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Abstract: The methane dehydro-aromatization reaction (MDA) is a promising methane valorization
process due to the conversion of methane to value-added aromatics (benzene, toluene and naphtha-
lene). However, one of the major disadvantages of utilizing zeolite in MDA is that the catalyst is
rapidly inactivated due to coke formation, which eventually causes the activity and aromatic selectiv-
ity to decrease. Consequently, the process is not conducive to large-scale industrial applications. The
reasonable control of Mo site distribution on the zeolite surface is the key factor for partially inhibiting
the coking of the catalyst and improving stability. Here, MoO3 nanobelts can be used for alternative
Mo precursors to prepare MDA catalysts. Catalysts modified with MoO3 nanobelts present higher
activity (13.4%) and benzene yield (9.2%) than those catalysts loaded with commercial MoO3.

Keywords: methane dehydro-aromatization; MoO3 nanobelts; MCM-49

1. Introduction

Natural gas is a promising alternative to oil as an industrial carbon source. Methane
is a clean and environmentally friendly fossil fuel because it mainly emits CO2 and water
vapor after burning [1]. In addition, natural gas is usually transported by pipelines or in the
form of liquefied natural gas. However, the construction of pipelines is extremely expensive
and there is a risk of leakage. Consequently, there is a need to explore an efficient method
for methane conversion into value-added chemicals from the perspective of methane
utilization and environmental friendliness. MDA is one of the most attractive reactions,
because the products are high-value petrochemicals (benzene, toluene and xylene) that can
be applied to produce industrial raw materials [2].

Since Wang et al. reported the pioneering work that Mo/HZSM-5 catalyst can ef-
fectively enhance the catalytic performance, particularly the stability in MDA for the
commercial viability of the process [3], there has been a great deal of research indicating
that HZSM-5 zeolite is an excellent catalyst to provide a shape-selective condition for
the conversion of methane to benzene. However, MDA reaction is a highly endothermic
process: CH4 → C6H6 + H2, ∆rHm = 532 KJ·mol−1. Strong heat of adsorption means
that higher benzene yields can be obtained at higher temperatures. The temperatures in
the 300–1100 ◦C range are thermodynamically more inclined to produce graphite carbon
(coke) [4,5]. Therefore, the efficient MDA catalyst should have the following conditions [6]:
(i) the catalysts effectively activate the stable C-H bond in the CH4 molecule; (ii) the pre-
pared materials selectively produce aromatics and minimize carbon deposition; and (iii)
the catalysts have good stability at high temperature.
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It is generally believed that the dispersion of metal Mo species in zeolite plays an
important role in catalyst stability [7]. Many strategies have revealed improvements, in-
cluding the addition of accelerators [2,8,9], modulation of the pH value of the impregnation
solution [10], and modification of the zeolite surface by desilication/dealumination or
silicification [11] to enhance the dispersity of Mo species. Furthermore, many alternative
zeolitic structures have been developed and investigated with the aim of reducing carbon
deposition at the active site in methane non-oxidative aromatization. Various zeolite carri-
ers such as ZSM-5 [12], ITQ-13 [13], MCM-22 [14], MCM-49 [15], IM-5 [16] and TNU-9 [17]
zeolites have been tested. The results show that HZSM-5 and MCM series zeolite remain
effective carriers for promoting MDA activity. HMCM-49 exhibits higher stability and
benzene selectivity than HZSM-5; HMCM-49 has a unique pore structure design with
two independent pore systems: a two-dimensional 10-membered ring sinusoidal pore
system (4.1 × 5.9 Å) and a larger three-dimensional 12-membered ring super cage system
(7.1 × 7.1 × 9.1 Å). The two systems are interconnected by a 10-membered ring channel
(4.1 × 5.4 Å). The type of pore structure and the existence of super cages may be beneficial
for the high carbon accumulation capacity in HMCM-49 zeolite [18] and maintaining the
selectivity to aromatics [19].

Nanostructured MoO3 materials have attracted extensive attention in photoelectric
materials [20], heterogeneous catalysis [21,22], biochemical sensing [23], photothermal
therapy [24], and other aspects because of its unique physical and chemical properties.
The Ce-doped nano-MoO3 modification of ZSM-5 catalyst shows excellent SCR perfor-
mance [25], the ordered mesoporous α-MoO3 nanocrystalline applied to thin film pseudoca-
pacitors exhibits excellent capacitive charge storage performance [26]. Therefore, this study
explores the use of MoO3 nanobelts as the precursor for Mo-based HMCM-49 to induce
better dispersion of the active metal MoOx in the pore channel of zeolite, thus effectively
improving MDA catalytic performance.

