels in the image
T (x ). r, g, and b represent the RGB space of T (x ), and Tr ′ (x ),
Tg′ (x ),and Tr ′ (x ) are the updated RGB images of T (x ). The
obtained image is then enhanced by using single scale Retinex
transform [28]. Finally, in order to smooth the edges of the
image, the guided filter [29] is used for this correction.

3.2 Light source regions segmentation

The distribution of ambient illuminance and transmission is
uneven in the image because of the existence of various active
light sources. This contributes to the obvious difference of
ambient illuminance between light and non-light regions. So we

 17519667, 2022, 10, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ipr2.12513 by C

as-C
hangchun Institute O

f O
ptics, Fine M

echanics A
nd Physics, W

iley O
nline L

ibrary on [06/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LV ET AL. 2627

FIGURE 4 From left to right—(a) and (d): Original low-light hazy image. (b) and (e): The map of D(x). (c) and (f): Our segmentation results

need to use light source segmentation to estimate the atmo-
sphere light and transmission, respectively, from light and non-
light regions. According to the results of light segmentation,
the probability of the pixel which belongs to the light source
regions can be obtained. With the probability of the pixel dis-
tribution, the transmission of light and non-light regions can be
combined together to obtain the global transmission.Usually in
the low-light environment, there is at least one pixel with a high
or low-intensity color channel value. After some experiments,
we find that the channel difference between maximum intensity
value and minimum intensity value in a color channel in light
source regions is obviously higher than that in the non-light
areas. Therefore, we can set an index called gamma correction
index to enlarge this difference. In order to segment the light
and non-light regions, we set a threshold to find out the bound-
aries of light segmentation. So mathematically, to segment the
light source regions well, we can define our new function 𝜂(x )
with the gamma correction of channel difference as:

𝜂(x ) = max
c∈RGB

(
I c (x )

)
− min

c∈RGB

(
I c (x )

)𝛾

=

{
≥ N th, x ∈ LSR

< N th, x ∈ NLSR
, (10)

where N th is the threshold value which is set to segment the
light source regions, LSR and NLSR represent the light source
regions and the non-light source regions, respectively. In order
to confirm the threshold and gamma, we select 500 night-
time images with light sources and segment them, as shown
in Figure 4. After experiments, we set N th = 0.07 (the corre-

sponding pixel value is 17.85) and 𝛾 = 2.0. The results show
the higher that value of 𝜂(x ) is, the more possible the pixel is in
the bright region. So we approximate the above function 𝜂(x )
as the probability that per pixel belongs to the bright areas.

3.3 The estimation of atmosphere light map

In He et al.’s method [4], the brightest 0.1 percent of pixels in
one of RGB dark channels are selected as the atmosphere light.
The atmosphere light in the daytime environment is considered
to be uniformly distributed, so the atmosphere light is a con-
stant value. However, this does not apply to low-light images.
There will be more noise in the sky area and the sky looks unreal
in the image. What’s more, low-light haze removal is not so
effective. The global atmosphere light is not uniform.Therefore,
just replacing the global atmosphere light estimation with a
local one will make the estimation inaccurate [33]. It will influ-
ence the process of transmission estimate. To solve the above
problems, an adaptive model is proposed for the atmosphere
light map. In the low-light hazy image, the intensity of atmo-
sphere light is mainly related to active light sources scattered
through haze. Theoretically, the scattered intensity of multiple
light sources attenuates exponentially through haze in the light
areas. The airlight is produced by haze scattering the atmosphere
light whose intensity increases in non-light areas. So the ambient
illuminance map of the image is made up of the attenuated light
in light source regions and the airlight in non-light areas. Due to
the intensity of airlight in non-light source regions is so weak,
we consider approximately the intensity of atmosphere light is
equal to airlight. According to the above theory, we describe the
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FIGURE 5 (a) The luminance map. (b) The saturation map. (c) The gradient map. (d) The image depth map

ambient illuminance map as:

P (x ) =

{
A0(x ), x ∉ LSR

A1(x )t2(x ), x ∈ LSR
, (11)

where LSR is the multiple light source regions, P (x ) is the ambi-
ent illuminance map of the image I (x ), and t2(x ) is the transmis-
sion in light source regions which is determined in Section 3.4.
A0(x ) is the atmosphere light in dark regions, and A1(x ) is the
atmosphere light in light regions. In order to obtain P (x ), MRP
method [14] is used to obtain the ambient illuminance map as:

