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Summary

A dynamic motion primitive (DMP) is a robust framework that generates obsta-
cle avoidance trajectories by introducing perturbative terms. The perturbative
term is usually constructed with an artificial potential field (APF) method.
Dynamic obstacle avoidance is rarely considered with this approach; further-
more, even when dynamic obstacles are considered, only the velocity and
position information of the current state are incorporated into the obstacle avoid-
ance framework. However, if the position of an obstacle changes suddenly, a
robot may be placed in a dangerous position close to the obstacle, resulting
in large obstacle avoidance accelerations, sharp trajectories, or even obstacle
avoidance failure. Therefore, we present a model predictive obstacle avoidance
method based on dynamic motion primitives and a Kalman filter. This method
has three main components: Dynamic motion primitives are used to generate
the desired trajectory and introduce perturbations to achieve obstacle avoidance;
the Kalman filter method is adopted to estimate the future positions of the obsta-
cles; and model predictive control is employed to optimize the repulsive force
generated by the APF while minimizing the defined cost function, thus guaran-
teeing the safety and flexibility of the method. We validate the presented method
with 2D and 3D obstacle avoidance simulations. The method is also verified with
a real robot: the-Kinova MOVO. The simulation and experimental results show
that the proposed method not only avoids dynamic obstacles but also tracks the
desired trajectory more smoothly and precisely.

KEYWORDS
artificial potential field (APF), dynamic motion primitive (DMP), dynamic obstacle avoidance,
kalman filter, model predictive control (MPC)

1 INTRODUCTION

Robots are widely deployed in various aspects of life and
industrial production, and they must operate in both static
and dynamic environments. Thus, to guarantee the safety
of the workflow in robot applications, robots must generate

collision-free trajectories in dynamic environments.
Two different types of strategies have been used to

achieve dynamic obstacle avoidance for robots: global
strategies and local strategies. Global strategies typi-
cally use search processes or path planning to explore
collision-free trajectories [1, 2], such as rapidly exploring
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2 LI ET AL.

random trees (RRTs) and constrained motion planning
networks. However, global strategies are often compu-
tationally expensive and time consuming. Local strate-
gies usually accomplish obstacle avoidance by combining
closed-loop control with artificial potential field (APF)
methods [3, 4]. While local strategies perform rapid com-
putations, the obtained trajectories are usually suboptimal.
Therefore, some optimization methods have been devel-
oped to improve the obstacle avoidance performance.

An instantaneous optimal control (IOC) planner cou-
pled with a symplectic penalty iteration has been proposed
to address the kinodynamic planning problem of differen-
tial algebraic equation (DAE) systems [5]. In this frame-
work, penalty techniques are used to obtain a suboptimal
path in a complex dynamic environment in which the tar-
get or obstacles are moving [6]. A new machine learning
algorithm for learning optimal feedback control policies
has also been developed for guiding robots to goals in the
presence of obstacles [7]. This algorithm can resist local
minima, handle moving obstacles and reduce computa-
tional costs. Furthermore, an optimal trajectory planning
technique for robot manipulators has been presented [8]
in which a novel ranking technique was designed for the
penalty function and the bounds on joint velocities, accel-
erations, jerks, and force/torques were taken into account.
In our work, dynamic motion primitives (DMPs) are com-
bined with artificial potential fields (APFs) as a versatile
framework (DMP-APF) for addressing this issue.

An additional perturbative term derived from the APF
can be used to modify a trajectory generated with a DMP
to achieve obstacle avoidance. Different types of APFs are
constructed to apply in various obstacle avoidance scenar-
ios. For point-like obstacles, static and dynamic potential
fields are used to address static and moving obstacles,
respectively [9, 10]. Superquadric potential functions have
also been adopted to model obstacles and achieve vol-
umetric obstacle avoidance [11]. However, when DMP
frameworks are applied, a DMP-APF method may lack the
ability to return to the primitive motion after the obstacles
are avoided [3]. Furthermore, most DMP-APF methods
focus on only the immediate perception information and
do not consider potential collisions in the near future.
However, if the position of the obstacle changes sud-
denly, it may be difficult to safely avoid fast-moving objects
[12]. Thus, a model predictive obstacle avoidance method
based on dynamic motion primitives and a Kalman filter
(DMP-KMPC) is presented to address these issues.

The use of model predictive control to optimize addi-
tional DMP disturbance terms is another strategy for
optimizing the obstacle avoidance performance that is
explored in this paper. On the one hand, the obstacle avoid-
ance constraint can be realized, and better performance
can be obtained by designing a model predictive control

(MPC) cost function [13]; on the other hand, the calcu-
lation efficiency can be optimized by adjusting the MPC
prediction horizon. To obtain information about the obsta-
cles in the prediction horizon, a Kalman filtering method
is used to estimate the state of the obstacles, including their
velocity and position. Volumetric obstacle avoidance based
on superquadric potential functions [11] is employed to
construct the obstacle regions of the dynamic obstacles.
Moreover, we use the APF method to compute an initial
optimization value at each step in the prediction horizon.
Only the size and direction of the perturbative term need
to be adjusted based on the initial value, as opposed to
determining an optimal input in an indeterminate value
domain. The proposed model obstacle avoidance method
optimizes the obstacle avoidance effect by adjusting the
repulsive force field within the prediction horizon. The
main contributions of this paper are summarized as fol-
lows:

1. Under the MPC framework, the generated
collision-free trajectory can be optimized online
according to the position and velocity information
of dynamic obstacles in the prediction horizon. The
obstacle information can be estimated by the Kalman
filter.

