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Abstract: Recently, hyperspectral image (HSI) classification methods based on convolutional neural
networks (CNN) have shown impressive performance. However, HSI classification still faces two
challenging problems: the first challenge is that most existing classification approaches only focus on
exploiting the fixed-scale convolutional kernels to extract spectral–spatial features, which leads to
underutilization of information; the second challenge is that HSI contains a large amount of redundant
information and noise, to a certain extent, which influences the classification performance of CNN. In
order to tackle the above problems, this article proposes a multibranch crossover feature attention
network (MCFANet) for HSI classification. The MCFANet involves two primary submodules: a
cross feature extraction module (CFEM) and rearranged attention module (RAM). The former is
devised to capture joint spectral–spatial features at different convolutional layers, scales and branches,
which can increase the diversity and complementarity of spectral–spatial features, while the latter
is constructed to spontaneously concentrate on recalibrating spatial-wise and spectral-wise feature
responses, meanwhile exploit the shifted cascade operation to rearrange the obtained attention-
enhanced features to dispel redundant information and noise, and thus, boost the classification
performance. Compared with the state-of-the-art classification methods, massive experiments on
four benchmark datasets demonstrate the meliority of our presented method.

Keywords: crossover features; multiscale features; rearranged attention; shifted cascade;
hyperspectral image classification

1. Introduction

Hyperspectral image (HSI), as an image-spectrum merging technology, combinates
subdivisional spectroscopy with imaging technology, which contains abundant spatial
distribution information of surface targets and hundreds or even thousands of contiguous
narrow spectral bands [1,2]. In terms of recognition and classification, which benefit from
luxuriant spatial and spectral features, HSI not only has an inherent preponderance over
natural images but also can efficaciously distinguish different land-cover categories and
objects. Therefore, HSI plays a crucial role in multifarious fields, such as military defense [3],
atmospheric science [4], urban planning [5], vegetation ecology [6,7] and environmental
monitoring [8,9]. Among the hyperspectral community, one of the most vibrant research
applications is HSI classification. However, HSI classification also faces many formidable
challenges, such as extensive redundant spectral information interference, available labeled
samples deficiency and high intra-class variability.

Initially, traditional HSI classification methods, such as kernel-based and machine-
learning approaches [10,11], are composed of two primary parts: feature extraction and
classifier optimization. Representative algorithms are band selection (BS) [12], sparse
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representation classifier (SRC) [13], multinomial logistic regression (MLR) [14], principal
components analysis (PCA) [15] and support vector machine (SVM) [16], which utilize
rich spectral features to implement HSI classification. However, the above classification
approaches only exploit spectral information and do not take full advantage of spatial
information. In order to improve the classification performance, many spectral–spatial-
based methods have been developed, which incorporate spatial context information into
classifiers. For example, 3D morphological profiles [17] and 3D Gabor filters [18] were
designed to obtain spectral–spatial features. Li et al. presented multiple kernel learning
(MKL) to excavate spectral and spatial information of HSI [19]. Fang et al. constructed
a novel local covariance matrix (CM) representation approach, which can capture the
relation of spatial information and different spectral bands of HSI [20]. These conventional
classification approaches depend on handcrafted features, which leads to the discriminative
features’ insufficient extraction and poor robust ability.

In recent years, with the breakthrough of deep learning, HSI classification methods
based on deep learning have demonstrated superior performance [21–25]. Chen et al. first
applied a convolution neural network (CNN) to HSI classification [26]. Hu et al. raised a
framework based on CNN, which comprised five convolutional layers to perform classifica-
tion tasks [27]. Zhao et al. utilized a 2D CNN to obtain spatial features and then integrated
them with spectral information [28]. In order to capture joint spectral–spatial informa-
tion, Zou et al. constructed a 3D fully convolutional network, which can further obtain
high-level semantic features [29]. In order to obtain promising information, Zhang et al.
devised a diverse region-based CNN to extract semantic context-aware information [30].
Ge et al. presented a lower triangular network to fuse spectral and spatial features and
thus achieved high-dimension semantic information [31]. Nie et al. proposed a multiscale
spectral–spatial deformable network, which employed a spectral–spatial joint network to
obtain low-level features composed of spatial and spectral information [32]. An effective
and efficient CNN-based spectral partitioning residual network was built, which utilized
cascaded parallel improved residual blocks to achieve spatial and spectral information [33].
A dual-path siamese CNN was designed by Huang et al., which integrated extended mor-
phological profiles and siamese network with spectral–spatial feature fusion [34]. In order
to obtain more prominent spectral–spatial information, Gao et al. designed a multiscale
feature extraction module [35]. Shi et al. devised densely connected 3D convolutional
layers to capture preliminary spectral–spectral features [36]. Chan et al. utilized spatial
and spectral information to train a novel framework for classification [37].

The attention mechanism plays a crucial part in the HSI classification task and focuses
on significant information related to the classification task [38–42]. Zhu et al. proposed a
spatial attention block to adaptively choose a useful spatial context and a spectral attention
block to emphasize necessary spectral bands [43]. In order to optimize and refine the
obtained feature maps, Li et al. built a spatial attention block and a channel attention
block [44]. Gao et al. proposed a channel–spectral–spatial attention block to enhance
the important information and lessen unnecessary ones [45]. Xiong et al. utilized the
dynamic routing between attention initiation modules to learn the proposed architecture
adaptively [46]. Xi et al. constructed a hybrid residual attention module to enhance vital
spatial-spectral information and suppress unimportant ones [47].

Inspired by the above successful classification methods, this article proposes a multi-
branch crossover feature attention network (MCFANet) for HSI classification. The MC-
FANet is composed of two primary submodules: a crossover feature extraction module
(CFEM) and rearranged attention module (RAM). CFEM is designed to capture spectral–
spatial features at different convolutional layers, scales and branches, which can boost
the discriminative representations of HSI. Specifically speaking, CFEM consists of three
parallel branches with multiple available, receptive fields, which can increase the diversity
of spectral–spatial features. Each branch utilizes three additive link units (ALUs) to extract
spectral and spatial information while introducing the cross transmission into ALU to take
full advantage of spectral–spatial feature flows between different branches. Moreover, each
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branch also employs dense connections to combinate shallow and deep information and
achieve strong related and complementary features for classification. RAM, including a
spatial attention branch and a spectral attention branch, is constructed to not only adap-
tively pay attention to recalibrating spatial-wise and spectral-wise feature responses but
also exploit the shifted cascade operation to rearrange the obtained attention-enhanced
features to dispel redundant information and noise and, thus, enhance the classification
accuracy. The main contributions of this article can be summarized as follows:

(1) In order to decrease training parameters and accelerate model convergence, we de-
signed an additive link unit (ALU) to replace the conventional 3D convolutional layer.
For one, ALU utilizes the spectral feature extraction factor and spatial feature extrac-
tion factor to capture joint spectral–spatial features; for another, it also introduces the
cross transmission to take full advantage of spectral–spatial feature flows between
different branches;

(2) In order to tackle the fixed-scale convolutional kernels that are difficult to sufficiently
extract spectral–spatial features, a crossover feature extraction module (CFEM) was
constructed, which can obtain spectral–spatial features at different convolutional
scales and branches. CFEM not only utilizes three parallel branches with multiple
available, receptive fields to increase the diversity of spectral–spatial features but also
applies the dense connection to each branch to incorporate shallow and deep features
and, thus, realize robust complementary features for classification;

(3) In order to dispel the interference of redundant information and noise, we devised
a rearranged attention module (RAM) to adaptively concentrate on recalibrating
spatial-wise and spectral-wise feature response while exploiting the shifted cascade
operation to realign the obtained attention-enhanced features, which are beneficial to
boost the classification performance.

The remaining part of this article can be summarized as follows: Section 2 describes in
detail our developed MCFANet, Section 3 provides experimental results and discussion
and Section 4 gives the conclusion part of this article.

2. Methodology

The proposed MCFANet comprises two significant submodules: crossover feature
extraction module (CFEM) and rearranged attention module (RAM), as shown in Figure 1.
The former utilizes a multibranch intersection dense connection structure to enhance the
representation ability of multiscale spectral–spatial information. The latter can not only
focus on adaptively reweighting the significance of spectral-wise and spatial-wise features
but also introduce the shifted cascade operation to replume the obtained attention-enhanced
features to achieve more discriminative spectral–spatial features while dispelling redundant
information and noise, thus, improving the classification performance.
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2.1. Additive Link Unit

Generally, low-level features are more concrete and include more spatial details with-
out discrimination, while high-level features are more abstract and contain more semantic
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information but without a high resolution. In recent years, many studies have indicated
that integrating features of different layers is helpful for HSI classification. Zhang et al.
designed a deep feature aggregation network to exploit the low-, middle- and high-level
features in HSI [48]. Li et al. constructed a multi-attention fusion network to obtain comple-
mentary information from different levels [49]. Ge et al. adopted the early fusion method
to aggregate features from the front and middle parts of the network and then utilized
the fused features to further learn high-level semantic features [31]. Inspired by the above
research, we devised an innovative additive link unit (ALU), which introduces the cross
transmission to integrate spectral–spatial features of different scales and branches and
strengthens spectral–spatial feature representation ability. The structure of the proposed
ALU is shown in Figure 2.
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As exhibited in Figure 2, the ALU can be partitioned into three parts: spectral feature
extraction factor, cross transmission and spatial feature extraction factor. In order to reduce
the training parameters, we utilized the spectral feature extraction factor and spatial feature
extraction factor instead of the 3D conventional convolution layer. The spectral feature
extraction factor was devised to obtain spectral information, including 1× 1×n convolution
operation, BN layer and Relu activation function. The spatial feature extraction factor was
designed to capture spatial information, including n× n× 1 convolution operation, BN
layer and Relu activation function, where n represents the convolution kernel size, BN
layer and Relu activation function are used to accelerate the network regularization. In
addition, considering that if the three branches are independent of each other, it is difficult to
exchange and fuse features at different scales. Therefore, we introduced cross transmission
between the spectral feature extraction factor and spatial feature extraction factor to make
it easier to achieve feature exchange at different scales and branches, thus improving the
richness of spectral–spatial information. It can be calculated as follows:

s = δ(w0 ∗ X) (1)

z = s + s1 + s2 (2)

y = δ(w1 ∗ z) (3)

where X represents the input features of ALU; s, s1 and s2 represents the output features of
spectral feature extraction factor of ALU at the same position on three branches; z represents
the intermediate fusion features; and y represents the output features of ALU. w0 and w1
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are the weights of spectral feature extraction factor and spatial feature extraction factor,
respectively. δ is ReLU activation function.