P (x ) = max
c∈R,G ,B

I c (x ). (12)

After computing t2(x ) in the next section, the truth atmosphere
light map can be estimated by combining A0(x ) and A1(x ) with
the probability in Equation (10) as follows:

A(x ) = 𝜂(x )A1(x ) + (1 − 𝜂(x ))A0(x ). (13)

3.4 The estimation of transmission map

When some existing methods such as DCP and MRP are han-
dled separately for regions with and without light sources,
the dehazing performance is not so well, we create a nonlin-
ear model among three haze-related features for light source
regions (LSR) and use DCP to handle the non-light source
regions (NLSR). Having obtained the value of the atmosphere
light A0(x ) in non-light source regions, we can compute the
transmission maps t1(x ) by applying the DCP for the non-light
source regions as follows:

t1(x ) = 1 − min
i∈Ω(x )

min
c∈R,G ,B

(
I c (i )
Ac

0(i )

)
, i ∈ NLSR. (14)

Theoretically, low-light hazy images have the characteristic of
high brightness, low saturation, and local smoothness. Hence,
we can construct a novel nonlinear model of the depth map d (x )
to express the haze density by the luminance l (x ), the saturation
s(x ), and the gradient g(x ) in the light source regions, as shown
in Figure 5. We propose the image depth estimation map d (x )

as:

d (x ) =
1

1 + e−𝜆(𝜔1 l (x )+𝜔2s(x )+𝜔3g(x )+𝜀)
, x ∈ LSR, (15)

where x is the value of per pixel of the image, 𝜔1, 𝜔2, 𝜔3 are
the non-linear parameters, 𝜀 represents the random error of
this model.

To determine the unknown coefficients, we collect numbers
of low-light hazy images are collected from www.flickr.com,
www.gettyimages.com, and D-HAZY dataset [20]. Synthetic
depth maps and corresponding hazy images are generated to
obtain sufficient training samples, as seen in Figure 6.

First, we randomly generate a haze depth map with an open
interval of (0.5, 1) for each haze-free image. Secondly, We pro-
duce a vector A(k, k, k) of atmosphere light, where k is a param-
eter between 0.80 and 1.0. Finally, we collect 1000 nighttime
haze-free images and 1000 synthetic hazy images with the above
image depth d (x ) and atmosphere light A(k, k, k). Besides, we
obtain the luminance maps, the saturation maps, and the gra-
dient maps of all these nighttime hazy image samples. Accord-
ing to Equation (15), our training model of the haze depth map
d𝜔(xi ) can be simplified as follows:

d𝜔(xi ) =
1

1 + e−𝜆(𝜔T Xi+𝜀)
, (16)

where i is the number ith training sample, 𝜔T = [𝜔1, 𝜔2, 𝜔3]T

and Xi = [l (xi ), s(xi ), g(xi )], our hazy image depth map of the
ith training sample is represented as d (i ). n is the total number
of training samples. Then the following cost function E (𝜔, 𝜆, 𝜀)
is expressed as [34]:

E (𝜔, 𝜆, 𝜀) = −
1
n

×

[
n∑

i=1

(
d (i ) log

(
d𝜔
(
x (i )

))
+
(
1 − d (i )

)
log

(
1 − d𝜔

(
x (i )

)))]
.

(17)

After having obtained the cost function, we initialize
𝜆 = 5.0, 𝜔1 = 1.0, 𝜔2 = −1.0, 𝜔3 = 1.0, 𝜀 = 0.1. In addition, we
assign the Learning Rate 𝜇 of 0.001. As for other non-linear
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FIGURE 6 The example of low-light haze-free images and the corresponding hazy images. Top row: low-light haze-free images. Bottom row: hazy images

coefficients 𝜆, 𝜔1, 𝜔2, 𝜔3, 𝜀, an adaptive stochastic gradient
descent(SDG) algorithm [34] is adopted as follows:

𝜔i ∶= 𝜔i − 𝜇
𝜕E (𝜔1, 𝜔2, 𝜔3)

𝜕𝜔i

, (18)