2. Materials and Methods
2.1. Synthesis of MoO3 Nanobelts

First, 1 g (NH4)6Mo7O24·4H2O and 0.08 g citric acid were added to a 100 mL beaker,
and 10 mL of deionized water was introduced and stirred thoroughly to fully dissolve the
solid. Then, the pH value was regulated to 1 with 3 mol/L HCl solution; the mixture was
ultrasonicated for 30 min and then transferred to a Teflon-lined stainless autoclave under
static crystallization at 180 ◦C for 2 d. The reaction product was cooled to room temperature,
vacuum pumped and filtered, and washed with anhydrous ethanol and deionized water
several times. The obtained products were dried for 30 min in the drying oven at 100 ◦C,
and blue powder products were obtained.

2.2. Preparation of Na-MCM-49 Zeolite

MCM-49 zeolite was fabricated by hydrothermal synthesis by applying hexamethylene-
diamine (HMI) as a hard template and silica sol as a silicon source. Firstly, a mixture of
HMI, water, aluminum nitrate, sodium hydroxide and silica sol in a certain proportion was
stirred for 12 h. The mole ratio of gel composition is SiO2:0.04Al2O3: 0.12NaOH:0.35HMI:
25H2O, and the mixture was transferred to a Teflon-lined stainless autoclave under static
crystallization at 170 ◦C for 3 d. The resulting gel was vacuum pumped and filtered,
washed with deionized water to neutralize, and dried at 100 ◦C for 30 min. Then, 1 g
MCM-49 precursor was dissolved in 50 mL 30 wt% H2O2 solution in a round-bottomed
flask at 90 ◦C for 12 h to remove the templating agent and then vacuum extraction and
drying were performed. The above operations were repeated twice, and the product was
calcined at 550 ◦C for 5 h to obtain Na-MCM-49 zeolite.

2.3. The Fabrication of HMCM-49 Zeolite

The Na-MCM-49 zeolite and ammonium nitrate (NH4NO3) were weighed at a mass
ratio of 1:16 and then placed in a 250 mL round-bottomed flask, 100 mL of deionized water
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was introduced. The mixture was stirred at 90 ◦C for 10 h, cooled to room temperature
naturally and washed with deionized water several times, and then dried. NH4-MCM-49
zeolite can be obtained by repeating the above operations twice. The NH4-MCM-49 zeolite
was calcined in a muffle furnace at 550 ◦C for 5 h to obtain HMCM-49 zeolite [1].

2.4. The Preparation of Mo-Based HMCM-49 Zeolite

HMCM-49 zeolite and commercial MoO3 or MoO3 nanobelt powder were mechan-
ically mixed according to the mass ratio of 1:0.06, and then calcined in a muffle furnace
at 550 ◦C for 5 h to obtain Mo-based MCM-49, which was respectively recorded as C-Mo-
MCM-49 and N-Mo-MCM-49.

2.5. Catalyst Characterization

The XRD characterization of all samples was performed on a Smart Lab equipped
with Cu Ka radiation (λ = 0.1541 nm; scan speed of 6 min−1; 2θ = 5–40◦). The morphology
and particle size of each sample were tested by FESEM XL-30 field emission scanning
electron microscope. Fourier transform infrared spectroscopy (FT-IR) was performed
with KBr as a support plate on a Shimadzu Lab Tatal spectrophotometer in the range of
400–4000 cm−1. The specific surface and pore size distribution of the samples were recorded
by N2 adsorption–desorption isotherms at −196 ◦C on ASAP-2020 equipment. NH3-TPD
was used to test the acidity of the catalyst on an Auto Chem 2920. Thermogravimetric
analysis was performed on Shimadzu DTG-60, the sample was heated to 900 ◦C at a rate
of 5 ◦C/min. Transmission electron microscopy (TEM) was performed by using a JEM
2100Plus microscopes, the catalyst was dispersed in ethanol using an ultrasonicator and
dropped on carbon. H2-TPR was performed on an AutoChem 2720 instrument. The
sample was treated at 350 ◦C for 0.5 h in a flow of Ar and cooled down. In the end, the
sample was heated. X-ray photoelectron spectra (XPS) of the catalyst was tested with
an ESCALAB250XI ray photoelectron spectrometer. Raman analysis of the catalyst was
conducted to identify the carbonaceous deposit species of the catalyst.