2. By designing the cost function of the MPC frame-
work, collision-free trajectories can be obtained, and
the tracking performance can be guaranteed. Further-
more, the DMP can return to the primitive motion
after avoiding obstacles in this manner.

3. The results of simulation experiments demonstrate
the capabilities of the DMP-KMPC method in generat-
ing safe trajectories. Compared with other DMP-APF
methods, this approach has a better obstacle avoid-
ance ability and improved trajectory tracking perfor-
mance, especially when faced with dynamic obstacles.

The remainder of this paper is organized as follows.
In Section 2, we survey related works on dynamic obsta-
cle avoidance methods and MPC-based obstacle avoid-
ance methods. We discuss the details of the presented
DMP-KMPC method in Section 3. In Section 4, the results
and analyses of the simulations and experiments are
provided, and the effectiveness and superiority of the
DMP-KMPC method are verified. We present our conclu-
sions in Section 5.

2 RELATED WORKS

Collision avoidance with dynamic obstacles is a
well-studied problem, and many methods have been pro-
posed to address this issue. In APF methods, the dynamic
potential field is usually defined to avoid moving obstacles
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LI ET AL. 3

[3, 9]. The positions and velocities of the obstacles are
adopted to formulate the repulsive potential and generate
collision-free trajectories. The velocity and position infor-
mation are collected by sensors. However, the position
and velocity of the obstacles may change rapidly in the
near future. As a result, obstacle avoidance methods may
lose their effect, and obstacle avoidance may fail once
the obstacles are no longer quasistatic (i.e., slow relative
motion) or move quickly. An APF-based dynamic obstacle
avoidance method has been combined with event cameras
to overcome this issue [12]. Event cameras can be used
to distinguish static and dynamic obstacles, allowing the
robot to avoid dynamic obstacles safely and in a timely
manner. However, this approach is difficult to generalize
because specific equipment (event cameras) must be used.
Furthermore, global strategies are typically applied in
path planning problems in known or static environments
[14]. When the environment varies, the planned trajec-
tories may no longer be feasible, and motion replanning
is necessary, potentially resulting in significant computa-
tional costs. Even if the states of the obstacles throughout
the whole process are predicted and incorporated into
global strategic planning, the calculation becomes expen-
sive [15]. Moreover, the accuracy of the predicted state is
not guaranteed.

MPC-based obstacle avoidance methods have been
widely applied in dynamic environments. A state inter-
ception method based on a convex MPC formulation
was used to generate a collision-free trajectory for a
quadrotor [16]. The MPC formulation allows vehicles to
make a more informed and therefore safer decisions, thus
enabling autonomous vehicles to avoid dynamic obsta-
cles [17]. These MPC-based methods are mostly used for
autonomous vehicle and unmanned aerial vehicle (UAV).
This approach maximizes the amount of information that
an autonomous vehicle can gain along its trajectory [18].
As a result, robots can maximize the amount of infor-

mation gathered along their trajectories, allowing them
to perform safer and timelier obstacle avoidance actions
[19]. Obstacle information is typically used to formulate
the penalty function or regarded as constraints in an MPC
framework [13, 20,21]. However, MPC-based methods are
rarely extended to obstacle avoidance for robotic arms [22].
Because robotic arms generally have more than six joints
and, thus, more control inputs, this approach is unfavor-
able for MPC online optimization solutions.

In our work, MPC was innovatively combined with a
DMP obstacle avoidance framework to optimize the addi-
tional perturbative term. The perturbative term is gener-
ated with a superquadric potential, allowing obstacles with
more complex shapes to be introduced. The term gener-
ated by an APF is regarded as a repulsive force; thus, we
need to optimize only three inputs if the robot operates
in three-dimensional space. We define a cost function that
includes a penalty function and a trajectory optimization
term, and obstacle avoidance and trajectory tracking opti-
mization are realized by minimizing the cost function.
In the prediction horizon, the state of the robot can be
calculated with a DMP, while the states of dynamic obsta-
cles are estimated by a Kalman filter [23]. To improve
the computational efficiency and ensure the accuracy of
the estimated obstacle states, we select a relatively small
prediction horizon.