𝜆i ∶= 𝜆i − 𝜇
𝜕E (𝜆)

𝜕𝜆i

, (19)

𝜀i ∶= 𝜀i − 𝜇
𝜕E (𝜀)

𝜕𝜀i

. (20)

After learning and training image samples, the final
results are that 𝜆 = 2.5, 𝜔1 = 0.8267, 𝜔12 = −0.2968, 𝜔3 =

0.5245, 𝜀 = 0.041327. If these parameters are determined, the
following equation can be employed to estimate the image trans-
mission of light source areas:

t2(x ) = e−𝛽d (x ). (21)

Note that t1(x ) and t2(x ) are separately effective in non-light and
light areas, it is essential to combine them together to get the
global transmission t (x ). According to the Equations (10), (14),
(15), and (21), we use the light segmentation function 𝜂(x ) as the
probability to blend the transmission t1(x ) and t2(x ) together.
The following transmission t (x ) is estimated as:

t (x ) = 𝜂(x )t2(x ) + (1 − 𝜂(x ))t1(x ). (22)

(Algorithm 1)
Our transmission map is shown in Figure 7. It is worth not-

ing that Equation (15) uses a similar model proposed in Zhu
et al.’s color attenuation prior method [10], and they all contain
saturation and brightness components. However, our gradient
component related to the image details and training method is
different from what they use, since low-light hazy images are

ALGORITHM 1 Algorithm of nonlinear image depth estimation model

Input: illuminance vector l (x ), saturation vector s(x ), gradient vector g(x ),
image depth d (x ) of each synthetic hazy image from the training dataset,
learning Rate 𝜇.

Output: Nonlinear parameters 𝜆, 𝜔1, 𝜔2, 𝜔3, 𝜀.

1: Initialization: 𝜆 = 5.0, 𝜔1 = 1.0, 𝜔2 = −1.0, 𝜔3 = 1.0, 𝜀 = 0.1.

2: p = 0, q = 0, r = 0, s = 0, v = 0, 𝜇 = 0.001;

3: for each i ∈ [1, n] do

4: t = d𝜔 (xi ) − d (i );

5: t 1 = 𝜔1l (x ) + 𝜔2s(x ) + 𝜔3g(x ) + 𝜀;

6: p = p+ t ∗ (1 − d (i ) ) ∗ d (i ) ∗ 𝜆;

7: q = q + t ∗ (1 − d (i ) ) ∗ d (i ) ∗ 𝜆 ∗ l (xi );

8: r = r + t ∗ (1 − d (i ) ) ∗ d (i ) ∗ 𝜆 ∗ s(xi );

9: s = s + t ∗ (1 − d (i ) ) ∗ d (i ) ∗ 𝜆 ∗ g(xi );

10: v = v + t ∗ (1 − d (i ) ) ∗ d (i ) ∗ t 1;

11: end for

12: 𝜀 = 𝜀 + 𝜇 ∗ p∕n;

13: 𝜔1 = 𝜔1 + 𝜇 ∗ q∕n;

14: 𝜔2 = 𝜔2 + 𝜇 ∗ r∕n;

15: 𝜔3 = 𝜔3 + 𝜇 ∗ s∕n;

16: 𝜆 = 𝜆 + 𝜇 ∗ v∕n;

normally low saturation, reduced contrast, unclear details, and
high luminance in the light source area. The Laplacian compo-
nents are used to express the gradient component because they
highlight the information of edges. Although the haze feature
components are the same as Lou’s method [26], the proposed
model is a non-linear Sigmond function, and we estimate the
unknown coefficients by the adaptive SGD algorithm [34]. The
non-linear Sigmond function is utilized to control the value of
the depth map from 0 to 1. In addition, the non-linear model
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2630 LV ET AL.

FIGURE 7 Example images and the estimated transmission maps. Top row: (a)–(c) the input hazy images. Bottom row: (d)–(f) the transmission maps

FIGURE 8 (a): Input low-light hazy image. (b)–(d): The dehazing results using t1(x ) , t2(x ) and t (x )

can describe the depth map well and better improve the trans-
mission estimation.