2.6. Catalytic Tests

The catalytic activity of methane non-aromatization was measured in a fixed-bed
reactor equipped with a quartz tube with an inner diameter of 1 cm, in which 0.5 g catalyst
(40–60 mesh) was injected. The mass flow meter was used to control the introduction
of raw gas (CH4 (92.5%) and N2 (7.5%)) mixture into the reactor at an airflow rate of
1500 mL g−1 h−1 using a mass flow controller, and the reaction temperature was controlled
at 700 ◦C. Methane conversion and product yield during the reaction were analyzed
using a Tianmei SCION gas chromatograph equipped with a 6 m × 3 mm HayeSep D
80/100 stainless steel column connected to a thermal conductivity detector (TCD) for the
analysis of H2, N2, CO, CH4, CO2, C2H4 and C2H6; the other was a Shimazu CBP1-
M50-025 non-polar capillary quartz column to detect benzene, toluene and naphthalene
using a hydrogen flame detector. The system used for chromatographic analysis was Lab
Solution, and the quantitative basis of methane conversion and hydrocarbon selectivity
were calculated based on carbon mass balance using helium as carrier gas and N2 as the
internal standard [27].

The methane conversion and benzene, toluene, naphthalene, and coke selectivity were
calculated according to following mathematical expressions:

methane conversion (%) =
FinXin

methane − FoutXout
methane

FinXin
methane

Scarbon
product (%) =

FoutXout
productNcarbon

product

FinXin
methane − FoutXout

methane

Scoke (%) = 1−∑ Scarbon
product
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F, X and Ncarbon represent total gas flow rate, mole fraction and carbon number in a
molecule, respectively.

3. Results and Discussion
3.1. Structure and Morphology of the Synthesized Catalysts

XRD reveals the composition and crystal phase structure of the MoO3 nanobelts
(Figure 1a). As displayed in Figure 1a, the diffraction peaks of commercial MoO3 located
at 2θ = 12.8◦, 23.3◦, 25.7◦, 27.2◦, 38.9◦ and 67.7◦ correspond to the (020), (110), (040), (021),
(060) and (010) crystal planes, respectively, which is identical to the orthorhombic MoO3
(JCPDS card no. 01-0706). All of the peaks over the MoO3 nanobelts can be indexed to the
hexagonal MoO3 ( JCPDS card no. 01-0569) without any impurities, demonstrating that the
MoO3 nanobelts were successful fabricated [28]. Figure 1b exhibits the XRD patterns of
HMCM-49 and HMCM-49 doped with different MoO3. The diffraction peaks of HMCM-49
at 2θ = 7.2◦, 8.0◦, 10◦, 14.3◦, 22.7◦, and 26.0◦ belong to the (100), (101), (102), (200), (302)
and (310) crystal planes, respectively [29]. It can be seen that both catalysts modified with
different MoO3 present the characteristic diffraction peaks of HMCM-49. Compared with
the original HMCM-49, the peak strength of different MoO3-modified HMCM-49 decreases,
indicating that MoO3 has good diffusion in the channel of HMCM-49, resulting in reduced
crystallinity. The characteristic peak of the Mo and MoOx species does not appear after
loading with MoO3, further indicating that the MoO3 nanoparticles are well distributed
on the surface and channels of HMCM-49. Compared with the C-Mo-HMCM-49 catalyst,
the crystallinity of the N-Mo-HMCM-49 samples is lower, especially in the (100) and (310)
crystal planes, demonstrating that more Mo species migrate to the channels or surface of
HMCM-49 and bind to the acid center in the material, thus reducing the crystallization of
zeolite [30].
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Figure 1. XRD patterns of (a) commercial MoO3 and MoO3 nanobelts, and (b) HMCM-49, C-Mo-
HMCM-49, and N-Mo-HMCM-49.