3 ARCHITECTURE OF THE
PROPOSED OBSTACLE AVOIDANCE
METHOD

Figure 1 shows a schematic of the proposed DMP-KMPC
obstacle avoidance method. This section elaborates on
this framework and explains the role of each compo-
nent (including the DMP, Kalman filter, and MPC) in our
approach. First, the DMP is used to learn the nonlin-
ear force term according to a demonstration, and obstacle

FIGURE 1 The schematic of the DMP-KMPC method [Color figure can be viewed at wileyonlinelibrary.com]
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4 LI ET AL.

avoidance is achieved by adding a repulsive term to the
DMP. We use the weight coefficient 𝝎i of the Gaussian
basis function to modulate the forcing term f. The value of
𝝎i is obtained through weighted linear regression to ensure
that the actual execution trajectory x is essentially consis-
tent with the demonstration trajectory xdemo without the
influence of the repulsive term [24]. Then, a Kalman filter
is used to estimate the position and velocity of the obstacles
in the next steps. Finally, the MPC component optimizes
the additional perturbation term of the DMP component
by using the estimated state of the obstacle. Here, the pre-
diction horizon of the MPC component is the same as the
estimation horizon of the Kalman filter. To achieve better
obstacle avoidance and tracking performance, the defined
cost function is minimized in the prediction horizon while
satisfying the MPC constraints.

3.1 Obstacle avoidance based on the
DMP method
A DMP uses a self-stabilizing second-order system to con-
struct an attraction point model so that the final state of
the system can be changed by changing the attraction point
[24]. In n-dimensional space, the attractor equations of
DMPs can be defined as [25]

𝜏
.v = K(g − x) − Dv + diag(g − x0)f,

𝜏
.x = v,

, (1)

where K and D ∈ Rn×n are positive constant diagonal
matrices, x ∈ Rn and v ∈ Rn are the position and veloc-
ity of the system, x0 ∈ Rn and g ∈ Rn are the starting
position and goal position, 𝜏 is a time scaling constant, and
diag(g − x0) ∈ Rn×n is a diagonal matrix with elements
equal to g − x0 [26]. f ∈ Rn is a nonlinear force term, and
arbitrarily complex motion can be generated by adjusting
f. f is denoted as

f(s) =

N∑
i=1

𝝎i𝜑i(s)

N∑
i=1

𝜑i(s)

s, (2)

where 𝝎i ∈ Rn is the weight of N basis functions 𝜑i(s) and
𝜑i(s) is a Gaussian function with its center located at ci, and
a width of hi. Thus, 𝜑i(s) can be written as

𝜑i(s) = exp(−hi(s − ci)). (3)

The nonlinear force term f(s) does not depend directly
on time; instead, it depends on the phase variable s, which
is a time-independent canonical variable that changes
monotonically from 1 to 0 during movement and can be

expressed as

𝜏
.s = −𝛼s, (4)

where 𝛼 is a constant. In the trajectory learning stage,
the speed and acceleration of each time step t are calcu-
lated according to the recorded motion trajectory; then, the
value of the function f(t) is obtained with Equation (1).
Next, Equation (4) is integrated, and s(t) is evaluated.
Finally, the weight𝝎i can be calculated using weighted lin-
ear regression when these time arrays are substituted into
Equations (2) and (3). In the execution stage, by setting the
starting position x0, using the learned weight 𝝎i, and solv-
ing Equation (1), a set of trajectories that is similar in shape
to the demonstration trajectory and converge between x0
and g can be obtained.

However, to ensure the safety of the system, it is nec-
essary to avoid any obstacles that may appear in the exe-
cution trajectory. Based on this consideration, a repulsive
potential field is established around the obstacles, and the
DMP method is combined with this potential field. We
add a perturbation term p(x, v) to the attraction system
Equation (1):

𝜏
.v =K(g − x) − Dv + diag(g − x0)f + 𝜆p(x, v),

𝜏
.x =v,

, (5)

where p(x, v) is the negative gradient of the potential field
[27] and 𝜆 is a constant that indicates the strength of the
entire field [10, 28]. The potential field depends on the rel-
ative position and velocity of the end effector with respect
to the obstacle. The shape of the generated trajectory can
be changed by adjusting the strength 𝜆 of this potential
field. This field can be divided into a static potential field
that considers only the distance between the current posi-
tion and the obstacle and a dynamic potential field that
also considers the position and velocity of the end effector
[29]. Different potential field methods are used for point
or point cloud obstacles and volume obstacles. We use the
volumetric obstacle avoidance method with the proposed
dynamic potential function [11] to calculate the initial
value of the repulsive force, that is, p(x, v), in Equation (5).

For volume obstacles, to obtain isopotential contours
that follow the object shape near the surface, an object may
be surrounded with a superquadric potential:

C(x) =

((
x1

𝑓1(x)

)2n

+
(

x2

𝑓2(x)

)2n
) 2m

2n

+
(

x3

𝑓3(x)

)2m

− 1.

(6)
The shape of any obstacle can be modeled by tuning the

exponential parameters m and n and the scale functions
𝑓1, 𝑓2, and 𝑓3. Then, we can define the dynamic potential
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LI ET AL. 5

FIGURE 2 A diagram of the Kalman filter
[Color figure can be viewed at
wileyonlinelibrary.com]

function as follows:

U(x, v) =
⎧⎪⎨⎪⎩
(− cos 𝜃)𝛽 ‖v− .o‖

C𝜂(x)
𝜃 ∈ ( 𝜋

2
, 𝜋]

0 𝜃 ∈
[
0, 𝜋

2

]
,

(7)

where 𝛽 and 𝜂 are constant gains and v and .o are the
velocities of the end effector and obstacle, respectively. For
convex obstacles, the angle 𝜃 between the relative velocity
v− .o and the direction between the end effector's position
x and the obstacle is defined as follows:

cos𝜃 =
⟨∇xC(x), (v − .o)⟩‖∇xC(x)‖ ‖v − .o‖ , (8)

where ∇xC(x) is the gradient of the isopotential C(x).
Therefore, we can obtain the initial value of the repulsive
force as p(x, v) = −∇U(x, v).