We apply the image guided filter to smooth and preserve the
edges of the transmission map. Figure 8 shows our dehazing
results using our combined transmission model. It is clear that
the transmission estimated by DCP tends to deal with haze well
in dark areas while the transmission estimated by our nonlinear
model shows good preservation and smoothness of shapes and
edges of objects in light areas.

Due to the large black area, the lower limit of transmission
can not reach a very small value, so we take 0.10 as the limit
which can get better recovery of the image. After Achieving the
values of t (x ) and A(x ), we restore the following low-light hazy
image as:

J (x ) =
I (x ) − A(x )

max(t (x ), 0.1)
+ A(x ). (23)

(Algorithm 2)

4 EXPERIMENT RESULTS

To demonstrate the effectiveness of our dehazing method, we
have implemented the experimental results of the algorithm and

compare our results with the widely-used dehazing methods
such as dark channel prior(DCP) [4] with HDRnet [37], Zhang’s
new image model (NIM) [13], Zhang’s maximum reflectance
prior (MRP) [14] method, Cai’s DehazeNet [30], Ren’s multi-
scale convolutional neural networks (MSCNN) [31], Lou’s Haze
Density Features (HDF) method [26], Li’s Glow Decomposi-
tion and Multiple Light Colors (GDM) method [15], Yu’s Pixel-
wise Alpha Blending (PAB) method [18], respectively. The algo-
rithms are implemented in the software MATLAB R2019a on
the Inter Corei7-7500U 2.90GHz, 8GB RAM. The parameters
of our learning model are obtained as follows: 𝛽 = 0.5, 𝜆 = 2.5,
𝛾 = 2.0, 𝜇 = 0.001, 𝜔1 = 0.8267, 𝜔2 = −0.2968, 𝜔3 = 0.5245,
𝜀 = 0.041327.

4.1 Qualitive evaluation on real-world
images

As shown in all figures, DCP with HDRnet, DehazeNet, and
MSCNN tend to fail to remove haze and glow artifacts in real
low-light hazy images. In Figures 9b,e,f, the brightness of dehaz-
ing images appear more dark and the dehazing results present
a certain image glow. It is concluded that they are suitable for
daytime dehazing but they are not effective for low-light image
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LV ET AL. 2631

FIGURE 9 Visual comparisons of dehazing methods on real images. (a) Low-light hazy images. (b) DCP+HDRnet. (c) NIM. (d) MRP. (e) DehazeNet. (f)
MSCNN. (g) HDF. (h) GDM. (i) PAB. (j) Ours

ALGORITHM 2 Algorithm of restoring a low-light hazy image

Input: low-light hazy image I (x ); low-light hazy image model
I (x ) = J (x )t (x ) + A(x )(1 − t (x )) + AL (x ) ∗ APSF

1: Using image decomposition to obtain glow image G (x ) and hazy image
T (x )

2: Using color channel transformation to make the color of image T (x )
balance

3: Using light segmentation method to get the probability 𝜂(x ) in Equation
(10): N th = 0.07, 𝛾 = 2.0.

4: if x in dark regions: then

5: Using dark channel prior to get the transmission t1(x ) in Equation
(14).

6: Calculate A0(x ) using Equation (12)

7: else

8: Using Equation (15) to estimate the image depth d (x ):

9: 𝜆 = 2.5, 𝜔1 = 0.8267, 𝜔2 = −0.2968, 𝜔3 = 0.5245, 𝜀 = 0.041327.

10: Using Eq.(16) to get the transmission of the source regions
t2(x ):𝛽 = 0.5.

11: Using Equations (11) and (12) to obtain A1(x ).

12: end if

13: Using Equation (11) to get the atmosphere light A(x ).

14: Calculate the transmission t (x ) using Equation (22).

15: Refine transmission using guided filter.

Output: Get restored image J (x ) using Equation (23)

dehazing. In Figures 9 and 13, although NIM, MRP, HDF, and
PAB methods increase the contrast of images, strong light and
large glow artifacts can be clearly observed. Besides, color shift
can be seen in Figures 9c,d,g. Our proposed algorithm not only
improves the contrast dramatically and deals well with large
image glow, but also solve color shift problem (see in dark grove
areas of Figure 9). As observed in the sky region in Figures 10,
11, and 14, other methods produce more noises and cannot
be capable of dealing with the sky, while ours can significantly
reduce much more noise and recover the sky regions better.
The sky regions of our dehazing results look more natural in
Figures 9, 11, and 14. In Figures 12 and 14, we can see that it
is overexposure in white light regions using MRP, HDF, GDM,
and PAB, but our method can reduce image overexposure and
make the details of active light sharp. In Figures 9, 13, and 14,
it is observed from the comparison that both GDM and our
method have significantly reduced the glow. But our method can
better preserve the original shape and edges of all light sources
better. Because of the improvement of atmosphere light and
transmission, our algorithm tend to restore details well in the
image dark areas.