Figure 2 displays the SEM images of commercial MoO3 and MoO3 nanobelts. It can be
observed that the crystal width of commercial MoO3 is about 0.5~0.7 µm and its length is
about 0.7~2.1 µm. MoO3 nanobelts have a relatively uniform size, smooth surface, and good
dispersion. The width of MoO3 nanobelts is 15–35 nm and their length is about 120–720 nm.
Figure 3 presents the SEM images of the catalyst before and after modification. It can
be seen that HMCM-49 is a flake crystal with a regular shape [31]; its length is less than
500 nm and its thickness is less than 50 nm. After the modification of the MoO3 nanobelts,
the morphology of MCM-49 does not change significantly. However, the crystal particles
become smaller on the surface of HMCM-49 after modification with different MoO3. This
can be attributed to the complete grinding of the HMCM-49 crystal and MoO3 nanobelts,
or the fact that the large surface area of nano-MoO3 bonds easily with the acid center in the
zeolite, thus destroying the flake crystal [32]. The above results further indicate that MoO3
nanobelts can easily sublimate into the pores of the material after mechanical mixing of
MoO3 nanobelts and HMCM-49 under high-temperature calcination [33]. Therefore, it is
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speculated that the MoO3 nanobelts can achieve good distribution in the HMCM-49 zeolite
without damaging the overall morphology of the crystal.
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Figure 3. SEM images of (a) HMCM-49, (b) C-Mo-HMCM-49, and (c) N-Mo-HMCM-49.

The framework structure of the HMCM-49 zeolite was characterized on the basis of
infrared spectra. The results are shown in Figure 4. The wide absorption peak of HMCM-
49 at 3439.07 cm−1 belongs to the Si-OH stretching vibration, and the vibration region
lower than 1230.58 cm−1 is attributed to the skeleton fundamental frequency vibration
region. The absorption peaks at 2025.30, 1894.38 and 1635.63 cm−1 are assigned to the
co-frequency and pan-frequency bands of the skeleton vibration peak. The bands observed
around 1230.58 cm−1 and 1091.70 cm−1 correspond to Si-O and Al-O asymmetric stretching
vibrations, respectively. The absorption peak at 798.52 cm−1 is due to Si-O and Al-O
symmetric stretching vibration peaks. The absorption peaks at 675.02 and 549.71 cm−1 are
caused by the double six-ring (D6R) vibration in the HMCM-49 zeolite, and are typical
characteristic absorption peaks of microporous zeolite [34]. The peak at 443.62 cm−1 is
caused by T−O bending vibration in TO4 (T is Si or Al), and the above-infrared absorption
peak indicates that the synthesized material is HMCM-49 zeolite [35]. Furthermore, it is
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revealed that when Mo species are loaded onto HMCM-49 zeolite, the position of the sample
characteristic absorption peak does not change, and the absorption intensity decreases,
indicating that the Mo species have been dispersed into the zeolite channel, which may
also damage the material structure to a certain extent.
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The structures of HMCM-49 and HMCM-49 modified with different MoO3 were deter-
mined by N2 adsorption–desorption isotherms, as shown in Figure 5. It can be observed
that all of the samples show typical I-type curves with microporous material characteristics
in the region of low specific pressure (P/P0 < 0.01), and the adsorption capacity continues
to increase in the region with high specific pressure (P/P0 = 0.86~1.0), and a small H1-type
hysteresis ring appears [18]. This may be caused by the adsorption of N2 on the intercrys-
talline pore and capillary condensation on the crystal surface, indicating that the material
contains a certain amount of mesopores. The surface area and pore structure parameters of
the material are shown in Table 1. The pore size distributions show that the pore size of
the zeolite HMCM-49 after MoO3 nanobelt modification increases. In addition, the specific
surface area of the material decreases significantly after Mo modification, and the specific
surface area of HMCM-49 modified by MoO3 nanobelts decreases to 80.6% compared to
that of the parent zeolite, indicating that Mo species migrate into the pores of the zeolite
and bond with the acid center to promote the dissolution of part of the skeleton of the
zeolite, thus increasing the pore size. Meanwhile, MoOx species gather on the surface of
the catalyst and block the pore of the zeolite, reducing the specific surface area [36]. The
above analysis results indicate that MoO3 nanobelts are easy to sublimate and migrate into
the pores of HMCM-49 zeolite during the calcination process, resulting in a significant
decrease in catalyst surface area [37].
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Table 1. The textural properties of HMCM-49, C-Mo-HMCM-49, and N-Mo-HMCM-49.

