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A Multilevel Hybrid Transmission Network for
Infrared and Visible Image Fusion

Qingqing Li , Guangliang Han , Peixun Liu , Hang Yang , Dianbing Chen , Xinglong Sun ,

Jiajia Wu , and Dongxu Liu

Abstract— Infrared and visible image fusion aims to generate
an image with prominent target information and abundant
texture details. Most existing methods generally rely on manually
designing complex fusion rules to realize image fusion. Some
deep learning fusion networks tend to ignore the correlation
between different level features, which may cause loss of intensity
information and texture details in the fused image. To overcome
these drawbacks, we propose a multilevel hybrid transmission
network for infrared and visible image fusion, which mainly
contains the multilevel residual encoder module (MREM) and
the hybrid transmission decoder module (HTDM). Considering
the great difference between infrared and visible images, the
MREM with two independent branches is designed to extract
abundant features from source images. To avoid complicated
fusion strategies, the concatenate convolution is applied to fuse
features. Toward utilizing information from source images effi-
ciently, the HTDM is constructed to integrate different level
features. Experimental results and analyses on three public
datasets demonstrate that our method not only can achieve high-
quality image fusion, but also performs better than comparison
methods in terms of qualitative and quantitative comparisons.
In addition, the proposed method has good real-time performance
in infrared and visible image fusion.

Index Terms— Decoder module, encoder module, hybrid trans-
mission, image fusion, multilevel.

I. INTRODUCTION

IMAGE fusion is a significant technology in the field
of computer vision, which can reduce the difficulty of

image analysis and understanding by integrating images from
different sensors into one image. Thus, it is widely applied in
military, remote sensing, and surveillance [1]–[3].

With the development of sensors, infrared and visible image
fusion has become a hot topic due to their strong informa-
tion complementarity. Infrared sensors can capture thermal
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radiations emitted by objects so that it is able to distinguish
targets from the background and is immune to variations of
illumination and weather. However, infrared images have low
spatial resolution and lack detailed textures. Visible images
have the advantages of rich texture information and high
resolution, but they are susceptible to weather and illumination
[4]. Therefore, scholars focus on integrating infrared and
visible images into a high-quality image with salient target
information and rich texture details to provide sufficient infor-
mation for computer vision tasks, such as object detection,
recognition, and tracking [5].

Various image fusion methods have been developed
in recent years, which can be divided into three domi-
nant categories: multiscale transform-based methods, repre-
sentation learning-based methods, and deep learning-based
methods [6], [7].

The multiscale transform-based methods usually transform
images into frequency domain to obtain different scale fea-
tures. These features are combined through suitable rules to
generate the fused image [8]. The dual-tree complex wavelet
transform is a typical multiscale transform-based image fusion
method, which can resolve the shift variance and the lack
of directionality problems [9], [10]. For extracting plentiful
direction information of source images, contourlet transform
is proposed [11]. Non-subsampled contourlet transform is
an improved form of contourlet transform, which has flex-
ibility and shift invariance [12], [13]. In order to describe
the structure information of the image preferably, shearlet
transform is raised [14]. Non-subsampled shearlet transform
is a modified method based on shearlet transform, which
can achieve more precise directional decomposition [15]. The
above image fusion methods based on multiscale transform
need to transform images to the frequency domain, which
may result in unrecoverable loss of information during the
transformation process [16].

Different from multiscale transform-based methods, rep-
resentation learning-based methods fuse images without
transformation. Sparse representation is utilized to extract
common and complementary information from source images
to produce the high-quality fused image [17]. For solving the
problem that sparse representation-based methods are sensitive
to misregistration, Liu et al. [18] propose the convolutional
sparse representation to fuse multimodal images. In recent
years, image fusion methods based on the latent low-rank
representation have attracted lots of attentions [19]–[21].
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These methods decompose input images into base and detail
layers, which is conducive to design fusion strategies. Never-
theless, fusion methods based on representation learning are
usually complex, which leads to the degradation of fusion
performance and increase of running time [16]. In addition,
both multiscale transform-based and representation learning-
based methods require to manually design complicated activity
level measurements and fusion rules [22].