4.2 Image quality assessment

In order to avoid the deviation of the subjective visual assess-
ment, the objective metrics are required to evaluate the haze
removal results produced by different nighttime dehazing
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2632 LV ET AL.

FIGURE 10 Visual comparisons of dehazing methods on real images. (a) Low-light hazy images. (b) DCP+HDRnet. (c) NIM. (d) MRP. (e) DehazeNet. (f)
MSCNN. (g) HDF. (h) GDM. (i) PAB. (j) Ours

FIGURE 11 Visual comparisons of dehazing methods on real images. (a) Low-light hazy images. (b) DCP+HDRnet. (c) NIM. (d) MRP. (e) DehazeNet. (f)
MSCNN. (g) HDF. (h) GDM. (i) PAB. (j) Ours

techniques. Furthermore, some well-known evaluation metrics
are calculated to quantitatively assess the performance of haze
removal.The image quality assessment (IQA) metrics can be
divided into the non-reference metric, the reduced-reference
metric, and the full-reference metric. The blind assessment [38]
is a widely used non-reference metrics method which contains
the parameters e and r̄ . The blind assessment e, r̄ , and image vis-
ibility measurement (IVM) [39] are used to evaluate the visible
edges of the image. Larger e, r̄ , and IVM indicate that the algo-
rithm has better edges preservation performance between the

recovered image and hazy image. Blind/Referenceless Image
Spatial Quality Evaluator (Brisque) [40] is another widely used
no-reference IQA index. The Brisque can be used to evaluate
the quality of image from many aspects. The smaller the Brisque,
the better the recovered image. The peak signal-to-noise ratio
(PSNR) is used to evaluate the overall quality of the algorithm.
The structural similarity index (SSIM) proposed by Wang [41] is
to measure the ability of structure-preserving. A higher PSNR
represents the recovered result is more desirable, and a higher
SSIM indicates a better spatial structure between the recovered
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LV ET AL. 2633

FIGURE 12 Visual comparisons of dehazing methods on real images. (a) Low-light hazy images. (b) DCP+HDRnet. (c) NIM. (d) MRP. (e) DehazeNet. (f)
MSCNN. (g) HDF. (h) GDM. (i) PAB. (j) Ours

FIGURE 13 Visual comparisons of dehazing methods on real images. (a) Low-light hazy images. (b) DCP+HDRnet. (c) NIM. (d) MRP. (e) DehazeNet. (f)
MSCNN. (g) HDF. (h) GDM. (i) PAB. (j) Ours

FIGURE 14 Visual comparisons of dehazing methods on real images. (a) Low-light hazy images. (b) DCP+HDRnet. (c) NIM. (d) MRP. (e) DehazeNet. (f)
MSCNN. (g) HDF. (h) GDM. (i) PAB. (j) Ours
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2634 LV ET AL.