Samples SBET
a Smicropore

b

(m2/g)
Sexternal

b

(m2/g)
Vmicropore

b

(cm3/g)
Vtotal

c (cm3/g) Pore Size (nm) d

HMCM-49 382 312 70 0.14 0.26 8.2
C-Mo-HMCM-49 327 238 93 0.11 0.54 16.8
N-Mo-HMCM-49 308 233 70 0.11 0.49 16.6

a Calculated using the BET method. b Calculated by the t-plot method. c Calculated from the adsorption capacity
at P/P0 of 0.98. d BJH Desorption average pore width (4V/A).

3.2. The Surface Acid Studies

Acid sites play a vital role in the preparation of excellent MDA catalysts, not only
affecting the adsorption of metal sites, but also optimizing the reaction path of aromatic
hydrocarbon generation [38]. The surface acidity of the synthesized catalyst was charac-
terized by NH3-TPD (Figure 6 and Table 2). There is a new peak after fitting the curve for
HMCM-49 and Mo-doped HMCM-49 catalyst. Three NH3 desorption peaks are respectively
recorded as peak H, peak M and peak L [39]. The center of peak L, located at about 187 ◦C,
is assigned to the physical adsorption of NH3 species on Lewis acid and/or NH3 stays on
non-exchangeable cations, The center of peak M at about 278 ◦C is attributed to ammonia
desorption on the exchangeable protonic acidic sites, and the peak H centered at 417 ◦C is
due to NH3 bound to strong Brønsted acid centers [40]. As shown in Figure 6, peak H of
the N-Mo-HMCM-49 catalyst shifts at lower temperatures, while peak M increases when
HMCM-49 is loaded with different MoO3, and peak H of the N-Mo-HMCM-49 catalyst
is clearly lower than that of the C-Mo-HMCM-49 catalyst. Combined with the results
presented in Table 2, this indicates that Brønsted acid strength decreases significantly. In
addition, the N-Mo-HMCM-49 catalyst contributes to the outstanding MDA to a certain
extent due to the generation of Mo-O-Al by the interaction of small MoO3 with Brønsted
acid [41].
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H2-TPR profiles of the C-Mo-HMCM-49 and N-Mo-HMCM-49 catalysts were deter-
mined in order to distinguish the different Mo species in the samples and their degree
of reducibility (Figure 7). The different reduction features of MoOx species in Mo-based
HZSM-5 zeolite have been reported, and the reduction located at 370–580 ◦C can be as-
cribed to the reduction of MoO3 to MoO2, whereas the reduction of MoO2 to Mo occurs
at higher temperatures—above 600 ◦C [42]. It can be observed that when moving from
N-Mo-HMCM-49 to C-Mo-HMCM-49, the reducibility of initial MoO3 to MoO2 in N-Mo-
HMCM-49 catalyst increases, which can be considered to be due to the change in the
anchoring sites of MoO3 species inside the HMCM-49 channels with respect to different
kinds of MoO3 loading. Lower reducibility over N-Mo-HMCM-49 can be observed, which
is due to the strong interaction of MoOx species with HMCM-49 [2]. Therefore, the vari-
ation in the reducibility of MoOx species, as shown in the H2-TPR analysis, verifies that
the MoO3 species change in the HMCM-49 zeolite significantly influences the binding of
MoOx species.
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The Mo 3d region XPS spectra of the C-Mo-HMCM-49 and N-Mo-HMCM-49 catalysts
before and after reaction under CH4 flow at 700 ◦C for 30 and 430 min are shown in Figure 8.
Molybdenum carbide (Mo2C) dispersed in zeolite channels is the active site of C-H bond
activation, and is formed during the induction stage of the MDA reaction process [5,43].
It can be observed that the Mo 3d binding energies at 236.6 and 233.4 eV can respectively
be assigned to the Mo6+(3d3/2) and Mo6+(3d5/2) molybdenum oxide species for fresh
catalysts, whereas the binding energy at 228.9 eV can be attributed to the molybdenum
carbide species (Mo2C) formed for the catalysts after the reaction under CH4 flow at 700 ◦C
for 30 and 430 min. This can be clarified by the dispersion of Mo oxidation state, which
can be observed to be 24.8% (Mo2C), 39.8% (Mo6+, 3d5/2) and 35.4% (Mo6+, 3d3/2) for
N-Mo-HMCM-49 catalyst after the reaction under CH4 flow at 700 ◦C for 30 min, and
18.1% (Mo2C), 54.4% (Mo6+, 3d5/2) and 27.5% (Mo6+, 3d3/2) for N-Mo-HMCM-49 catalyst
after the reaction under CH4 flow at 700 ◦C for 430 min, whereas for C-Mo-HMCM-49, the
distribution observed is 9.5%/8.7% (Mo2C), 57.4%/53.3% (Mo6+, 3d5/2) and 33.1%/33.1%
(Mo6+, 3d3/2). It is clear that the proportion of observed Mo2C species is significantly
higher for the N-Mo-HMCM-49 catalyst, which indicates a higher degree of carburization.
Furthermore, the sample of N-Mo-HMCM-49 clearly exhibits good dispersion of carbine
clusters (MoCx) after the reaction under CH4 flow at 700 ◦C for 430 min, as shown in
Figure 9. Gao et al. demonstrated different molybdenum carbide (MoxCy) structures and
their anchoring inside ZSM-5 channels on the basis of theoretical studies [44]. The results
of the XPS and TEM analysis clearly confirm that the higher degree of carburization for
N-Mo-HMCM-49 can be ascribed to the higher concentration of MoOx species anchored
inside the channel of HMCM-49.