2.2. Crossover Feature Extraction Module

Compared with single-scale feature extraction, integrating spectral–spatial information
at different scales is a crucial method for enhancing HSI classification performance. Gao
et al. employed mixed depthwise convolution to extract features at different scales from each
feature map [50]. Xue et al. built a hierarchical residual network to capture multiscale spectral
and spatial features [51]. Nie designed a multiscale spectral–spatial deformable network for
HSI classification [32]. DenseNet enabled each layer to receive raw information generated
by preceding layers, which was effective for the exploration of new features [52]. Inspired
by the aforesaid advantages of approaches, we raised a crossover feature extraction module
(CFEM), which not only adopts the multiple available, receptive fields to enrich the diversity
of spectral–spatial features but also utilizes cross transmission and dense connection to explore
deeper and newer features that are more conducive to HSI classification.

First, CFEM is composed of three parallel branches, and each branch contains three
ALUs with diverse convolution kernels to obtain different scale spectral and spatial features
of the input image, involving 1 × 1 × 3, 3 × 3 × 1, 1 × 1 × 5, 5 × 5 × 1, 1 × 1 × 7 and
7× 7× 1. The structure of each branch is shown in Figure 3. Second, the cross transmission
of ALU in each branch can maximize the use of local feature flows between different
scales and branches. Furthermore, to increase the complementarity of spectral–spatial
features, we applied the dense connection to three ALUs at the same branch. Finally,
feature information of different scales and branches was fused by element-wise addition,
which can be expressed as follows:

Y = add(H(X0, X1, . . . , Xi−1),
H1(X0, X1, . . . , Xi−1),
H2(X0, X1, . . . , Xi−1))

(4)

where Y denotes the output features of CFEM; add(·) denotes the element-wise summation;
X denotes the output features after fusion; and H1(·), H2(·) and H3(·) denote the output
features of each branch.
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2.3. Rearranged Attention Module

The attention mechanism showed unexceptionable potential in boosting the model
performance, which can focus on the information related to the current task and suppress
ones. Common attention mechanisms can be divided into two categories: spectral attention
mechanism and spatial attention mechanism. The former is to seek which feature map is
important to learn and redistribute the weight to different channels, while the latter is to
identify which area is worth paying attention to and redistribute the weight to the spatial
content. Inspired by the above ideas, we designed a rearranged attention module (RAM).
RAM concentrates on adaptively recalibrating spatial-wise and spectral-wise responses to
obtain attention-enhanced features. Additionally, RAM utilizes the shifted cascade oper-
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ation to realign the obtained attention-enhanced features to achieve more discriminative
features for HSI classification while dispelling redundant information and noise, thus,
promoting classification accuracy. The structure of our proposed RAM is exhibited in
Figure 4.
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As shown in Figure 4, the input feature maps of RAM are indicated by X ∈ RH×W×C,
where H and W are the height and width of the spatial domain, and C is the spectral
band number. We divided the input feature maps X into two sets: X1 ∈ RH×W×(C/2)

and X2 ∈ RH×W×(C/2), and transmitted them to the spectral attention branch and spatial
branch attention, respectively. In the spectral attention branch, first, we adopted the global
average pooling layer (GAP) to transform X1 ∈ RH×W×(C/2) to X1 ∈ R1×1×(C/2). Then, a
simple squeeze-and-excitation mechanism, including two fully connected layers (FCs) with
different activation functions, was utilized to calculate the weights of each spectral band
and obtain the spectral-wise dependencies Fspe. Finally, the input feature maps X1 were
multiplied by the channel weights Fspe to obtain the spectral attention-enhanced output
feature maps Xspe, which can be expressed as follows:

Fspe = FC1(FC0(GAP(X1)))
= σ(w1 ∗ δ(w0 ∗ GAP(X1)))

(5)

Xspe = X1 ⊗ Fspe (6)

where w0 and w1 represent the weight matrices of two FCs, respectively; δ represents the
ReLU activation function; and σ represents the sigmoid activation function.

In the spatial attention branch, first, we used an average pooling layer (AP) and
max pooling layer (MP) to transform X2 ∈ RH×W×(C/2) to X2 ∈ RH×W×1. Second, a
concatenation operation was utilized to aggregate the average pooling feature and max
pooling feature. Then, the aggregated features were sent to a 3× 3 convolution layer to
calculate the weights of the spatial domain and obtain the spatial-wise dependencies Fspa.
Finally, the input feature maps X2 were multiplied by the spatial weights Fspa to obtain the
spatial attention-enhanced output feature maps Xspa. It can be expressed as follows:

Fspa = Conv(Concate[AP(X2), MP(X2)]) (7)

Xspa = X2 ⊗ Fspa (8)
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Although the outputs of two branches make use of the desired spectral and spatial
features, these features are processed over the same feature space, which may impede
the information flow. Therefore, we introduce the shifted cascade operation to allevi-
ate this problem. First, we divided the spectral attention-enhanced feature maps Xspe
and spatial attention-enhanced feature maps Xspa into two sunsets, respectively, denoted

Xi
spe ∈ RH×W×(C/2), i ∈ {1, 2}, X j

spa ∈ RH×W×(C/2), j ∈ {1, 2}. Then, the shifted cascade
operation was utilized to combine X1

spe with X2
spa, and X2

spe with X1
spa to explore the new

mixed features X3 and X4. Finally, for X3 and X4, we integrated them by the shifted cascade
operation to obtain more conspicuous and representative features F for improving the
classification performance. It can be expressed as follows:

X1 = Concate[X1
spe, X2

spa] (9)

X2 = Concate[X2
spe, X1

spa] (10)

F = Concate[X3, X4] (11)

where Concate[] denotes the shifted cascade operation, which can explore some new fea-
tures in other ways and enhance spectral–spatial feature representation ability.

2.4. Framework of the Proposed MCFANet

We utilized the Indian Pines dataset as an example to illustrate the developed method,
as shown in Figure 5. First, HSI contains hundreds of spectral bands, and they are highly
correlated with each other, leading to the existence of redundant information that is not
conducive to the classification task. Therefore, we performed PCA on the raw HSI to
eliminate unnecessary information and maintain 20 spectral bands that include the most
important features. Second, to fully exploit the property of HSI containing both spectral and
spatial data, we extracted a 3D image cube denoted by X ∈ R11×11×20 as the input of our
proposed MCFANet, where 11× 11 is the spatial size and 20 is the number of spectral bands.
Third, the input data were fed into CFEM comprising three parallel branches to capture
multiscale spectral–spatial features and explore deeper and newer features for classification.
The branch1 uses three ALUs, which are built by the kernel size of 1× 1× 3× 16 and
3× 3× 1× 16 in series, to excavate spectral and spatial features, respectively. Three ALUs
were linked to each other by dense connection. Similarly, branch2 uses three ALUs which
are built by the kernel size of 1 × 1 × 5 × 16 and 5 × 5 × 1 × 16 in series, to excavate
spectral and spatial features, respectively. Three ALUs are linked to each other by dense
connection. Branch3 uses three ALUs, which are built by the kernel size of 1× 1× 7× 16
and 7× 7× 1× 16 to excavate spectral and spatial features, respectively. Three ALUs were
linked to each other by dense connection. Then, we adopted the element-wise addition
to integrate the output features of three branches and acquire multiscale spectral–spatial
features with the size of 11× 11× 16. Next, the multiscale spectral–spatial features were
sent to RAM to adaptively recalibrate spatial-wise and spectral-wise responses to obtain
spectral attention-enhanced features with the size of 11× 11× 8 and spatial attention-
enhanced features with the size of 11 × 11 × 8. Furthermore, we adopted the shifted
cascade operation to rearrange the obtained attention-enhanced features to achieve more
discriminative features with the size of 11 × 11 × 16 for HSI classification. Finally, by
using global average pooling, two FC layers and two dropout layers were used to convert
the feature maps into a one-dimensional matrix, and class labels were generated via the
softmax function.

3. Experimental Results and Discussion

This section introduces in detail the benchmark datasets used, the experimental setup,
a series of parameter analyses, and the discussion of experimental results.
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3.1. Datasets Description

The Pavia University (UP) dataset was gathered by the Reflective Optics Spectro-
graphic Imaging System (ROSIS-03) sensor in 2003 during a flight campaign in Pavia,
Northern Italy. The wavelength range is 0.43–0.86 µm. This dataset contained nine ground
truth categories and has 610 × 340 pixels with a spatial resolution of 1.3 m. After excluding
12 bands due to noise, the remaining 103 bands are generally utilized for the experiment.

The Indian Pines (IP) dataset was collected by the airborne visible/infrared imaging
spectrometer (AVIRIS) in 1992 in northwestern Indiana, USA. The wavelength range is
0.4–2.5 µm. This dataset contains 16 ground truth categories and has 145 × 145 pixels with
a spatial resolution of 20 m. Since 20 bands cannot be reflected by water, the remaining
200 bands are generally utilized for the experiment.

The Salinas Valley (SA) dataset was captured by an AVIRIS sensor in 2011 for the
Salinas Valley in California, USA. The wavelength range is 0.36–2.5 µm. This dataset
contains 16 ground truth categories and has 512 × 217 pixels with a spatial resolution of
3.7 m. After eliminating bands that cannot be reflected by water, the remaining 204 bands
are generally utilized for the experiment.

For the UP and SA datasets, we chose at random 10% labeled samples of each category
for training and the remaining 90% labeled samples for testing. For the IP dataset, we select
at random 20% labeled samples of each category as the training set, and the remaining
80% labeled samples as the testing set. Tables 1–3 list the land-over category details, sample
numbers of three datasets and corresponding colors of each category.