Moreover, 𝜆p(x, v), a repulsive force, is an additional
DMP term that is used to achieve obstacle avoidance.
This term needs to be optimized to better avoid obstacles
and improve the overall trajectory tracking performance.
Therefore, we develop and applied an MPC algorithm to
optimize the repulsive force generated by the APF. How-
ever, to evaluate the obstacle avoidance performance in the
MPC prediction horizon, the states of the obstacles must
be obtained. Thus, we revisit the Kalman filter algorithm
to estimate the state of obstacles in the next section.

3.2 Kalman filter for obstacle state
estimation
For dynamic obstacles, we need to estimate the state of
the obstacle in the next few moments, including the posi-
tion and velocity information of the obstacle, to ensure
that robots can respond to the future obstacle position
in a timely manner. We construct the state vector of the
obstacles as

xo =
[

o .o
]
, (9)

where o and .o are the position and velocity of the dynamic
obstacle, respectively. Then, the Kalman filter model of
obstacle dynamic trajectory prediction in discrete time
form can be defined as follows [30]:

xo
k+1 = Axo

k + Bwk,

zk = Hxo
k + 𝜹k,

(10)

where the subscript k + 1 represents the time step k +
1. Equation (10) is the state equation and observation
equation of the Kalman filter. A is the state transition
matrix, which describes the obstacle movement rules. B is
the control matrix, which describes the additional control
of the control vector wk on the movement of the obstacle.
zk represents the observation vector, which describes the
observation value of the obstacle at time k. H and 𝜹k are
the observation matrix and observation noise, respectively.

As a recursive estimation, the Kalman filter can be
divided into two stages: prediction and update. These
stages are shown in Figure 2, where P is the state error
estimation covariance matrix, which describes the trans-
mission of model errors throughout each generation and
is updated during each iteration. Q is the process noise
covariance matrix, which describes the uncertainty intro-
duced by the prediction model. K is the Kalman gain, and
R is the measurement noise matrix, which describes the
uncertainty introduced by the measurement process. In
the prediction phase, the filter estimates the state at the
next moment according to the current state of the obsta-
cle. In the update phase, the filter updates the Kalman
gain, estimated value and error covariance of the esti-
mated value according to observations of the current state
to obtain a more accurate estimate. Through the prediction
and update process shown in Figure 2, the state estimates
of the obstacle at future times are obtained through con-
tinuous iterations.
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6 LI ET AL.

3.3 MPC for obstacle avoidance
As previously mentioned, the repulsive force 𝜆p(x, v) gen-
erated by an APF is usually regarded as an additional
term to accomplish obstacle avoidance. However, 𝜆p(x, v)
is applied as an input u to the MPC method in this section.
The objective of the MPC method is to evaluate the per-
formance and obtain the optimal input that satisfies the
constraints. Collision avoidance is not only translated to
control constraints but also designed as a cost function in
MPC [22].

The DMP transformation system can easily be extended
to higher dimensional space. Therefore, the DMP system
can be reformulated as a state-space equation with the
repulsive force serving as an input [31]. We can introduce
the state vector

𝜼 =
[

x v
]T
. (11)

Given the state vector formulated in Equation (11) and
defining the repulsive term 𝜆p(x, v) as an input u, a non-
linear system that includes the DMP dynamics and the
parameter dynamics can be formulated as follows:

.
𝜼 = g

(
𝜼k,uk

)
=

[ v
𝜏

K(g−x)−Dv+(g−x0)f+u
𝜏

]

=

[
0 I

𝜏

−K
𝜏
−D

𝜏

]
𝜼k +

[
0
I

]
u +

[
0

Kg+(g−x0)f
𝜏

] , (12)

where
[

0
(
Kg +

(
g − x0

)
f
)
∕𝜏

]T is a constant term in the
system. This term is fixed at each moment if the start-
ing and goal positions remain constant. Furthermore, we
do not need to consider the effect of this term because
trajectory learning is accomplished, and the shape of the
trajectory is determined. We adjust only the input u to
achieve obstacle avoidance. In contrast to previous work,
the input u is adjusted based on the repulsive force gener-
ated with the APF rather than exploring an optimal value
in a large domain. For example, if the method is applied in
n-dimensional space, u can be rewritten as

u =

[
𝜆1

⋱
𝜆n

]
p (x, v) , (13)

where 𝜆1, … , 𝜆n are regarded as the scale factors in each
direction. Thus, both the size and the direction of the
repulsive force can be optimized.