Molecules 2022, 27, 4404 9 of 15Molecules 2022, 27, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 8. Mo 3d region XPS spectra of the C-Mo-HMCM-49 and N-Mo-HMCM-49 catalysts 
before and after reaction under CH4 flow at 700 °C for 30 and 430 min. 

 
Figure 9. TEM image : (a) the catalyst N-Mo-HMCM-49 before reaction and (b) the catalyst N-Mo-
HMCM-49 after the reaction under CH4 flow at 700 °C for 430 min. 

C 1s region XPS spectra of the C-Mo-HMCM-49 and N-Mo-HMCM-49 catalysts after 
reaction under CH4 flow at 700 °C for 430 min confirmed that the C-Mo-HMCM-49 cata-
lyst has greater carbon deposition. As shown in Figure 10, the C-C bond due to hard coke 
formed by polyaromatic or pre-graphitic species at strong Brønsted acid sites, while the 
C-O-C and O-C=O bonds are ascribed to the graphitic coke formed at the oxycarbide ac-
tive sites (MoOxCy) [45]. These results demonstrate that the higher Mo distribution in the 
case of the N-Mo-HMCM-49 sample, which also inhibits the formation of hard coke, 
maybe conducive to a different catalyst deactivation mechanism. 

 
Figure 10. C 1s region XPS spectra of the C-Mo-HMCM-49 and N-Mo-HMCM-49 catalysts after re-
action under CH4 flow at 700 °C for 430 min. 

Figure 8. Mo 3d region XPS spectra of the C-Mo-HMCM-49 and N-Mo-HMCM-49 catalysts before
and after reaction under CH4 flow at 700 ◦C for 30 and 430 min.

Molecules 2022, 27, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 8. Mo 3d region XPS spectra of the C-Mo-HMCM-49 and N-Mo-HMCM-49 catalysts 
before and after reaction under CH4 flow at 700 °C for 30 and 430 min. 

 
Figure 9. TEM image : (a) the catalyst N-Mo-HMCM-49 before reaction and (b) the catalyst N-Mo-
HMCM-49 after the reaction under CH4 flow at 700 °C for 430 min. 

C 1s region XPS spectra of the C-Mo-HMCM-49 and N-Mo-HMCM-49 catalysts after 
reaction under CH4 flow at 700 °C for 430 min confirmed that the C-Mo-HMCM-49 cata-
lyst has greater carbon deposition. As shown in Figure 10, the C-C bond due to hard coke 
formed by polyaromatic or pre-graphitic species at strong Brønsted acid sites, while the 
C-O-C and O-C=O bonds are ascribed to the graphitic coke formed at the oxycarbide ac-
tive sites (MoOxCy) [45]. These results demonstrate that the higher Mo distribution in the 
case of the N-Mo-HMCM-49 sample, which also inhibits the formation of hard coke, 
maybe conducive to a different catalyst deactivation mechanism. 