In the past few years, deep learning-based methods have
released huge potential in infrared and visible image fusion
task [23]. The convolutional neural networks (CNNs) can
extract multilevel deep features containing rich information,
which is beneficial for image fusion. Li et al. [24] employ
CNNs to effectively extract and integrate the features of
infrared and visible images to finish image fusion. To get
more useful features from source images, the dense block
and nest connections are introduced to the fusion network
[25]. Although these methods can generate satisfactory fusion
images, they still rely on establishing traditional fusion rules
(such as average, addition, l1-norm, and attention-based) [16],
[25], [26]. To avoid designing fusion strategies, the gener-
ative adversarial network is applied to image fusion. [27].
For example, Ma et al. [22] propose the GAN-based fusion
method (FusionGAN) network to realize infrared and visible
image fusion. Then, to improve the fusion performance of
FusionGAN, Ma et al. [28] modify the loss function. However,
these methods usually ignore the correlation between different
level features and preserve insufficient detail information of
source images [29].

To tackle these drawbacks above, we propose a multilevel
hybrid transmission network for infrared and visible image
fusion (MHTNet). The main contributions of this article are
summarized as follows.

1) Considering the great difference between infrared
and visible images, this article designs two indepen-
dent branches containing a series of residual encoder
blocks (REBs) to extract sufficient features of different
levels from infrared and visible images, respectively.

2) Different from some fusion networks, the complex
traditional fusion rule is replaced by the concatenate
convolution (CC) to fuse infrared and visible features
at the same level.

3) A hybrid transmission decoder module (HTDM) is pro-
posed to improve the fusion performance by using fea-
tures from encoder module adequately, which includes
cross transmission and hybrid transmission. The former
aims to make the information at different levels com-
plement each other, and the latter is on the purpose of
compensating for information loss in the decoding stage.

4) Extensive experiments are carried out on three public
datasets. Experimental results demonstrate that the pro-
posed network can comprehensively enhance the quality
of infrared and visible fusion image and transcends com-
parison methods in terms of qualitative and quantitative
analyses.

The rest of this article is organized as follows. In Section II,
the related work on residual block is introduced. In Section III,

Fig. 1. Structural schematic of residual block.

the proposed infrared and visible image fusion network is
described in detail. In Section IV, information about the exper-
imental datasets and settings is given. In Section V, the self-
comparison experiments, evaluation of experimental results,
and the analyses of running time are discussed. In Section VI,
conclusions are presented.

II. RELATED WORK

With the increase of network depth, the training accuracy
will reach a saturation state and then deteriorate rapidly.
He et al. [30] design a residual structure to address the above
problem. The architecture of residual block is given in Fig. 1,
and its mathematical representation is expressed as follows:

F(x) = �(x) + x (1)

where x and F(x) represent the input and output of the
residual block, respectively, and �(x) indicates the network
operation which contains two weight layers.

As shown in Fig. 1, the multilayer information is utilized
effectively through the “short-connection,” which is beneficial
for compensating the feature loss. Thus, residual block is
widely used in image fusion. For example, Jian et al. [31]
design a symmetric encoder–decoder infrared and visible
image fusion network, which applies residual connection at
the last layer of encoder to compensate for information loss.
Li et al. [32] propose an infrared and visible image fusion
method based on ResNet50 to fully utilize deep features.
Mustafa et al. [33] present an end-to-end fusion network,
which improves the quality of infrared and visible image
fusion by residual attention module.

In view of the advantages of residual block and its good
performance in the field of image fusion, the residual structure
is also employed in our proposed fusion network.

III. PROPOSED INFRARED AND VISIBLE IMAGE

FUSION METHOD

A. Overall Framework

This article proposes an MHTNet. The detailed structure
and settings of MHTNet are provided in Fig. 2 and Table I.
As shown in Fig. 2, MHTNet can be divided into four steps:
initializing, feature encoding, feature decoding, and outputting
the fused image.
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Fig. 2. Architecture of the proposed MHTNet.

TABLE I

DETAILED SETTINGS OF THE PROPOSED MHTNET, INCLUDING THE
CONVOLUTIONAL KERNEL SIZE (SIZE), STRIDE, INPUT CHANNEL,

AND OUTPUT CHANNEL OF EACH LAYER. NIN AND NC

REPRESENT THE NUMBER OF CATEGORIES OF FEATURES THAT

ARE ENTERED INTO CC AND RDB, RESPECTIVELY

1) Initializing: The infrared and visible images are, respec-
tively, sent to the Conv-in layer to obtain the initialized feature
maps.

2) Feature Encoding: The initialized feature maps of
infrared and visible images are transferred to the multilevel
residual encoder module (MREM) to extract different level
features. Considering the great difference between infrared
and visible images, MREM is consisted of two independent
branches so as to obtain appropriate network model parameters
and effective features. Each branch contains a series of REBs,
which ensures the richness of feature information. In addition,
in the encoding stage, in order to avoid the complicated
fusion rules and decrease computation of the fusion network,
infrared and visible features at the same level are fused by
the CC.