Most MPC methods are implemented in discrete time
domain. For the time interval T, Equation (11) can be
discretized as [20]

𝜼k+1 = 𝜼k + Tg
(
𝜼k,uk

) Δ
= gdt (𝜼k,uk

)
. (14)

The purpose of MPC is to compute the optimal con-
trol sequence

[
u∗

k

]H−1
k=0 , where H is the prediction horizon

(prediction time steps). Given the initial state x0 of the
prediction horizon, the optimal control sequence

[
u∗

k

]H−1
k=0

in this horizon can be obtained according to the receding
horizon principle, which can be solved as follows [17]:

min J
( [

𝜼k
]H

k=0 , [uk]H−1
k=0

)
, (15)

subject to
𝜼k+1 = gdt (𝜼k,uk

)
𝜆min ≤ 𝜆n

k ≤ 𝜆max‖xk − ok‖ > 𝜎

∀k ∈ {0, … ,H} ,

(16)

where J
([
𝜼k
]H

k=0 , [uk]H−1
k=0

)
is the cost function in the pre-

diction horizon. We can compute the optimal control
sequence

[
u∗

k

]H−1
k=0 by minimizing the cost J while satisfy-

ing the constraint in Equation (16). The constraint 𝜆min ≤

𝜆n
k ≤ 𝜆max determines the range of the input uk. Essen-

tially, according to Equation (13), only 𝜆1, … , 𝜆n must be
computed during this process. By using the position and
velocity of the dynamic obstacle estimated by the Kalman
filter, p(x, v) can be updated according to the system state.‖xk − ok‖ > 𝜎 ensures that no collisions occur; here,
𝜎 > 0 is a very small constant. To achieve better obsta-
cle avoidance performance, it is necessary to add a penalty
function to the cost function; thus, the cost function can
be constructed as [32]

J = 𝜙
(
�̃�H

)
+

H−1∑
k=0

(
L
(
�̃�k,uk,Δuk

)
+ Pobs

k

)
, (17)

𝜙
(
�̃�H

)
= 1

2
�̃�

T
HPM �̃�H , (18)

L
(
�̃�k,uk,Δuk

)
= 1

2
�̃�

T
k QM �̃�k +

1
2

uT
k RMuk +

1
2
ΔuT

k TMΔuk,

(19)

where �̃�k = xdes
k − xk is the deviation between the actual

position and the desired position at time step k, Δuk =
uk − uk−1 represents the difference between two adjacent
inputs, and PM , QM , RM , and TM are constant positive
definite weighting matrices. The cost function shown in
Equation (17) can be considered a performance index for
tracking a desired trajectory while minimizing the input
effort and avoiding collisions with obstacles. Equation (18)
and the first term in Equation (19) penalize the difference
between the output trajectory and the desired trajectory
along the horizon. The remaining terms in Equation (19)
penalize the control input and the input deviation to
reduce energy consumption and ensure a smooth input.
Pobs

k in Equation (17) is the obstacle avoidance penalty
in the prediction horizon. By constructing the cost func-
tion in this manner, the DMP-KMPC method can converge
to the original motion quickly, despite the influence of
various obstacles.
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LI ET AL. 7

FIGURE 3 The definition of areas around the obstacle [Color
figure can be viewed at wileyonlinelibrary.com]

An additional cost term Pobs
k is used to penalize the dis-

tance between the obstacles and the robot [33]. This term
is usually defined as [32]

Pobs
k =

𝜆obslobs
k‖xk − ok‖ + 𝜀

, (20)

where xk and ok are the positions of the robot and obstacle
at time step k in the prediction horizon. As mentioned in
the previous section, the position ok of the dynamic obsta-
cle is estimated with the Kalman filter method, and 𝜆obs

and 𝜀 are constants, where 𝜀 ensures that the denominator
is not equal to zero. lobs

k considers the range of the APF and
is defined as follows:

𝛿k = dmax − ‖xk − ok‖
lobs
k =

{
0, 𝛿k < 0
1, 𝛿k ≥ 0

. (21)

dmax is the largest distance affected by the potential field
of the dynamic obstacle. However, this simple definition
for the obstacle penalty function cannot reflect the influ-
ence of obstacles on the motion of the robot in different
situations. Therefore, we define different areas related to
the distance between the robot and obstacle, as shown
in Figure 3. Therefore, according to the definition dk =‖xk − ok‖, Equation (20) can be modified as

Pobs
k = 𝜆obs

dk + 𝜀

𝜆obs =
⎧⎪⎨⎪⎩

0, dk > dI

𝜆obs
1 , dD < dk ≤ dI

𝜆obs
2 , dk ≤ dD

. (22)

Here, different areas correspond to distinct values of
𝜆obs. 𝜆obs

1 and 𝜆obs
2 usually need to be set according to the

specific situation to achieve better obstacle avoidance per-

formance. Thus, we can change the values of 𝜆obs
1 and 𝜆obs

2
and adjust the range of the obstacle areas to obtain the
optimal input in the prediction horizon and better obstacle
avoidance performance.