TABLE 1 The non-reference image quality assessment metrics

Figure 9 Figure 10 Figure 11

Metrics e r̄ Brisque e r̄ Brisque e r̄ Brisque

DCP+HDRnet 10.2361 1.1671 30.1716 3.7861 1.0376 29.9362 3.9172 0.9686 47.1006

NIM 12.2767 3.0358 32.3343 19.3419 2.1186 28.5083 8.2865 1.5388 46.6019

MRP 13.7402 4.7722 29.5089 18.9168 3.5987 37.3574 9.5286 2.6240 52.7286

DehazeNet 4.8381 0.8361 32.8018 12.2459 0.9110 35.5464 9.4882 0.6450 49.0672

MSCNN 11.5766 0.9915 35.5655 8.6224 0.8316 36.1810 10.2149 0.7301 50.2617

HDF 10.9306 3.4804 31.9876 15.8912 2.1367 33.2291 10.4430 1.1105 55.9961

GDM 14.2037 4.9602 28.9453 17.9323 3.8693 41.3811 11.0834 2.5855 49.9085

PAB 13.2757 3.0975 29.9596 16.2059 3.5301 28.8763 8.3611 2.2524 49.9640

Ours 13.8796 4.9217 28.7283 18.2661 4.2362 25.5843 14.5079 2.8593 45.3761

Figure 12 Figure 13 Figure 14

Metrics e r̄ Brisque e r̄ Brisque e r̄ Brisque

DCP+HDRnet 5.6822 1.1103 15.2255 8.6633 1.0796 16.6320 7.8211 1.2246 24.4154

NIM 15.3558 1.2575 25.3856 12.5735 2.2292 21.2607 8.0124 1.3335 20.7335

MRP 16.1778 2.9349 29.2990 15.6891 2.9165 16.7925 7.5419 3.1062 19.8295

DehazeNet 6.6788 0.8381 15.6019 6.0114 0.9944 15.8819 6.3343 0.8566 13.5698

MSCNN 12.5564 0.8169 14.0466 9.5873 1.0898 16.2567 6.3141 0.8715 14.8169

HDF 15.2633 2.8619 15.6008 10.9212 2.5239 19.3936 6.2900 1.7233 23.9348

GDM 17.9989 4.0069 29.0668 14.9922 2.5542 18.7978 7.1507 3.5269 24.4489

PAB 14.3456 3.1124 32.5806 15.0728 2.3674 16.7530 7.0054 2.3707 19.8185

Ours 21.7423 4.5095 11.2453 15.9388 3.1372 14.4555 8.3600 3.8108 10.9310

image and haze-free image. The contrast gain (CG) [42] is to
measure the contrast of the image, and visual contrast measure
(VCM) [43] are to quantify the degree of the image visibility.
The higher the CG and VCM, the clearer the recovered image.

To quantify the dehazing results, we pick out the low-
light haze-free images and the corresponding synthesized hazy
images in the website www.flickr.com and Liao’s paper [44] for
the test. Table 1 shows the blind assessment values and Brisque
of our proposed and other methods achieved by measuring the
real-world images from Figures 9 to 14. As shown in Table 1,
the values e and r̄ of our method are higher than others except
in Figure 9. This is because the edges of our image in Figure 9
are not clearer than GDM method. But from all the images,
these indicate our method has better edges preservation per-
formance between the recovered image and hazy image. The
Brisque obtained by using our algorithm are all smaller than oth-
ers. These results show that the recovered image of our method
has better image quality than others. Figure 15 shows the com-
parison results using hazy image and the corresponding ground
truth image, and Table 2 displays the IQA values of all the
dehazing algorithms. It is shown that our values of e, IVM, CG,
and VCM are higher than other methods. These denote that
our method has better edges preservation and a larger degree
of visibility improvement. Our proposed algorithm achieves the
highest PSNR value, because our image depth model can better
deal with the light regions. Besides, our SSIM value is the high-

TABLE 2 Image quality assessment using different dehazing methods

Quality assessment e IVM SSIM CG VCM PSNR

DCP+HDRnet 25.7954 8.7810 0.3202 0.2994 16.8333 15.2770

NIM 26.7448 8.0512 0.5239 0.3854 43.6667 17.5994

MRP 16.7590 8.5947 0.7671 0.3945 20.5000 21.8694

DehazeNet 25.7821 8.8623 0.3200 0.1797 15.5000 18.9668

MSCNN 11.2882 6.6786 0.4950 0.1853 18.1667 17.8850

HDF 30.5368 8.4593 0.7558 0.3572 52.6667 17.9537

GDM 32.1134 8.8646 0.7288 0.3991 25.6667 20.2104

PAB 23.2590 7.2399 0.7603 0.3159 56.0000 20.5560

Ours 34.9572 9.2090 0.7834 0.4083 58.5000 21.9688

est. This shows that our recovered image has a better spatial
structure and our light segmentation method can significantly
refine the atmosphere light map and the transmission map.In
words, our proposed method is highly effective for low-light
image haze removal.