3.2. Experimental Setup

All experiments were conducted on a system with an NVIDIA GeForce RTX 2060
SUPER GPU and 6 GB of RAM. The software environment of the system is TensorFlow
2.3.0, Keras 2.4.3, and Python 3.6.

The batch size was set to 16, and the number of training epochs was set to 200.
Moreover, we adopted the RMSprop as an optimizer to update the parameters during the
training process, and the learning rate was set to 0.0005. Three evaluation indices were
used to evaluate the classification performance, i.e., Kappa coefficient (Kappa), average
accuracy (AA) and overall accuracy (OA). The Kappa measures the consistency between
the ground truth and the classification results. The AA represents the ratio between the
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total sample numbers of each category and the correctly classified sample numbers. The
OA is the proportion of correctly classified samples in the total samples. In theory, the
closer these evaluation indices utilized in this article are to 1, the better the classification
performance will be.

Table 1. The information on UP dataset, including number of training and test samples.

No. Color Class Train Test

1
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Table 2. The information on IP dataset, including number of training and test samples. 

No. Color Class Train Test 
1 Alfalfa 10 36 
2 Corn-notill 286 1142 
3  Corn-mintill 166 664 
4  Corn 48 189 
5  Grass-pasture 97 386 
6  Grass-trees 146 584 
7  Grass-pasture-mowed 6 22 
8  Hay-windrowed 96 382 
9  Oats 4 16 

10  Soybean-notill 195 777 
11  Soybean-mintill 491 1964 
12  Soybean-clean 119 474 
13  Wheat 41 164 
14  Woods 253 1012 
15  Buildings-Grass-Tree 78 308 
16  Stone-Steel-Towers 19 74 

 Total 2055 8194 

Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Asphalt 664 5967
2
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Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Meadows 1865 16,784
3
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Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Gravel 210 1889
4
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Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Trees 307 2757
5
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No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Metal sheets 135 1210
6
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Bare Soil 503 4526
7
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Bitumen 133 1197
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Bricks 369 3313
9
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Shadows 95 852

Total 4281 38,495

Table 2. The information on IP dataset, including number of training and test samples.

No. Color Class Train Test

1
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Alfalfa 10 36
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4  Trees 307 2757 
5  Metal sheets 135 1210 
6  Bare Soil 503 4526 
7  Bitumen 133 1197 
8  Bricks 369 3313 
9  Shadows 95 852 
 Total 4281 38,495 

Table 2. The information on IP dataset, including number of training and test samples. 

No. Color Class Train Test 
1 Alfalfa 10 36 
2 Corn-notill 286 1142 
3  Corn-mintill 166 664 
4  Corn 48 189 
5  Grass-pasture 97 386 
6  Grass-trees 146 584 
7  Grass-pasture-mowed 6 22 
8  Hay-windrowed 96 382 
9  Oats 4 16 

10  Soybean-notill 195 777 
11  Soybean-mintill 491 1964 
12  Soybean-clean 119 474 
13  Wheat 41 164 
14  Woods 253 1012 
15  Buildings-Grass-Tree 78 308 
16  Stone-Steel-Towers 19 74 

 Total 2055 8194 

Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Corn-notill 286 1142
3

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 20 
 

 

m . After eliminating bands that cannot be reflected by water, the remaining 204 bands 
are generally utilized for the experiment. 

For the UP and SA datasets, we chose at random 10% labeled samples of each cate-
gory for training and the remaining 90% labeled samples for testing. For the IP dataset, 
we select at random 20% labeled samples of each category as the training set, and the 
remaining 80% labeled samples as the testing set. Tables 1–3 list the land-over category 
details, sample numbers of three datasets and corresponding colors of each category. 

Table 1. The information on UP dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Asphalt 664 5967 
2  Meadows 1865 16,784 
3  Gravel 210 1889 
4  Trees 307 2757 
5  Metal sheets 135 1210 
6  Bare Soil 503 4526 
7  Bitumen 133 1197 
8  Bricks 369 3313 
9  Shadows 95 852 
 Total 4281 38,495 

Table 2. The information on IP dataset, including number of training and test samples. 

No. Color Class Train Test 
1 Alfalfa 10 36 
2 Corn-notill 286 1142 
3  Corn-mintill 166 664 
4  Corn 48 189 
5  Grass-pasture 97 386 
6  Grass-trees 146 584 
7  Grass-pasture-mowed 6 22 
8  Hay-windrowed 96 382 
9  Oats 4 16 

10  Soybean-notill 195 777 
11  Soybean-mintill 491 1964 
12  Soybean-clean 119 474 
13  Wheat 41 164 
14  Woods 253 1012 
15  Buildings-Grass-Tree 78 308 
16  Stone-Steel-Towers 19 74 

 Total 2055 8194 

Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Corn-mintill 166 664
4
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m . After eliminating bands that cannot be reflected by water, the remaining 204 bands 
are generally utilized for the experiment. 

For the UP and SA datasets, we chose at random 10% labeled samples of each cate-
gory for training and the remaining 90% labeled samples for testing. For the IP dataset, 
we select at random 20% labeled samples of each category as the training set, and the 
remaining 80% labeled samples as the testing set. Tables 1–3 list the land-over category 
details, sample numbers of three datasets and corresponding colors of each category. 

Table 1. The information on UP dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Asphalt 664 5967 
2  Meadows 1865 16,784 
3  Gravel 210 1889 
4  Trees 307 2757 
5  Metal sheets 135 1210 
6  Bare Soil 503 4526 
7  Bitumen 133 1197 
8  Bricks 369 3313 
9  Shadows 95 852 
 Total 4281 38,495 

Table 2. The information on IP dataset, including number of training and test samples. 

No. Color Class Train Test 
1 Alfalfa 10 36 
2 Corn-notill 286 1142 
3  Corn-mintill 166 664 
4  Corn 48 189 
5  Grass-pasture 97 386 
6  Grass-trees 146 584 
7  Grass-pasture-mowed 6 22 
8  Hay-windrowed 96 382 
9  Oats 4 16 

10  Soybean-notill 195 777 
11  Soybean-mintill 491 1964 
12  Soybean-clean 119 474 
13  Wheat 41 164 
14  Woods 253 1012 
15  Buildings-Grass-Tree 78 308 
16  Stone-Steel-Towers 19 74 

 Total 2055 8194 

Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Corn 48 189
5
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m . After eliminating bands that cannot be reflected by water, the remaining 204 bands 
are generally utilized for the experiment. 

For the UP and SA datasets, we chose at random 10% labeled samples of each cate-
gory for training and the remaining 90% labeled samples for testing. For the IP dataset, 
we select at random 20% labeled samples of each category as the training set, and the 
remaining 80% labeled samples as the testing set. Tables 1–3 list the land-over category 
details, sample numbers of three datasets and corresponding colors of each category. 

Table 1. The information on UP dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Asphalt 664 5967 
2  Meadows 1865 16,784 
3  Gravel 210 1889 
4  Trees 307 2757 
5  Metal sheets 135 1210 
6  Bare Soil 503 4526 
7  Bitumen 133 1197 
8  Bricks 369 3313 
9  Shadows 95 852 
 Total 4281 38,495 

Table 2. The information on IP dataset, including number of training and test samples. 

No. Color Class Train Test 
1 Alfalfa 10 36 
2 Corn-notill 286 1142 
3  Corn-mintill 166 664 
4  Corn 48 189 
5  Grass-pasture 97 386 
6  Grass-trees 146 584 
7  Grass-pasture-mowed 6 22 
8  Hay-windrowed 96 382 
9  Oats 4 16 

10  Soybean-notill 195 777 
11  Soybean-mintill 491 1964 
12  Soybean-clean 119 474 
13  Wheat 41 164 
14  Woods 253 1012 
15  Buildings-Grass-Tree 78 308 
16  Stone-Steel-Towers 19 74 

 Total 2055 8194 

Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Grass-pasture 97 386
6

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 20 
 

 

m . After eliminating bands that cannot be reflected by water, the remaining 204 bands 
are generally utilized for the experiment. 

For the UP and SA datasets, we chose at random 10% labeled samples of each cate-
gory for training and the remaining 90% labeled samples for testing. For the IP dataset, 
we select at random 20% labeled samples of each category as the training set, and the 
remaining 80% labeled samples as the testing set. Tables 1–3 list the land-over category 
details, sample numbers of three datasets and corresponding colors of each category. 

Table 1. The information on UP dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Asphalt 664 5967 
2  Meadows 1865 16,784 
3  Gravel 210 1889 
4  Trees 307 2757 
5  Metal sheets 135 1210 
6  Bare Soil 503 4526 
7  Bitumen 133 1197 
8  Bricks 369 3313 
9  Shadows 95 852 
 Total 4281 38,495 

Table 2. The information on IP dataset, including number of training and test samples. 

No. Color Class Train Test 
1 Alfalfa 10 36 
2 Corn-notill 286 1142 
3  Corn-mintill 166 664 
4  Corn 48 189 
5  Grass-pasture 97 386 
6  Grass-trees 146 584 
7  Grass-pasture-mowed 6 22 
8  Hay-windrowed 96 382 
9  Oats 4 16 

10  Soybean-notill 195 777 
11  Soybean-mintill 491 1964 
12  Soybean-clean 119 474 
13  Wheat 41 164 
14  Woods 253 1012 
15  Buildings-Grass-Tree 78 308 
16  Stone-Steel-Towers 19 74 

 Total 2055 8194 

Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Grass-trees 146 584
7
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m . After eliminating bands that cannot be reflected by water, the remaining 204 bands 
are generally utilized for the experiment. 

For the UP and SA datasets, we chose at random 10% labeled samples of each cate-
gory for training and the remaining 90% labeled samples for testing. For the IP dataset, 
we select at random 20% labeled samples of each category as the training set, and the 
remaining 80% labeled samples as the testing set. Tables 1–3 list the land-over category 
details, sample numbers of three datasets and corresponding colors of each category. 

Table 1. The information on UP dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Asphalt 664 5967 
2  Meadows 1865 16,784 
3  Gravel 210 1889 
4  Trees 307 2757 
5  Metal sheets 135 1210 
6  Bare Soil 503 4526 
7  Bitumen 133 1197 
8  Bricks 369 3313 
9  Shadows 95 852 
 Total 4281 38,495 

Table 2. The information on IP dataset, including number of training and test samples. 