In summary, the DMP-KMPC method is based on an
MPC optimization framework and realizes obstacle avoid-
ance and improves the overall trajectory and tracking per-
formance by optimizing additional DMP obstacle avoid-
ance terms. The repulsive force generated by the APF
is multiplied by an optimization coefficient and used as
the input to the MPC system. The optimization of the
repulsive force actually optimizes the coefficient multi-
plier matrix diag(𝜆1, … , 𝜆n), which not only adjusts the
size of the force but also changes the direction. In the pre-
diction domain, the repulsive force is calculated by using
the obstacle states estimated by the Kalman filter, and a
penalty term related to obstacle avoidance is included in
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8 LI ET AL.

the cost function. By minimizing the defined cost function,
the optimized input, namely, the optimized repulsive term,
can be obtained. The presented method is summarized in
Algorithm 1.

4 SIMULATIONS AND
EXPERIMENTS

To evaluate the proposed obstacle avoidance method, sim-
ulations in which a robot moved in two and three dimen-
sions were carried out in Python. The physical experiments
were verified in Gazebo with a real robot based on the
Kinova MOVO robot experimental platform.

In contrast to other obstacle avoidance methods, the
DMP-KMPC method focuses on improving the obstacle
avoidance ability and the trajectory performance, which
are enhanced by MPC and the Kalman filter. This method

also allows the DMP to return to the original motion
quickly after an obstacle is avoided. Therefore, the sim-
ulations and experiments do not compare the obstacle
avoidance performance in different potential fields, which
has been fully discussed in Zhang et al. [3] and Ginesi
et al. [11]. The potential field employed in this work is
a DMP-APF superquadratic potential field. In the next
sections, the obstacle avoidance ability and trajectory
tracking performance of the DMP-APF and DMP-KMPC
methods under the same conditions are compared.

4.1 Simulations
In this section, a robot performs the desired trajectory in
2D and 3D space while avoiding moving obstacles. Here,
only the collision volume of the obstacle is considered,
while the robot volume is ignored. The moving obstacles
are circles and spheres in 2D and 3D space, respectively.

FIGURE 4 Comparison of obstacle avoidance trajectories in 2D space, where (a) and (c)–(e) are the positions of the obstacles and obstacle
avoidance trajectories at different times and (b) is an enlarged view of the local details shown in (a) [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 5 The distance to the dynamic
obstacle at various time steps [Color figure can
be viewed at wileyonlinelibrary.com]

 19346093, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asjc.2946 by C

as-C
hangchun Institute O

f O
ptics, Fine M

echanics A
nd Physics, W

iley O
nline L

ibrary on [06/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


LI ET AL. 9

FIGURE 6 Comparison of obstacle avoidance trajectories in 3D space, where (a)–(d) are the positions of the obstacles and obstacle
avoidance trajectories at different time steps [Color figure can be viewed at wileyonlinelibrary.com]

The next states (including the positions and velocities)
of the obstacles are estimated by using the Kalman filter
method based on the current observation information. The
original trajectory of the robot is generated with a DMP,
and the repulsive force generated by the APF is added as
the acceleration term to change the trajectory shape and
achieve obstacle avoidance. The repulsive force is opti-
mized using MPC in the DMP-KMPC method. The MPC
cost function is computed and updated according to the
estimated obstacle states and robot states. By minimizing
the cost function, the optimal input (repulsive force) can
be obtained [34].

In the simulation in 2D space, the parameters of the
DMP system are set as follows: K = 1050I, D = 2

√
1050I

and 𝜏 = 1; here, I is the 2-D identity matrix. The start
and goal positions of the desired trajectory are

[
0 0.3

]Tm
and

[
1 1.3

]Tm, respectively. The robot moves in a straight
line from the starting position to the goal position. The
dynamic obstacle is set as a circle with a radius of r =
0.05m, and the trajectory of the center of the circle is a line
that starts at

[
0.3 0

]Tm. The state of the moving obstacle
is estimated by using the Kalman filter method. For the

FIGURE 7 The distance to the dynamic obstacle at various time
steps in 3D space [Color figure can be viewed at
wileyonlinelibrary.com]

MPC part, the prediction horizon is set to H = 5, and the
step size in the state equation, namely, Equation (14), is set
to T = 0.01s (this step size is applicable to the whole simu-
lation whether it is 2D or 3D). In the cost function, we set
dI = 0.3m and dD = 0.1m. The range of the scale factors for
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10 LI ET AL.

the repulsive force in each direction is set as 𝜆1, … , 𝜆n ∈
[−1, 1]. To compare the performance of the DMP-APF and
DMP-KMPC methods, the strength of the potential field
in the DMP-APF method is set as 𝜆 = 1. Figure 4 shows
a comparison of the DMP-KMPC and DMP-APF meth-
ods in 2D space. The green circle in Figure 4 represents
the obstacle, and the red point represents the center of
the circle. We show some of dynamic obstacle avoidance
moments in Figure 4a,c–e. Figure 4b shows an enlarged
view of the partial details shown in Figure 4a, demon-
strating a situation in which the DMP-APF method fails
to avoid obstacles, while the DMP-KMPC method suc-
cessfully avoids collisions. The DMP-KMPC method can
avoid obstacles better than the DMP-APF method. To fur-
ther verify this result, Figure 5 compares the distance to
the obstacle between the DMP-APF method with differ-
ent potential field strengths and the DMP-KMPC method.
In Figure 5, the DMP-1APF, DMP-2APF, and DMP-3APF
curves correspond to potential field strengths of 𝜆 = 1,
𝜆 = 2, and 𝜆 = 3, respectively. The robot clearly collides
with the obstacle when the DMP-APF method with the
potential field strength settings shown in Figure 5 is used.
Although the obstacle avoidance ability of the DMP-APF
method can be improved by increasing the potential field