 
Figure 10. C 1s region XPS spectra of the C-Mo-HMCM-49 and N-Mo-HMCM-49 catalysts after re-
action under CH4 flow at 700 °C for 430 min. 

Figure 9. TEM image: (a) the catalyst N-Mo-HMCM-49 before reaction and (b) the catalyst N-Mo-
HMCM-49 after the reaction under CH4 flow at 700 ◦C for 430 min.

C 1s region XPS spectra of the C-Mo-HMCM-49 and N-Mo-HMCM-49 catalysts after
reaction under CH4 flow at 700 ◦C for 430 min confirmed that the C-Mo-HMCM-49 catalyst
has greater carbon deposition. As shown in Figure 10, the C-C bond due to hard coke
formed by polyaromatic or pre-graphitic species at strong Brønsted acid sites, while the
C-O-C and O-C=O bonds are ascribed to the graphitic coke formed at the oxycarbide active
sites (MoOxCy) [45]. These results demonstrate that the higher Mo distribution in the case
of the N-Mo-HMCM-49 sample, which also inhibits the formation of hard coke, maybe
conducive to a different catalyst deactivation mechanism.
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The catalysts of C-Mo-HMCM-49 and N-Mo-HMCM-49 after reaction under CH4
flow at 700 ◦C for 430 min have almost identical Raman spectra, as shown in Figure 11.
They exhibit five-peak-based deconvolution of the intense signals associated with carbon
species. It is clear that the Raman shift located at 1200 cm−1 can be ascribed to aliphatic
C-H bounds, the Raman shift around 1312 cm−1 represents the D band, which is attributed
to the aromatic structures or amorphous coke, the D3 band around 1405 cm−1 is due to
structural defects of aromatic domains with poor organization, and the G band located
at 1590 cm−1 is assigned to graphite-like coke while D2 belongs to the D echo band. It
can be clearly seen that the ratio between D and G band intensities is lower for N-Mo-
HMCM-49 (ID/lG = 0.62) than that of C-Mo-HMCM-49 (ID/lG = 1.01), demonstrating that
the degree of the disordered nature of the surface carbon species is more remarkable for
C-Mo-HMCM-49 [46]. Furthermore, the coke produced from MoCx is well known to be
amorphous, which promotes the deactivation of the catalyst [47,48]. Meanwhile, HMCM-49
modified with MoO3 nanobelts may prevent excessive coke formation on MoCx and would
improve catalytic stability.
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3.3. Catalytic Performance

Figure 12 and Table 3 display the methane conversion, aromatics yield, and selectivity
of different products (benzene, toluene, naphthalene and coke) over C-Mo-HMCM-49 and
N-Mo-HMCM-49 in MDA [49]. It can be clearly observed from Figure 12a that the methane
conversion rate demonstrates an increasing trend during the initial reaction stage of less
than 130 min, implying the existence of an induction period for the MDA reaction during
which active site molybdenum carbide species (Mo2C or MoOxCy) are generated [50]. The
highest methane conversion rates of C-Mo-HMCM-49 and N-Mo-HMCM-49 are 11.9% and
13.4%, respectively, and the corresponding aromatic hydrocarbon yields are 7.5% and 9.2%
(Figure 12b). Furthermore, the value TOF of 15.1 h−1 over N-Mo-HMCM-49 is higher than
that of C-Mo-HMCM-49 (14.2 h−1). Compared to the 6Mo(N)-MCM-22 catalyst previously
reported, N-Mo-HMCM-49 exhibits a better TOF value. It is worth noting that the methane
conversion rate for all catalysts continues to decline with increasing time on stream (TOS),
meaning that catalyst inactivation occurs continuously during the reaction, which may
be attributed to the sintering and separation of carbon and metal carbonization species
accumulated on the zeolite [51]. Additionally, it can be clearly seen from Table 3 that
11.5% methane conversion is obtained on N-Mo-HMCM-49, which exceeds that (9.8%) on
C-Mo-HMCM-49 after 430 min, and the aromatics yields of C-Mo-HMCM-49 and N-Mo-
HMCM-49 are respectively 6.2% and 8.0% at this point. The MCM-49 zeolite has a set of
12-ring super cages and 10-ring channels connected through 10-ring windows. The unique
pore systems are beneficial for benzene and aromatics formation. Mo carbides located on
the surface of zeolite mainly generate heavy hydrocarbon and carbon deposition, leading
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to a decrease in methane conversion and aromatic hydrocarbon yield [51]. Furthermore, as
illustrated in Figure 13, the weight loss of MoO3 nanobelts is 7.5% below 900 ◦C, which is
higher than the weight loss (4.4%) of commercial MoO3. Thermogravimetric analysis shows
that MoO3 nanobelts sublimate more easily than commercial MoO3. The improvement in
catalytic activity may be related to the good dispersibility of active Mo sites. It is likely
that the structure of Mo precursors plays a significant role in catalytic performance. Mo
precursors supported on carrier material have multiple structures, which results in complex
and widened signals for most spectroscopic techniques [1]. Combined with the results of
acid tests, MoO3 nanobelts can be effectively transferred to MCM-49 channels by regulating
the acidity distribution and interacting with strong acid sites to generate more effective
active Mo sites and achieve better catalytic performance [30].
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Table 3. The catalytic results of MDA over various catalysts.