No. Color Class Train Test 
1 Alfalfa 10 36 
2 Corn-notill 286 1142 
3  Corn-mintill 166 664 
4  Corn 48 189 
5  Grass-pasture 97 386 
6  Grass-trees 146 584 
7  Grass-pasture-mowed 6 22 
8  Hay-windrowed 96 382 
9  Oats 4 16 

10  Soybean-notill 195 777 
11  Soybean-mintill 491 1964 
12  Soybean-clean 119 474 
13  Wheat 41 164 
14  Woods 253 1012 
15  Buildings-Grass-Tree 78 308 
16  Stone-Steel-Towers 19 74 

 Total 2055 8194 

Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Grass-pasture-mowed 6 22
8
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m . After eliminating bands that cannot be reflected by water, the remaining 204 bands 
are generally utilized for the experiment. 

For the UP and SA datasets, we chose at random 10% labeled samples of each cate-
gory for training and the remaining 90% labeled samples for testing. For the IP dataset, 
we select at random 20% labeled samples of each category as the training set, and the 
remaining 80% labeled samples as the testing set. Tables 1–3 list the land-over category 
details, sample numbers of three datasets and corresponding colors of each category. 

Table 1. The information on UP dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Asphalt 664 5967 
2  Meadows 1865 16,784 
3  Gravel 210 1889 
4  Trees 307 2757 
5  Metal sheets 135 1210 
6  Bare Soil 503 4526 
7  Bitumen 133 1197 
8  Bricks 369 3313 
9  Shadows 95 852 
 Total 4281 38,495 

Table 2. The information on IP dataset, including number of training and test samples. 

No. Color Class Train Test 
1 Alfalfa 10 36 
2 Corn-notill 286 1142 
3  Corn-mintill 166 664 
4  Corn 48 189 
5  Grass-pasture 97 386 
6  Grass-trees 146 584 
7  Grass-pasture-mowed 6 22 
8  Hay-windrowed 96 382 
9  Oats 4 16 

10  Soybean-notill 195 777 
11  Soybean-mintill 491 1964 
12  Soybean-clean 119 474 
13  Wheat 41 164 
14  Woods 253 1012 
15  Buildings-Grass-Tree 78 308 
16  Stone-Steel-Towers 19 74 

 Total 2055 8194 

Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Hay-windrowed 96 382
9
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m . After eliminating bands that cannot be reflected by water, the remaining 204 bands 
are generally utilized for the experiment. 

For the UP and SA datasets, we chose at random 10% labeled samples of each cate-
gory for training and the remaining 90% labeled samples for testing. For the IP dataset, 
we select at random 20% labeled samples of each category as the training set, and the 
remaining 80% labeled samples as the testing set. Tables 1–3 list the land-over category 
details, sample numbers of three datasets and corresponding colors of each category. 

Table 1. The information on UP dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Asphalt 664 5967 
2  Meadows 1865 16,784 
3  Gravel 210 1889 
4  Trees 307 2757 
5  Metal sheets 135 1210 
6  Bare Soil 503 4526 
7  Bitumen 133 1197 
8  Bricks 369 3313 
9  Shadows 95 852 
 Total 4281 38,495 

Table 2. The information on IP dataset, including number of training and test samples. 

No. Color Class Train Test 
1 Alfalfa 10 36 
2 Corn-notill 286 1142 
3  Corn-mintill 166 664 
4  Corn 48 189 
5  Grass-pasture 97 386 
6  Grass-trees 146 584 
7  Grass-pasture-mowed 6 22 
8  Hay-windrowed 96 382 
9  Oats 4 16 

10  Soybean-notill 195 777 
11  Soybean-mintill 491 1964 
12  Soybean-clean 119 474 
13  Wheat 41 164 
14  Woods 253 1012 
15  Buildings-Grass-Tree 78 308 
16  Stone-Steel-Towers 19 74 

 Total 2055 8194 

Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Oats 4 16
10
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m . After eliminating bands that cannot be reflected by water, the remaining 204 bands 
are generally utilized for the experiment. 

For the UP and SA datasets, we chose at random 10% labeled samples of each cate-
gory for training and the remaining 90% labeled samples for testing. For the IP dataset, 
we select at random 20% labeled samples of each category as the training set, and the 
remaining 80% labeled samples as the testing set. Tables 1–3 list the land-over category 
details, sample numbers of three datasets and corresponding colors of each category. 

Table 1. The information on UP dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Asphalt 664 5967 
2  Meadows 1865 16,784 
3  Gravel 210 1889 
4  Trees 307 2757 
5  Metal sheets 135 1210 
6  Bare Soil 503 4526 
7  Bitumen 133 1197 
8  Bricks 369 3313 
9  Shadows 95 852 
 Total 4281 38,495 

Table 2. The information on IP dataset, including number of training and test samples. 

No. Color Class Train Test 
1 Alfalfa 10 36 
2 Corn-notill 286 1142 
3  Corn-mintill 166 664 
4  Corn 48 189 
5  Grass-pasture 97 386 
6  Grass-trees 146 584 
7  Grass-pasture-mowed 6 22 
8  Hay-windrowed 96 382 
9  Oats 4 16 

10  Soybean-notill 195 777 
11  Soybean-mintill 491 1964 
12  Soybean-clean 119 474 
13  Wheat 41 164 
14  Woods 253 1012 
15  Buildings-Grass-Tree 78 308 
16  Stone-Steel-Towers 19 74 

 Total 2055 8194 

Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Soybean-notill 195 777
11
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m . After eliminating bands that cannot be reflected by water, the remaining 204 bands 
are generally utilized for the experiment. 

For the UP and SA datasets, we chose at random 10% labeled samples of each cate-
gory for training and the remaining 90% labeled samples for testing. For the IP dataset, 
we select at random 20% labeled samples of each category as the training set, and the 
remaining 80% labeled samples as the testing set. Tables 1–3 list the land-over category 
details, sample numbers of three datasets and corresponding colors of each category. 

Table 1. The information on UP dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Asphalt 664 5967 
2  Meadows 1865 16,784 
3  Gravel 210 1889 
4  Trees 307 2757 
5  Metal sheets 135 1210 
6  Bare Soil 503 4526 
7  Bitumen 133 1197 
8  Bricks 369 3313 
9  Shadows 95 852 
 Total 4281 38,495 

Table 2. The information on IP dataset, including number of training and test samples. 

No. Color Class Train Test 
1 Alfalfa 10 36 
2 Corn-notill 286 1142 
3  Corn-mintill 166 664 
4  Corn 48 189 
5  Grass-pasture 97 386 
6  Grass-trees 146 584 
7  Grass-pasture-mowed 6 22 
8  Hay-windrowed 96 382 
9  Oats 4 16 

10  Soybean-notill 195 777 
11  Soybean-mintill 491 1964 
12  Soybean-clean 119 474 
13  Wheat 41 164 
14  Woods 253 1012 
15  Buildings-Grass-Tree 78 308 
16  Stone-Steel-Towers 19 74 

 Total 2055 8194 

Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Soybean-mintill 491 1964
12
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m . After eliminating bands that cannot be reflected by water, the remaining 204 bands 
are generally utilized for the experiment. 

For the UP and SA datasets, we chose at random 10% labeled samples of each cate-
gory for training and the remaining 90% labeled samples for testing. For the IP dataset, 
we select at random 20% labeled samples of each category as the training set, and the 
remaining 80% labeled samples as the testing set. Tables 1–3 list the land-over category 
details, sample numbers of three datasets and corresponding colors of each category. 

Table 1. The information on UP dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Asphalt 664 5967 
2  Meadows 1865 16,784 
3  Gravel 210 1889 
4  Trees 307 2757 
5  Metal sheets 135 1210 
6  Bare Soil 503 4526 
7  Bitumen 133 1197 
8  Bricks 369 3313 
9  Shadows 95 852 
 Total 4281 38,495 

Table 2. The information on IP dataset, including number of training and test samples. 

No. Color Class Train Test 
1 Alfalfa 10 36 
2 Corn-notill 286 1142 
3  Corn-mintill 166 664 
4  Corn 48 189 
5  Grass-pasture 97 386 
6  Grass-trees 146 584 
7  Grass-pasture-mowed 6 22 
8  Hay-windrowed 96 382 
9  Oats 4 16 

10  Soybean-notill 195 777 
11  Soybean-mintill 491 1964 
12  Soybean-clean 119 474 
13  Wheat 41 164 
14  Woods 253 1012 
15  Buildings-Grass-Tree 78 308 
16  Stone-Steel-Towers 19 74 

 Total 2055 8194 

Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Soybean-clean 119 474
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m . After eliminating bands that cannot be reflected by water, the remaining 204 bands 
are generally utilized for the experiment. 

For the UP and SA datasets, we chose at random 10% labeled samples of each cate-
gory for training and the remaining 90% labeled samples for testing. For the IP dataset, 
we select at random 20% labeled samples of each category as the training set, and the 
remaining 80% labeled samples as the testing set. Tables 1–3 list the land-over category 
details, sample numbers of three datasets and corresponding colors of each category. 

Table 1. The information on UP dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Asphalt 664 5967 
2  Meadows 1865 16,784 
3  Gravel 210 1889 
4  Trees 307 2757 
5  Metal sheets 135 1210 
6  Bare Soil 503 4526 
7  Bitumen 133 1197 
8  Bricks 369 3313 
9  Shadows 95 852 
 Total 4281 38,495 

Table 2. The information on IP dataset, including number of training and test samples. 

No. Color Class Train Test 
1 Alfalfa 10 36 
2 Corn-notill 286 1142 
3  Corn-mintill 166 664 
4  Corn 48 189 
5  Grass-pasture 97 386 
6  Grass-trees 146 584 
7  Grass-pasture-mowed 6 22 
8  Hay-windrowed 96 382 
9  Oats 4 16 

10  Soybean-notill 195 777 
11  Soybean-mintill 491 1964 
12  Soybean-clean 119 474 
13  Wheat 41 164 
14  Woods 253 1012 
15  Buildings-Grass-Tree 78 308 
16  Stone-Steel-Towers 19 74 

 Total 2055 8194 

Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Wheat 41 164
14
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m . After eliminating bands that cannot be reflected by water, the remaining 204 bands 
are generally utilized for the experiment. 