strength, this increased potential field strength is disad-
vantageous for tracking the desired trajectory. By using
the proposed method, the repulsive force can be opti-
mized by considering the possibility of collisions in the
next few steps. Additionally, with the DMP-APF method,
when obstacles are gradually approaching, the system pro-
duces sharp mutations to avoid collisions, as shown by the
blue line in Figure 4d. This situation causes the generated
trajectory to deviate greatly from the original trajectory.
However, under the action of the defined obstacle avoid-
ance cost function, the DMP-KMPC method can avoid
such a situation, and the red line is noticeably smoother
than the blue line. Therefore, the proposed method gener-
ated a smoother trajectory with less tracking errors while
avoiding obstacles.

In the 3D space simulation, the DMP has the same
parameter settings as in the 2D space simulation, with
I expanded to a three-dimensional identification matrix.
The trajectory starts at

[
0.9 0.15 0.86

]
m and ends at

the goal position
[

0.82 0.8 0.76
]

m. The demonstration
trajectory is an irregular trajectory (the cyan curve in
Figure 6). The moving obstacle is a sphere with a radius of
0.03m. The center of the obstacle starts at

[
1 1 0

]
m and

moves at a certain speed, as shown by the green ball in

FIGURE 8 The deviation between the desired trajectory and the actual trajectory generated by the two methods in three directions [Color
figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 The execution trajectory recorded
in RViz and the obstacle avoidance results in
Gazebo with the DMP-APF method [Color
figure can be viewed at wileyonlinelibrary.com]
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LI ET AL. 11

Figure 6. The same parameters are set in the MPC part,
including H, T, dI , and dD. We set [𝜆min, 𝜆max] = [−3, 3]
in the DMP-KMPC method and set the strength of the
potential as 𝜆 = 1, 𝜆 = 2 and 𝜆 = 3 in the DMP-APF
method. As a result, it is guaranteed that the force pro-
duced by the DMP-KMPC method is not less than that
produced by the DMP-APF method at the same position.
Figure 6 shows the moments when the two methods avoid
dynamic obstacles in 3D space, demonstrating a situa-
tion in which the DMP-KMPC and DMP-APF methods
both successfully avoid obstacles. The distance between
the robot and the moving obstacle is shown in Figure 7,
and the minimum distance of all the trajectories is greater
than 0. Although both methods avoid obstacles, the gen-
erated trajectories are completely different. Furthermore,
the proposed method has better tracking performance and
ensures that the DMP converges back to the original trajec-
tory quickly. Figure 8 shows the deviation of the trajectory
generated by the dynamic obstacle avoidance methods and
the original DMP trajectory along the x, 𝑦, and z axes.
The DMP-KMPC method has smaller trajectory deviations
and a smoother trajectory. Moreover, by comparing the
deviation curve, it can be seen that the two methods dif-
fer in the deviation direction, as shown in Figures 6d
and 8a,b. Therefore, the proposed MPC-based method not
only adjusts the obstacle avoidance offset but also changes
the obstacle avoidance direction. By adjusting the direc-
tion of the repulsive force, more favorable motions can be
achieved without reducing the trajectory tracking perfor-
mance.

Overall, when compared with the simulation results
of the DMP-APF method, the proposed method has a
stronger obstacle avoidance ability and a better trajectory
tracking performance in both 2D and 3D space. Our com-
parison considers two situations: failure and success in
avoiding dynamic obstacles. As shown in Figures 4 and 5,

when the DMP-APF method fails to avoid dynamic obsta-
cles, the DMP-KMPC method successfully avoids dynamic
obstacles. When both methods avoid obstacles, the pro-
posed method is smoother and deviates less from the orig-
inal trajectory, as shown in Figures 6 to 8. In addition, the
proposed DMP-KMPC method optimizes the magnitude
and direction of the repulsive force. Moreover, the robot
can explore the most advantageous obstacle avoidance
action by choosing the optimal input sequences among
those in the prediction horizon.

4.2 Experiments
In this section, we use physical experiments to verify
that the proposed method has a stronger obstacle avoid-
ance ability and a better tracking performance than the
DMP-APF method. The settings of the experiments are
similar to those of the simulations. However, in contrast to
the simulations, if a collision occurs between an obstacle
and a real robot, the robot may be damaged. Our collision
experiments are carried out in Gazebo, and the obsta-
cle used in these experiments is a virtual sphere instead
of a real sphere. Furthermore, since the DMP is used
only to learn the trajectory of the end-effector of the real
robot in our work, this section conducts experiments with
end-effector collisions only. The applied experimental plat-
form is a Kinova MOVO robot, which is a dual-arm mobile
manipulator. The arms of this robot include two 7-DOF
manipulators.