4.3 The execution time of our algorithm

The execution time is another key index for our dehazing
method. Since it is difficult to analyze the time complexity,
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LV ET AL. 2635

FIGURE 15 The results of image quality assessment.(a) Low-light hazy image. (b) Ground truth image. (c) DCP+HDRnet. (d) NIM. (e) MRP. (f) DehazeNet.
(g) MSCNN. (h) HDF. (i) GDM. (j) PAB. (k) Ours

TABLE 3 The implementation times of the proposed and the comparative algorithms

Images Size DCP+HDRnet NIM MRP DehazeNet MSCNN HDF GDM PAB Ours

Figure 9 360∗540 5.31 3.92 2.84 3.76 4.70 3.68 8.75 4.59 5.72

Figure 10 375∗500 4.87 3.81 2.36 3.69 4.32 3.16 8.56 4.26 4.98

Figure 11 576∗382 5.62 5.09 3.13 4.64 5.56 4.35 9.17 5.48 5.91

Figure 12 752∗446 6.96 6.73 4.85 6.39 7.14 6.04 11.95 6.61 7.24

Figure 13 423∗285 2.48 2.15 1.47 1.71 2.37 1.95 5.39 2.32 2.56

Figure 14 433∗297 2.68 2.26 1.68 1.76 2.52 2.03 5.62 2.45 2.84

the implementation time is used to measure the algorithm. In
order to compare with other methods, we use MATLAB to
analyze the execution time of our experiment and collect some
other real-time dehazing algorithms. The codes of DehazeNet,
MSCNN, GDM, PAB are from their websites and the codes of
DCP with HDRnet, NIM, MRP, HDF are provided in MAT-
LAB. For a real-world low-light hazy image with size 360∗540
(see in Figure 9), our proposed method spends more than 15s
solving image depth model to obtain nonlinear coefficients.
Specifically, each part (e.g., glow decomposition, light source
segmentation, nonlinear image depth estimation, guided filter)
consumes, respectively, 4.02, 0.92, 0.50, and 0.28 s. Table 3
shows all the runtimes of the proposed and other real-time
dehazing algorithms from Figures 9 to 14. It is clear that our
algorithm requires a little more processing time than other

methods. This is because that the proposed method needs to
solve nonlinear image depth estimation system.The part of glow
decomposition consumes more time than other parts in our
algorithm. It is concluded that the runtime of our algorithm
meets the real-time requirement. Also, it is noteworthy that our
algorithm is implemented with MATLAB and not optimized
well, which could be accelerated by implementing with C++.
Although our method needs more time, the results exhibit bet-
ter on subjective and objective evaluation in most cases.

5 DISCUSSION AND CONCLUSIONS

This paper mainly focuses on how to deal with the low-light
image with haze, glow, and color shift produced by many kinds
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2636 LV ET AL.

of light sources. For solving the color shift problem, we utilize
the proposed color channel transformation to bring the image
closer to reality. For segmenting the light source regions bet-
ter, we put forward a new method by using gamma correction
of channel difference with the threshold level to determine if
the pixel belongs to light source regions. For the atmosphere
light estimation, we estimate the ambient illuminance map with
maximum reflectance prior and compute the atmosphere light
in the light and non-light regions. The atmosphere light map is
obtained by blending them together. For the transmission esti-
mation, we create a nonlinear model among three image fea-
tures (the luminance map, the saturation map, and the gradient
map) of the depth map in the light areas and use the DCP in the
non-light areas. Compared with others, our approach is more
effective to remove haze, eliminate color distortion, improve
the visibility, and reduce much more noise. Besides, our method
looks more real in the image sky regions and has better edges
preservation preformance. Unfortunately, our method still has
some shortcomings that need to be researched further. First,
there are some coefficients to be adjusted if necessary. Ideally,
these parameters are supposed to be tuned self-adaptively. Sec-
ond, a threshold value for the gamma correction of channel dif-
ferences is obtained by training 500 low-light hazy images with
light sources, which cannot be adaptively processed for different
low-light scenes. In addition, the coefficients obtained by train-
ing the nonlinear model with samples are fixed values, so they
cannot be adaptively processed for different low-light scenes.
Finally, another issue is that the proposed method cannot sat-
isfy the real-time dehazing task. Nevertheless, we will develop
the self-adaptive and high computational effective algorithm to
solve the problems in the future work.
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