For the UP and SA datasets, we chose at random 10% labeled samples of each cate-
gory for training and the remaining 90% labeled samples for testing. For the IP dataset, 
we select at random 20% labeled samples of each category as the training set, and the 
remaining 80% labeled samples as the testing set. Tables 1–3 list the land-over category 
details, sample numbers of three datasets and corresponding colors of each category. 

Table 1. The information on UP dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Asphalt 664 5967 
2  Meadows 1865 16,784 
3  Gravel 210 1889 
4  Trees 307 2757 
5  Metal sheets 135 1210 
6  Bare Soil 503 4526 
7  Bitumen 133 1197 
8  Bricks 369 3313 
9  Shadows 95 852 
 Total 4281 38,495 

Table 2. The information on IP dataset, including number of training and test samples. 

No. Color Class Train Test 
1 Alfalfa 10 36 
2 Corn-notill 286 1142 
3  Corn-mintill 166 664 
4  Corn 48 189 
5  Grass-pasture 97 386 
6  Grass-trees 146 584 
7  Grass-pasture-mowed 6 22 
8  Hay-windrowed 96 382 
9  Oats 4 16 

10  Soybean-notill 195 777 
11  Soybean-mintill 491 1964 
12  Soybean-clean 119 474 
13  Wheat 41 164 
14  Woods 253 1012 
15  Buildings-Grass-Tree 78 308 
16  Stone-Steel-Towers 19 74 

 Total 2055 8194 

Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Woods 253 1012
15

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 20 
 

 

m . After eliminating bands that cannot be reflected by water, the remaining 204 bands 
are generally utilized for the experiment. 

For the UP and SA datasets, we chose at random 10% labeled samples of each cate-
gory for training and the remaining 90% labeled samples for testing. For the IP dataset, 
we select at random 20% labeled samples of each category as the training set, and the 
remaining 80% labeled samples as the testing set. Tables 1–3 list the land-over category 
details, sample numbers of three datasets and corresponding colors of each category. 

Table 1. The information on UP dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Asphalt 664 5967 
2  Meadows 1865 16,784 
3  Gravel 210 1889 
4  Trees 307 2757 
5  Metal sheets 135 1210 
6  Bare Soil 503 4526 
7  Bitumen 133 1197 
8  Bricks 369 3313 
9  Shadows 95 852 
 Total 4281 38,495 

Table 2. The information on IP dataset, including number of training and test samples. 

No. Color Class Train Test 
1 Alfalfa 10 36 
2 Corn-notill 286 1142 
3  Corn-mintill 166 664 
4  Corn 48 189 
5  Grass-pasture 97 386 
6  Grass-trees 146 584 
7  Grass-pasture-mowed 6 22 
8  Hay-windrowed 96 382 
9  Oats 4 16 

10  Soybean-notill 195 777 
11  Soybean-mintill 491 1964 
12  Soybean-clean 119 474 
13  Wheat 41 164 
14  Woods 253 1012 
15  Buildings-Grass-Tree 78 308 
16  Stone-Steel-Towers 19 74 

 Total 2055 8194 

Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Buildings-Grass-Tree 78 308
16
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Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Stone-Steel-Towers 19 74

Total 2055 8194

Table 3. The information of SA dataset, including number of training and test samples.

No. Color Class Train Test

1
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Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Broccoli-green-weeds-1 201 2825
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For the UP and SA datasets, we chose at random 10% labeled samples of each cate-
gory for training and the remaining 90% labeled samples for testing. For the IP dataset, 
we select at random 20% labeled samples of each category as the training set, and the 
remaining 80% labeled samples as the testing set. Tables 1–3 list the land-over category 
details, sample numbers of three datasets and corresponding colors of each category. 
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14  Woods 253 1012 
15  Buildings-Grass-Tree 78 308 
16  Stone-Steel-Towers 19 74 

 Total 2055 8194 

Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Broccoli-green-weeds-2 373 3353
3
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m . After eliminating bands that cannot be reflected by water, the remaining 204 bands 
are generally utilized for the experiment. 

For the UP and SA datasets, we chose at random 10% labeled samples of each cate-
gory for training and the remaining 90% labeled samples for testing. For the IP dataset, 
we select at random 20% labeled samples of each category as the training set, and the 
remaining 80% labeled samples as the testing set. Tables 1–3 list the land-over category 
details, sample numbers of three datasets and corresponding colors of each category. 

Table 1. The information on UP dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Asphalt 664 5967 
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3  Gravel 210 1889 
4  Trees 307 2757 
5  Metal sheets 135 1210 
6  Bare Soil 503 4526 
7  Bitumen 133 1197 
8  Bricks 369 3313 
9  Shadows 95 852 
 Total 4281 38,495 

Table 2. The information on IP dataset, including number of training and test samples. 

No. Color Class Train Test 
1 Alfalfa 10 36 
2 Corn-notill 286 1142 
3  Corn-mintill 166 664 
4  Corn 48 189 
5  Grass-pasture 97 386 
6  Grass-trees 146 584 
7  Grass-pasture-mowed 6 22 
8  Hay-windrowed 96 382 
9  Oats 4 16 

10  Soybean-notill 195 777 
11  Soybean-mintill 491 1964 
12  Soybean-clean 119 474 
13  Wheat 41 164 
14  Woods 253 1012 
15  Buildings-Grass-Tree 78 308 
16  Stone-Steel-Towers 19 74 

 Total 2055 8194 

Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Fallow 198 1178
4
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m . After eliminating bands that cannot be reflected by water, the remaining 204 bands 
are generally utilized for the experiment. 

For the UP and SA datasets, we chose at random 10% labeled samples of each cate-
gory for training and the remaining 90% labeled samples for testing. For the IP dataset, 
we select at random 20% labeled samples of each category as the training set, and the 
remaining 80% labeled samples as the testing set. Tables 1–3 list the land-over category 
details, sample numbers of three datasets and corresponding colors of each category. 

Table 1. The information on UP dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Asphalt 664 5967 
2  Meadows 1865 16,784 
3  Gravel 210 1889 
4  Trees 307 2757 
5  Metal sheets 135 1210 
6  Bare Soil 503 4526 
7  Bitumen 133 1197 
8  Bricks 369 3313 
9  Shadows 95 852 
 Total 4281 38,495 

Table 2. The information on IP dataset, including number of training and test samples. 

No. Color Class Train Test 
1 Alfalfa 10 36 
2 Corn-notill 286 1142 
3  Corn-mintill 166 664 
4  Corn 48 189 
5  Grass-pasture 97 386 
6  Grass-trees 146 584 
7  Grass-pasture-mowed 6 22 
8  Hay-windrowed 96 382 
9  Oats 4 16 

10  Soybean-notill 195 777 
11  Soybean-mintill 491 1964 
12  Soybean-clean 119 474 
13  Wheat 41 164 
14  Woods 253 1012 
15  Buildings-Grass-Tree 78 308 
16  Stone-Steel-Towers 19 74 

 Total 2055 8194 

Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Fallow-rough-plow 140 154
5
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are generally utilized for the experiment. 

For the UP and SA datasets, we chose at random 10% labeled samples of each cate-
gory for training and the remaining 90% labeled samples for testing. For the IP dataset, 
we select at random 20% labeled samples of each category as the training set, and the 
remaining 80% labeled samples as the testing set. Tables 1–3 list the land-over category 
details, sample numbers of three datasets and corresponding colors of each category. 

Table 1. The information on UP dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Asphalt 664 5967 
2  Meadows 1865 16,784 
3  Gravel 210 1889 
4  Trees 307 2757 
5  Metal sheets 135 1210 
6  Bare Soil 503 4526 
7  Bitumen 133 1197 
8  Bricks 369 3313 
9  Shadows 95 852 
 Total 4281 38,495 

Table 2. The information on IP dataset, including number of training and test samples. 

No. Color Class Train Test 
1 Alfalfa 10 36 
2 Corn-notill 286 1142 
3  Corn-mintill 166 664 
4  Corn 48 189 
5  Grass-pasture 97 386 
6  Grass-trees 146 584 
7  Grass-pasture-mowed 6 22 
8  Hay-windrowed 96 382 
9  Oats 4 16 

10  Soybean-notill 195 777 
11  Soybean-mintill 491 1964 
12  Soybean-clean 119 474 
13  Wheat 41 164 
14  Woods 253 1012 
15  Buildings-Grass-Tree 78 308 
16  Stone-Steel-Towers 19 74 

 Total 2055 8194 

Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Fallow-smooth 268 2410
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m . After eliminating bands that cannot be reflected by water, the remaining 204 bands 
are generally utilized for the experiment. 

For the UP and SA datasets, we chose at random 10% labeled samples of each cate-
gory for training and the remaining 90% labeled samples for testing. For the IP dataset, 
we select at random 20% labeled samples of each category as the training set, and the 
remaining 80% labeled samples as the testing set. Tables 1–3 list the land-over category 
details, sample numbers of three datasets and corresponding colors of each category. 

Table 1. The information on UP dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Asphalt 664 5967 
2  Meadows 1865 16,784 
3  Gravel 210 1889 
4  Trees 307 2757 
5  Metal sheets 135 1210 
6  Bare Soil 503 4526 
7  Bitumen 133 1197 
8  Bricks 369 3313 
9  Shadows 95 852 
 Total 4281 38,495 

Table 2. The information on IP dataset, including number of training and test samples. 