In Gazebo and the real world, one arm of the Kinova
MOVO robot is required to track the same task path as
the 3D simulation while avoiding dynamic obstacles. The
obstacle is a sphere with a radius of r = 0.03m in
both Gazebo and the real experiment, and the obstacle
starts to move along a straight line beginning at position[

1 −1 0
]Tm. The states of the dynamic obstacle are set

to default values for easy observation and collection, and

FIGURE 10 The execution trajectory recorded
in RViz and the obstacle avoidance results in
Gazebo with the DMP-KMPC method [Color
figure can be viewed at wileyonlinelibrary.com]
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12 LI ET AL.

the effects of sensors that collect visual information are not
discussed in this work. In contrast to the simulations, the
volume of the robot's end-effector and the volume of the
obstacle must be considered in the physical experiment.
Therefore, a situation in which a collision does not occur
in the simulation might include a collision in the physi-
cal experiment shown in Figure 9b. Because there is no
gravity setting for the obstacle in Gazebo and the obsta-
cle has a constant velocity, the obstacle continues to move
in the same direction after a collision. The actual execu-
tion trajectory generated with the DMP-APF method can
be found in RViz, as shown in Figure 9a, and the potential
field strength of the DMP-APF method is set as 𝜆 = 3. In
the DMP-APF method, although the robot's end-effector is
equivalent to a sphere with a radius of 0.02m and the influ-
ence range of the potential field is enlarged by 0.02m, a
collision still occurs in the Gazobo experiments, as shown
in Figure 9b. As shown by the results in Figure 10, by set-

ting [𝜆min, 𝜆max] = [−3, 3] in the DMP-KMPC method, the
obstacle can be avoided in Gazebo, as shown in Figure 10b,
and the actual execution trajectory is shown in Figure 10a.
Therefore, the proposed method is further verified by the
Gazebo results, demonstrating that the proposed method
has a stronger ability to avoid obstacles than previous
methods.

For situations in which both methods can avoid obsta-
cles, we focus on comparing the tracking performance.
Here, the Kinova MOVO robot performs the same task
path as before in the real world with the DMP-APF and
DMP-KMPC obstacle avoidance methods. The tracking
performance of the DMP-KMPC method is compared with
that of DMP-APF methods with different potential field
strength settings in the simulation. The strength of the
potential field in the two methods is set to the same
level to compare the tracking performance in the phys-
ical experiment. For a case in which both methods can

FIGURE 11 The execution trajectory of the physical robot with the DMP-KMPC method [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 12 The execution trajectory of the physical robot with the DMP-APF method [Color figure can be viewed at wileyonlinelibrary.com]
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LI ET AL. 13

FIGURE 13 A comparison of the trajectories generated by the
DMP-KMPC and DMP-APF methods in physical experiments
[Color figure can be viewed at wileyonlinelibrary.com]

avoid obstacles, the actual execution trajectories of the
robot generated by the DMP-KMPC and DMP-APF meth-
ods are shown in Figures 11 and 12. The red curve has
a smaller peak than the blue curve in Figure 13. In the
prediction horizon, the proposed method achieves bet-
ter obstacle avoidance action planning, in contrast to the
DMP-APF method, which adjusts the trajectory accord-
ing to the acceleration generated by the fixed potential
strength. In this case, the robot can optimize the obstacle
avoidance action to achieve a better tracking performance.

The above results prove that the DMP-KMPC method
has the same obstacle avoidance effect and advantages
in real experiments as in the simulations. Regardless of
whether the potential field strength is set to the same or dif-
ferent levels, the proposed method exhibits better obstacle
avoidance and improved trajectory tracking performance.
However, only end-effector collisions were considered in
this section. For a DMP, it is easy to extend the training
trajectory from the end effector to the joints of the robot.
Similarly, the proposed method can be extended to achieve
joint obstacle avoidance. Some of the experimental videos
can be seen online (at https://youtu.be/bBdTuT5Mams).

5 CONCLUSIONS

This paper proposes an obstacle avoidance method for
robot manipulators that consists of a DMP, a Kalman filter,
and an MPC component. In this work, the DMP acts as a
framework for generating motion, the Kalman filter esti-
mates the state of the obstacle and constructs the cost func-
tion, and the MPC component optimizes the additional
DMP term to achieve better obstacle avoidance and tra-
jectory tracking performance. By minimizing the defined

cost function, the magnitude and direction of the repul-
sive force generated by the APF can both be optimized.
As a result, the robot can select better actions, achieving
obstacle avoidance and returning to the primitive motion
after overcoming obstacles, resulting in a reduced track-
ing error. In conclusion, the use of an obstacle avoidance
prediction approach combined with the Kalman filtering
method and the DMP framework ensures a better obsta-
cle avoidance effect in the prediction horizon, improving
the overall obstacle avoidance performance throughout
the whole movement process. The simulation and exper-
imental results show the effectiveness, smoothness, and
superiority of the proposed method.
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