Catalyst ReactionTime
(min)

Conversion
of CH4 (%) TOF (h−1)

Selectivity (%) Yields of
Aromatics (%)Benzene Toluene Naphthalene Coke

C-Mo-HMCM-49
130 11.9 14.2 54.6 4.1 4.3 37.0 7.5
430 9.8 11.7 56.7 4.0 4.5 34.8 6.2

N-Mo-HMCM-49
130 13.4 15.1 60.3 4.2 4.1 31.4 9.2
430 11.5 12.9 62.3 4.0 3.9 29.8 8.0

6Mo(N)-MCM-22 [48] 130 13.1 14.8 61.1 3.1 4.2 31.6 8.9
580 10.4 11.7 62.5 3.9 3.8 29.4 7.3

Figure 12d indicates the selectivity of various products for both Mo-based catalysts.
In combination with Table 3, it can be seen that N-Mo-HMCM-49 has higher benzene
selectivity (60.3%) than C-Mo-HMCM-49 (54.6%) after reaction for 130 min, and the corre-
sponding coke selectivities are 37.0% and 31.4%, respectively. The improved selectivity of
benzene modified by MoO3 nanobelts may be partly due to the strong inhibition of coking
by external Brønsted sites. However, the deposition of carbonaceous species eventually
blocks the zeolite channel, making it difficult for products to diffuse out of the zeolite
channel [52]. Combined with the results of Raman spectra, HMCM-49 modified with MoO3
nanobelts would inhibit excessive coke deposition and thus improve catalytic stability.
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As shown in Figure 14, the weight loss below 220 ◦C is due to the evaporation of
water. The weight loss between 220 and 400 ◦C is caused by the aromatics of physical
absorption, and it is noteworthy that the carbon deposits on zeolite are burned and caused
weight loss in the range of 400 to 800 ◦C [53]. Benzene is mainly formed in the channels
of the zeolite, whereas naphthalene is produced on the external surface and/or the pore
mouth of the zeolite [1,54]. Carbon deposition in the zeolite channel will not only block the
zeolite channel, but also poison the catalytically active center, eventually leading to catalyst
inactivation [52]. The weight-loss rates of C-Mo-MCM-49 and N-Mo-MCM-49 after 430 min
are 5.76% and 3.47%, respectively, indicating that N-Mo-MCM-49 has better anti-carbon
deposition ability than C-Mo-MCM-49 [55]. Consequently, N-Mo-MCM-49 shows better
catalytic stabilization in MDA reactions.
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4. Conclusions

In summary, MCM-49 zeolite modified with MoO3 nanobelts exhibits better MDA per-
formance than commercial MoO3-modified zeolite. XRD, FT-IR, N2 adsorption/desorption
NH3-TPD, XPS, TEM, H2-TPR and Raman spectra indicate that MoO3 nanobelts are easy to
sublimate and distribute into the channel of HMCM-49 zeolite and combine with the strong
acid center located on the zeolites’ inner surface to form the active Mo site, thus promoting
methane activation, inhibiting the coke deposition formed by external Brønsted sites, and
increasing the yield of aromatics. The methane conversion rate of MoO3 nanobelt-modified
HMCM-49 can reach 13.4%, and the corresponding aromatic hydrocarbon yield can reach
9.2%. This work lays the groundwork for the usage of nano-metal precursors to develop
new catalysts and further enhance the MDA performance.
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