No. Color Class Train Test 
1 Alfalfa 10 36 
2 Corn-notill 286 1142 
3  Corn-mintill 166 664 
4  Corn 48 189 
5  Grass-pasture 97 386 
6  Grass-trees 146 584 
7  Grass-pasture-mowed 6 22 
8  Hay-windrowed 96 382 
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10  Soybean-notill 195 777 
11  Soybean-mintill 491 1964 
12  Soybean-clean 119 474 
13  Wheat 41 164 
14  Woods 253 1012 
15  Buildings-Grass-Tree 78 308 
16  Stone-Steel-Towers 19 74 

 Total 2055 8194 

Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 

Stubble-trees 396 3563
7
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For the UP and SA datasets, we chose at random 10% labeled samples of each cate-
gory for training and the remaining 90% labeled samples for testing. For the IP dataset, 
we select at random 20% labeled samples of each category as the training set, and the 
remaining 80% labeled samples as the testing set. Tables 1–3 list the land-over category 
details, sample numbers of three datasets and corresponding colors of each category. 
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 Total 4281 38,495 
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No. Color Class Train Test 
1 Alfalfa 10 36 
2 Corn-notill 286 1142 
3  Corn-mintill 166 664 
4  Corn 48 189 
5  Grass-pasture 97 386 
6  Grass-trees 146 584 
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8  Hay-windrowed 96 382 
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12  Soybean-clean 119 474 
13  Wheat 41 164 
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Table 3. The information of SA dataset, including number of training and test samples. 

No. Color Class Train Test 
1  Broccoli-green-weeds-1 201 2825 
2  Broccoli-green-weeds-2 373 3353 
3  Fallow 198 1178 
4  Fallow-rough-plow 140 154 
5  Fallow-smooth 268 2410 
6  Stubble-trees 396 3563 
7  Celery 358 3221 Celery 358 3221

8

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 20 
 

 

8  Grapes-untrained 1128 10,143 
9  Soil-vineyard-develop 621 5582 

10  Corn-senseced-green-weeds 328 2950 
11  Lettuce-romaine-4 week 107 961 
12  Lettuce-romaine-5 week 193 1734 
13  Lettuce-romaine-6 week 92 824 
14  Lettuce-romaine-7 week 107 963 
15  Vineyard-untrained 727 6541 
16  Vineyard-vertical-trellis 181 1626 

 Total 5418 48,711 
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes (access on 8 No-
vember 2022). 

3.2. Experimental Setup 
All experiments were conducted on a system with an NVIDIA GeForce RTX 2060 

SUPER GPU and 6 GB of RAM. The software environment of the system is TensorFlow 
2.3.0, Keras 2.4.3, and Python 3.6. 

The batch size was set to 16, and the number of training epochs was set to 200. More-
over, we adopted the RMSprop as an optimizer to update the parameters during the train-
ing process, and the learning rate was set to 0.0005. Three evaluation indices were used to 
evaluate the classification performance, i.e., Kappa coefficient (Kappa), average accuracy 
(AA) and overall accuracy (OA). The Kappa measures the consistency between the ground 
truth and the classification results. The AA represents the ratio between the total sample 
numbers of each category and the correctly classified sample numbers. The OA is the pro-
portion of correctly classified samples in the total samples. In theory, the closer these eval-
uation indices utilized in this article are to 1, the better the classification performance will 
be. 

3.3. Parameter Analysis 
In this section, we mainly discussed five vital parameters that impact the classifica-

tion results of our proposed MCFANet, i.e., the spatial sizes, training sample ratios, prin-
cipal component numbers, the convolution kernel numbers in additive link unit and the 
number of additive link units. All experiments used the control variable method to ana-
lyze the influence of the aforementioned five important parameters. 

3.3.1. Effect of the Spatial Sizes 
Different HSI datasets have different feature distributions, and different spatial sizes 

may generate different classification results. Small size results in insufficient receptive 
fields, whereas large size results in more noise, which is to the disadvantage of HSI clas-
sification. Therefore, we fixed other parameters and set the spatial size to 7 7× , 9 9× , 
11 11× , 13 13×  and 15 15×  to analyze their effects on the classification results of our pro-
posed MCFANet for three datasets. The experimental results are provided in Figure 6. 
According to Figure 6, for the UP and IP datasets, the optimal spatial size is 11 11× . For 
the SA dataset, as the spatial size is 13 13×  and 15 15× , three evaluation indices under 
the two conditions are the same. By considering the number of training parameters and 
time, the optimal spatial size was set to 13 13×  for the SA dataset. 

Grapes-untrained 1128 10,143
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numbers of each category and the correctly classified sample numbers. The OA is the pro-
portion of correctly classified samples in the total samples. In theory, the closer these eval-
uation indices utilized in this article are to 1, the better the classification performance will 
be. 

3.3. Parameter Analysis 
In this section, we mainly discussed five vital parameters that impact the classifica-

tion results of our proposed MCFANet, i.e., the spatial sizes, training sample ratios, prin-
cipal component numbers, the convolution kernel numbers in additive link unit and the 
number of additive link units. All experiments used the control variable method to ana-
lyze the influence of the aforementioned five important parameters. 

3.3.1. Effect of the Spatial Sizes 
Different HSI datasets have different feature distributions, and different spatial sizes 

may generate different classification results. Small size results in insufficient receptive 
fields, whereas large size results in more noise, which is to the disadvantage of HSI clas-
sification. Therefore, we fixed other parameters and set the spatial size to 7 7× , 9 9× , 
11 11× , 13 13×  and 15 15×  to analyze their effects on the classification results of our pro-
posed MCFANet for three datasets. The experimental results are provided in Figure 6. 
According to Figure 6, for the UP and IP datasets, the optimal spatial size is 11 11× . For 
the SA dataset, as the spatial size is 13 13×  and 15 15× , three evaluation indices under 
the two conditions are the same. By considering the number of training parameters and 
time, the optimal spatial size was set to 13 13×  for the SA dataset. 
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ing process, and the learning rate was set to 0.0005. Three evaluation indices were used to 
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(AA) and overall accuracy (OA). The Kappa measures the consistency between the ground 
truth and the classification results. The AA represents the ratio between the total sample 
numbers of each category and the correctly classified sample numbers. The OA is the pro-
portion of correctly classified samples in the total samples. In theory, the closer these eval-
uation indices utilized in this article are to 1, the better the classification performance will 
be. 

3.3. Parameter Analysis 
In this section, we mainly discussed five vital parameters that impact the classifica-

tion results of our proposed MCFANet, i.e., the spatial sizes, training sample ratios, prin-
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the two conditions are the same. By considering the number of training parameters and 
time, the optimal spatial size was set to 13 13×  for the SA dataset. 
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cipal component numbers, the convolution kernel numbers in additive link unit and the 
number of additive link units. All experiments used the control variable method to ana-
lyze the influence of the aforementioned five important parameters. 

3.3.1. Effect of the Spatial Sizes 
Different HSI datasets have different feature distributions, and different spatial sizes 

may generate different classification results. Small size results in insufficient receptive 
fields, whereas large size results in more noise, which is to the disadvantage of HSI clas-
sification. Therefore, we fixed other parameters and set the spatial size to 7 7× , 9 9× , 
11 11× , 13 13×  and 15 15×  to analyze their effects on the classification results of our pro-
posed MCFANet for three datasets. The experimental results are provided in Figure 6. 
According to Figure 6, for the UP and IP datasets, the optimal spatial size is 11 11× . For 
the SA dataset, as the spatial size is 13 13×  and 15 15× , three evaluation indices under 
the two conditions are the same. By considering the number of training parameters and 
time, the optimal spatial size was set to 13 13×  for the SA dataset. 
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over, we adopted the RMSprop as an optimizer to update the parameters during the train-
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portion of correctly classified samples in the total samples. In theory, the closer these eval-
uation indices utilized in this article are to 1, the better the classification performance will 
be. 

3.3. Parameter Analysis 
In this section, we mainly discussed five vital parameters that impact the classifica-

tion results of our proposed MCFANet, i.e., the spatial sizes, training sample ratios, prin-
cipal component numbers, the convolution kernel numbers in additive link unit and the 
number of additive link units. All experiments used the control variable method to ana-
lyze the influence of the aforementioned five important parameters. 

3.3.1. Effect of the Spatial Sizes 
Different HSI datasets have different feature distributions, and different spatial sizes 

may generate different classification results. Small size results in insufficient receptive 
fields, whereas large size results in more noise, which is to the disadvantage of HSI clas-
sification. Therefore, we fixed other parameters and set the spatial size to 7 7× , 9 9× , 
11 11× , 13 13×  and 15 15×  to analyze their effects on the classification results of our pro-
posed MCFANet for three datasets. The experimental results are provided in Figure 6. 
According to Figure 6, for the UP and IP datasets, the optimal spatial size is 11 11× . For 
the SA dataset, as the spatial size is 13 13×  and 15 15× , three evaluation indices under 
the two conditions are the same. By considering the number of training parameters and 
time, the optimal spatial size was set to 13 13×  for the SA dataset. 
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2.3.0, Keras 2.4.3, and Python 3.6. 

The batch size was set to 16, and the number of training epochs was set to 200. More-
over, we adopted the RMSprop as an optimizer to update the parameters during the train-
ing process, and the learning rate was set to 0.0005. Three evaluation indices were used to 
evaluate the classification performance, i.e., Kappa coefficient (Kappa), average accuracy 
(AA) and overall accuracy (OA). The Kappa measures the consistency between the ground 
truth and the classification results. The AA represents the ratio between the total sample 
numbers of each category and the correctly classified sample numbers. The OA is the pro-
portion of correctly classified samples in the total samples. In theory, the closer these eval-
uation indices utilized in this article are to 1, the better the classification performance will 
be. 

3.3. Parameter Analysis 
In this section, we mainly discussed five vital parameters that impact the classifica-

tion results of our proposed MCFANet, i.e., the spatial sizes, training sample ratios, prin-
cipal component numbers, the convolution kernel numbers in additive link unit and the 
number of additive link units. All experiments used the control variable method to ana-
lyze the influence of the aforementioned five important parameters. 

3.3.1. Effect of the Spatial Sizes 
Different HSI datasets have different feature distributions, and different spatial sizes 

may generate different classification results. Small size results in insufficient receptive 
fields, whereas large size results in more noise, which is to the disadvantage of HSI clas-
sification. Therefore, we fixed other parameters and set the spatial size to 7 7× , 9 9× , 
11 11× , 13 13×  and 15 15×  to analyze their effects on the classification results of our pro-
posed MCFANet for three datasets. The experimental results are provided in Figure 6. 
According to Figure 6, for the UP and IP datasets, the optimal spatial size is 11 11× . For 
the SA dataset, as the spatial size is 13 13×  and 15 15× , three evaluation indices under 
the two conditions are the same. By considering the number of training parameters and 
time, the optimal spatial size was set to 13 13×  for the SA dataset. 
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numbers of each category and the correctly classified sample numbers. The OA is the pro-
portion of correctly classified samples in the total samples. In theory, the closer these eval-
uation indices utilized in this article are to 1, the better the classification performance will 
be. 

3.3. Parameter Analysis 
In this section, we mainly discussed five vital parameters that impact the classifica-
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3.3. Parameter Analysis

In this section, we mainly discussed five vital parameters that impact the classification
results of our proposed MCFANet, i.e., the spatial sizes, training sample ratios, principal
component numbers, the convolution kernel numbers in additive link unit and the number
of additive link units. All experiments used the control variable method to analyze the
influence of the aforementioned five important parameters.

3.3.1. Effect of the Spatial Sizes

Different HSI datasets have different feature distributions, and different spatial sizes
may generate different classification results. Small size results in insufficient receptive fields,
whereas large size results in more noise, which is to the disadvantage of HSI classification.
Therefore, we fixed other parameters and set the spatial size to 7× 7, 9× 9, 11× 11, 13× 13
and 15× 15 to analyze their effects on the classification results of our proposed MCFANet
for three datasets. The experimental results are provided in Figure 6. According to Figure 6,
for the UP and IP datasets, the optimal spatial size is 11× 11. For the SA dataset, as the
spatial size is 13× 13 and 15× 15, three evaluation indices under the two conditions are
the same. By considering the number of training parameters and time, the optimal spatial
size was set to 13× 13 for the SA dataset.
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3.3.2. Effect of the Training Sample Ratios

The training sample ratios have a great effect on the HSI classification performance.
In order to evaluate the robustness and generalization of the proposed MCFANet, we
randomly choose 1%, 3%, 5%, 7%, 10%, 20% and 30% labeled samples for training and the
remaining labeled samples for testing. The experimental results are provided in Figure 7.
According to Figure 7, for three experimental datasets, it can be seen that as the training
sample ratio is 1%, three evaluation indices are the lowest. With the increase in training
sample ratios, three evaluation indices gradually improve. For the UP and SA datasets,
as the training sample ratio is 10%, three evaluation indices reach a relatively stable level.
For the IP dataset, as the training sample ratio is 20%, three evaluation indices reach a
relatively stable level. This is because the UP and SA datasets have sufficient labeled
samples, so even though the training sample ratio is small, our proposed method can still
obtain high classification accuracies. In contrast, the IP dataset contains relatively small
labeled samples, which means that the training ratio needs to be large for the proposed
method to achieve good classification results. Therefore, the best training sample ratio for
the UP and SA datasets is 10%, and the best training sample ratio for the IP dataset is 20%.
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3.3.3. Effect of the Principal Component Numbers

HSI contains hundreds of spectral bands, and they are highly correlated with each other,
leading to the existence of redundant information that is not conducive to the classification
task. We performed PCA on the raw HSI dataset to reduce the training parameters of the
proposed method by reducing the number of spectral bands of the original HSI dataset. We
set the number of principal components to 5, 10, 20, 30 and 40 to evaluate their effects on the
classification results of our proposed MCFANet for three datasets. The experimental results
are provided in Figure 8. According to Figure 8, for the IP and SA datasets, as the number
of the principal components is 20, three evaluation indices are obviously superior to other
conditions. For the UP dataset, as the principal components numbers are 20, three evaluation
indices are 99.82%, 99.62% and 99.80%. As the number of principal components is 40, three
evaluation indices are 99.87%, 99.63% and 99.83%. Although the three evaluation indices of
the former are 0.05%, 0.01% and 0.03% lower than those of the latter, in contrast, the former
needs fewer training parameters and training time. Therefore, the optimal number of principal
components for three datasets is 20.
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3.3.4. Effect of the Number of Convolutional Kernels in Additive Link Units

The ALU is composed of a spatial feature extraction factor and a spectral feature ex-
traction factor, which are similar to traditional 3D convolutional operations. Therefore, the
number of output feature maps of ALU directly impacts the complexity and classification
performance of the proposed method. We set the number of convolutional kernels in ALU
to 2, 4, 8, 16, 32 and 64 to evaluate their effects on the classification results for three datasets.
The experimental results are provided in Figure 9. According to Figure 9, for three datasets,
it is clear that as the convolutional kernel number is 16, three evaluation indices are the
most advantageous, and the proposed method has the best classification performance.
Hence, the optimal number of convolutional kernels for three datasets is 16.
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3.3.5. Effect of the Number of Additive Link Units

Our proposed MCFANet is composed of three parallel branches, and each branch
includes multiple ALUS. A small amount of ALU leads to insufficient feature extraction,
whereas too many ALUs lead to cause problems such as overfitting, a more complex
structure of the model and gradient explosion, which are not conducive to HSI classification.
Therefore, we set the number of ALUs to 2, 3, 4 and 5 to evaluate their effects on the
classification results of our proposed MCFANet for three datasets. The experimental results
are provided in Figure 10. According to Figure 10, the optimal number of ALUs for UP and
SA datasets is 3. For the IP dataset, as the number of ALUs is 3, three evaluation indices
are 99.61%, 99.72% and 99.55%. As the number of ALUs is 5, three evaluation indices are



Remote Sens. 2022, 14, 5778 12 of 19

99.68%, 99.69% and 99.64%. Although the OA and Kappa of the former are 0.07% and 0.09%
lower than those of the latter, in contrast, the former needs fewer training parameters and
training time. All things considered, the optimal number of ALUs for the IP dataset is 3.
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3.4. Ablation Study

Our presented MCFANet involves two submodules: CFEM and RAM. In order to more
comprehensively prove the validity of each module, ablation studies were implemented
on three benchmark datasets, i.e., not using CFEM (named Netwok1), not using RAM
(named Network 2) and using the combination CFEM and RAM (named Network 3). The
experimental results are provided in Figure 11. From Figure 11, it is clear that Network 1
has the worst classification accuracies. For example, for the IP dataset, three evaluation
indices are 2.37%, 3.13% and 3.05% lower than those of Network 3. In contrast, the
classification performance of Network 2 has remarkable improvement. For example, for the
UP dataset, three evaluation indices of Network 2 are 2.02%, 3.94% and 2.69% higher than
those of Network 1. By comparison, Network 3 has superior classification results, which
indicates that our devised CFEM has a greater effect on the classification performance of
the presented model, and RAM can further enhance the classification results.
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3.5. Comparison Methods Discussion

In order to verify the performance of our presented MCFANet, we utilized eleven
classical methods for comparison experiments, which can be divided into two categories.
One is based on traditional machine learning: SVM, RF, KNN and GuassianNB, which take
all spectral bands as input. Another is based on deep learning: spectral–spatial residual
network (SSRN) [53] is a 3D CNN, which uses spatial and spectral residual blocks to capture
spectral–spatial features; fast, dense spectral–spatial convolution network (FDSSC) [54]
utilizes different 3D convolutional kernel sizes based on dense connection to extract spatial
and spectral features separately; HybridSN [55] combines one 2D convolutional layer
and three 3D convolutional layers; Hybrid 3D/2D CNN (3D_2D_CNN) [56] is similar
to HybridSN, which splices together 2D CNN components with 3D CNN components;
multibranch 3D-dense attention network (MBDA) [57] exploits 3D CNNs to obtain spectral–
spatial information and designs spatial attention mechanisms to enhance the spatial feature
representations; multiscale residual network (MSRN) [50] constructs a multiscale residual
block with mixed depthwise convolution to achieve multiscale feature learning. Tables 4–6
provide the classification results of different methods on three experimental datasets.
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Table 4. The classification accuracies of comparison approaches on the UP dataset.

No. SVM RF KNN GuassianNB SSRN FDSSC 2D_3D_CNN HybridSN MBDA MSRN MCFANet

1 76.52 91.60 89.71 96.50 99.67 98.38 97.98 98.78 99.62 98.99 99.88
2 80.59 89.08 86.46 79.14 98.89 99.77 99.29 99.97 99.83 99.94 99.94
3 81.03 80.01 68.51 30.41 96.30 85.04 97.39 93.30 100.00 99.46 99.95
4 95.85 93.32 96.33 44.02 99.72 100.00 99.47 96.55 98.99 93.16 99.53
5 99.59 99.33 99.66 79.47 99.92 100.00 99.77 95.92 99.76 40.58 99.51
6 94.25 88.88 82.82 39.15 99.72 99.36 98.85 99.96 100.00 100.00 99.91
7 0.00 84.70 76.32 38.91 85.39 100.00 96.81 97.15 100.00 33.78 99.92
8 64.73 79.05 77.29 70.03 96.07 99.97 93.83 91.51 99.26 91.38 99.67
9 99.88 100.00 100.00 100.00 96.15 100.00 99.33 99.25 95.15 74.98 99.29

OA 80.21 88.84 86.01 65.87 98.23 98.71 98.42 98.23 99.61 87.22 99.85
AA 66.47 85.35 82.34 72.57 97.89 98.29 97.43 95.80 99.15 88.86 99.62

Kappa×100 72.39 84.93 81.05 56.61 97.70 98.29 97.90 97.65 99.48 83.38 99.80
FLOPs (×106) - - - - 1.39 0.51 0.51 10.24 0.48 0.32 1.13
Test Time (s) - - - - 9.33 11.89 0.87 10.32 10.86 10.88 17.82

Table 5. The classification accuracies of comparison approaches on the IP dataset.

No. SVM RF KNN GuassianNB SSRN FDSSC 2D_3D_CNN HybridSN MBDA MSRN MCFANet

1 0.00 83.33 11.76 42.50 100.00 0.00 97.62 90.91 97.62 86.36 94.74
2 61.21 72.33 48.73 40.95 94.98 95.38 88.17 97.04 97.09 91.27 99.56
3 78.31 79.57 56.67 23.28 97.16 96.10 87.61 99.46 98.42 96.98 99.85
4 81.82 73.33 52.59 9.04 89.77 100.00 87.80 98.20 100.00 100.00 100.00
5 93.58 89.01 83.33 2.75 99.06 91.65 94.06 94.53 97.52 95.81 100.00
6 79.09 79.80 77.58 67.59 97.76 99.69 93.92 99.53 99.84 99.22 99.83
7 0.00 100.00 88.33 100.00 100.00 0.00 95.45 85.00 100.00 78.57 100.00
8 84.86 92.10 88.32 83.13 100.00 91.10 97.50 96.41 100.00 100.00 100.00
9 0.00 0.00 50.00 11.11 66.67 0.00 100.00 100.00 100.00 100.00 100.00
10 72.83 99.37 65.23 23.34 97.63 99.76 90.85 99.40 100.00 98.28 99.36
11 56.77 75.59 70.69 63.73 94.48 99.41 90.73 99.05 99.45 99.95 99.49
12 45.48 59.96 64.46 15.79 96.64 93.84 90.93 89.43 90.81 94.14 99.57
13 87.43 91.95 80.30 87.92 98.92 98.92 80.53 98.40 100.00 100.00 98.80
14 85.90 90.69 91.85 75.14 97.70 99.65 98.75 96.67 98.44 98.87 100.00
15 81.82 76.40 59.86 62.71 89.38 99.14 92.43 98.79 99.71 99.71 100.00
16 98.46 98.46 98.48 100.00 100.00 97.53 94.12 94.05 80.61 85.42 94.87

OA 68.89 79.00 69.45 47.84 96.04 97.45 91.65 97.45 98.21 97.27 99.61
AA 53.09 67.73 61.98 50.53 93.42 79.61 85.30 92.52 96.58 92.80 99.72

Kappa × 100 63.51 75.80 65.01 41.22 95.48 97.09 90.44 97.09 97.96 96.88 99.55
FLOPs (×106) - - - - 0.17 3.81 0.52 10.24 0.48 0.32 0.80
Test Time (s) - —- - - 2.23 5.65 0.31 2.43 7.40 0.88 6.52

Table 6. The classification accuracies of comparison approaches on the SA dataset.

No. SVM RF KNN GuassianNB SSRN FDSSC 2D_3D_CNN HybridSN MBDA MSRN MCFANet

1 100.00 99.89 99.83 99.87 100.00 100.00 100.00 100.00 100.00 100.00 100.00
2 99.08 99.67 99.26 99.53 99.69 100.00 99.92 100.00 100.00 100.00 100.00
3 92.14 95.05 91.06 89.46 99.57 92.60 99.95 100.00 100.00 100.00 100.00
4 97.94 98.57 97.50 97.09 99.24 98.81 97.99 99.77 96.15 90.31 99.92
5 97.87 98.96 98.26 97.28 99.21 99.96 99.41 99.84 100.00 100.00 99.92
6 99.92 99.92 100.00 99.97 100.00 100.00 100.00 100.00 100.00 100.00 100.00
7 98.02 99.57 99.16 97.78 100.00 100.00 99.85 100.00 99.97 100.00 100.00
8 70.12 77.56 72.88 74.36 99.47 99.92 97.36 99.67 99.73 98.31 100.00
9 98.78 98.87 99.09 98.90 100.00 99.58 99.81 100.00 100.00 100.00 100.00
10 87.86 93.91 89.89 59.84 99.13 99.86 98.97 100.00 100.00 97.67 99.90
11 92.96 93.68 91.81 31.16 98.02 96.75 97.00 98.16 95.56 99.31 99.38
12 94.95 96.88 95.14 91.76 99.56 99.89 99.40 100.00 99.89 99.89 100.00
13 92.50 96.83 94.45 94.62 100.00 100.00 98.31 100.00 99.89 100.00 99.88
14 97.45 97.59 96.63 67.90 99.60 100.00 100.00 99.61 95.58 96.69 100.00
15 81.99 78.56 60.28 45.88 84.27 89.34 97.39 99.71 99.83 96.56 100.00
16 98.97 98.81 99.00 85.79 99.82 100.00 100.00 100.00 100.00 99.94 100.00

OA 88.54 91.22 87.29 76.77 97.20 97.93 98.81 99.83 99.63 98.68 99.97
AA 92.60 95.16 93.13 86.26 98.75 98.99 99.11 99.87 99.63 99.04 99.96

Kappa × 100 87.18 90.21 85.85 74.46 96.89 97.70 98.67 99.82 99.58 98.53 99.97
FLOPs (×106) - - - - 4.15 3.93 0.52 10.24 0.48 0.32 1.13
Test Time (s) - - - - 16.57 25.81 4.70 15.58 12.69 14.59 30.91

First, as shown in Tables 4–6, it can be seen that our developed MCFANet achieves
excellent classification performance and has the highest classification accuracies in most
categories. For the UP dataset, compared with other methods, the OA, AA and Kappa
of the proposed MCFANet have an increase of approximately 0.34–33.98%, 0.47–33.15%
and 0.32–43.17%, respectively. For the IP dataset, the OA, AA and Kappa of the proposed
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MCFANet have an increase of approximately 1.4–51.77%, 3.15–49.19% and 1.5~58.33%,
respectively. For the SA dataset, the OA, AA and Kappa of the proposed MCFANet have an
increase of approximately 0.14–23.20%, 0.09–13.7% and 0.15–25.51%, respectively. Overall,
compared with seven deep learning-based classification approaches, SVM, RF, KNN and
GuassianNB have lower classification accuracies, of which GuassianNB performs the
worst. This is because they only capture features in the spectral domain and neglect ample
spatial features. In addition, they need to rely on the prior information of experienced
experts, leading to inferior robustness and generalization ability. Due to the hierarchical
structure, seven methods based on deep learning can extract low-, middle- and high-level
spectral–spatial features automatically and obtain decent classification accuracies.

Second, MBDA, MSRN and our proposed MCFANet adopted the multiscale feature
extraction strategy. MBDA uses three parallel branches with a convolutional kernel with
different sizes to capture multiscale spectral–spatial features. MSRN utilizes a multiscale
residual block to perform multiscale feature extraction, which is composed of depthwise
separable convolution with mixed depthwise convolution. It is clear from Tables 4–6 of the
three methods that our proposed MCFANet obtains superior classification performance.
For the UP dataset, three evaluation indices of the proposed MCFANet are 0.34%, 0.47%
and 0.32% higher than those of MBDA and are 12.63%, 10.76% and 16.42% higher than
those of MSRN. For the IP dataset, three evaluation indices of the proposed MCFANet
are 1.4%, 3.15% and 1.59% higher than those of MBDA and are 2.34%, 6.90% and 2.67%
higher than those of MSRN. For the SA dataset, three evaluation indices of the proposed
MCFANet are 0.34%, 0.33% and 0.39% higher than those of MBDA and are 1.29%, 0.92% and
1.44% higher than those of MSRN. This is because compared with MBDA and MSRN, our
proposed MCFANet can introduce not only multiple available, receptive fields to capture
multiscale spectral–spatial features but also utilize dense connection and cross transmission
to aggregate spectral–spatial features from different layers and branches.

Third, according to Tables 4–6, we also can obviously see that the evaluation indices
of MBDA occupy the second place. This is because MBDA builds a spatial attention
module to focus on spatial features that are related to HSI classification. Our proposed
MCFANet also constructs a RAM to enhance spectral–spatial features and achieve the
greatest classification accuracies. These indicate that the attention mechanism can boost
classification performance to a certain degree. For the UP dataset, three evaluation indices
of the proposed MCFANet are 0.34%, 0.47% and 0.32% higher than those of MBDA. For
the IP dataset, three evaluation indices of the proposed MCFANet are 1.4%, 3.15% and
1.59% higher than those of MBDA. For the SA dataset, three evaluation indices of the
proposed MCFANet are 0.34%, 0.33% and 0.39% higher than those of MBDA. This is
because our designed RAM can not only focus on adaptively reweighting the significance
of spectral-wise and spatial-wise features but also introduce the shifted cascade operation to
replume the obtained attention-enhanced features to achieve more discriminative spectral–
spatial features while dispelling redundant information and noise and thus, improving the
classification performance.

Furthermore, as shown in Tables 4–6, it is clear that compared with six DL-based clas-
sification approaches, the FLOPs and test time of our proposed MCFANet are not the least,
which indicates that our presented method still has some shortcomings. This could be because
our designed CFEM includes different parallel branches, and the spectral–spatial information
between branches is shared with each other; the spectral–spatial features at different scales
and branches are effectively integrated, but the structure of our developed model and the test
time is relatively large and not superior. Therefore, how to shorten the test time and reduce
the complexity of the proposed MCFANet is still a problem worth studying.

Moreover, Figures 12–14 provide the classification visual result maps of eleven com-
parison methods on the three experimental datasets. In contrast, SVM, RF, KNN and
GuassianNB have coarse classification maps and contain vast noise and high misclassifi-
cation rates. The classification maps of SSRN, FDSSC, 3D_2D_CNN, HybridSN, MBAN,
MSRN and MCFANet have significantly improved and become clear. By comparison, the
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classification maps of our developed MCFANet are smoother and more accurate and are
highly consistent with the ground-truth map on the three public datasets.
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4. Conclusions

In this article, we developed a multibranch crossover feature attention network (MC-
FANet) for HSI classification. The MCFANet includes two main functional submodules:
a cross feature extraction module (CFEM) and rearranged attention module (RAM). The
former is designed to capture spectral–spatial features at different convolutional layers,
scales and branches, which can increase the diversity and complementarity of spectral–
spatial information. While the latter is constructed to not only adaptively pay attention to
recalibrating spatial-wise and spectral-wise feature responses but also exploit the shifted
cascade operation to rearrange the obtained attention-enhanced features to dispel redun-
dant information and noise and, thus, improve the classification accuracy. The experimental
results of plentiful comparison experiments and ablation studies demonstrate that our
proposed MCFANet obtains superior classification accuracies on three benchmark datasets
and has robust generalization ability while it can be extended to other HSI datasets.

Labeling the HSI pixels is expensive and time-consuming, and HSI contains limited
labeled samples, therefore in future work, we will apply the semi-supervised or unsuper-
vised classification approaches and data enhancement techniques to HSI classification to
deal with the above problem of lack of labeled samples.
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