3) Feature Decoding: Features from MREM are sent to the
HTDM to communicate adequately. Different level features
generally have certain differences; thus, in the decoding stage,
features from MREM are first divided into low level and high
level and encoded by two branches. The network structures
of the two branches are identical, which ensures that the
dimensions of features from the corresponding module of
different branches are the same and provides convenience
for the transmission of features between different levels.
Moreover, HTDM aims to transfer features of different levels
to the fused image effectively, which includes two specific
transmission ways: cross transmission and skip transmission.
The purpose of cross transmission is to realize information
complementation of different level features, while the purpose
of skip transmission is to compensate for information loss in
decoding process.

4) Outputting the Fused Image: Features from HTDM are
sent to the Conv-out layer to generate the fused image.

Authorized licensed use limited to: Changchun Inst of Optics Fine Mechanics & Physics. Downloaded on February 07,2023 at 03:07:32 UTC from IEEE Xplore.  Restrictions apply. 



5016114 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 71, 2022

Fig. 3. Schematic of REB and CC.

In the above steps, MREM and HTDM are two pivotal
components of MHTNet. These two parts are introduced in
detail in the following.

B. Multilevel Residual Encoder Module

With the development of deep learning networks, a progres-
sive structure named residual network is proposed to solve the
degradation problem and increase training speed [30]. Residual
network is easier to optimize and can provide satisfactory
accuracy by increasing the network depth [32]. On account
of its great advantages in training, residual network has been
widely used in various visual tasks, such as hyperspectral clas-
sification, saliency detection, image segmentation, and target
detection [34]–[37]. Furthermore, the residual network can
adequately utilize multilevel information to extract features
effectively and strengthen feature propagation ability [38].
Inspired by the above advantages of residual network, we raise
an MREM to capture richer feature information of infrared and
visible images.

As shown in Fig. 2, infrared and visible images are first
initialized by Conv-in to derive two sets of feature maps
with the size 256 × 256 × 16; then, these feature maps
are sent to MREM. MREM is consisted of two independent
residual encoder branches and a series of CCs. Each branch of
MREM deals with features from infrared and visible images,
respectively, which contains four REBs. REBs obtain infor-
mation at different levels from source images. In the process
of encoding, the features of infrared and visible images at
the same level are fused through CC. The schematic of REB
and CC is given in Fig. 3. W , H , and C denote the width,
height, and amount of channel of feature maps, respectively,
where W = H = 256 and C = 16. Combining Figs. 2 and 3,
it can be seen that feature maps produced by REB have two
applications, one is be sent to the next REB and the other is
to be sent to CC for fusion. REB and CC are introduced as
follows.

1) REB: REB aims to extract feature maps with rich
information through the residual connection. As shown
in Fig. 3, REB consists of two 3 × 3 convolution layers,
a batch normalization layer, a ReLU activation layer, and
an add operation. Add operation is used to compensate

for information loss in network computing, which can
be written as follows:
FMout(i) = FMpre(i) + FMcur(i), i = 1, 2, 3, . . . , C

(2)

where FMpre, FMcur, FMout are the previous layer feature
maps of REB, the current layer feature maps generated
by REB before adding operation, and the output feature
maps of REB, respectively, and i represents the sequence
number of feature map channels.

2) CC: The function of CC is to fuse infrared and visible
encoding features at the same level. As shown in
Fig. 3, CC is composed of a 5 × 5 convolution and
a concatenate operation. The concatenate operation is
used to arrange feature maps from the same level REB
in a column, which can be described as follows:
FMcat = [FM1; FM2; . . . ; FMn; . . . ; FMN ],

n = 1, 2, 3, . . . , N (3)

in which, the size of FMn is W × H × C , and the size
of FMcat is W × H × (N × C). In this article, there are
two modal images; thus, N = 2. FM1 and FM2 express
the output of the same level REB on different encoder
branches.

According to (3), the concatenate operation changes the
dimension of feature maps. To ensure the uniformity of the
dimension, a convolution with the size 5 × 5 is added after
the concatenate operation. It can adjust the size of feature maps
to W × H × C so as to provide convenience for subsequent
decoding process.

C. Hybrid Transmission Decoder Module

In recent years, to satisfy higher task requirements, some
scholars have improved network performance by integrating
features of different layers. Luo et al. [39] design an LF3Net
to increase the accuracy of salient detection, which utilizes
the Stackelberg theory to make the low-level and high-level
features to complement each other with a competitive way.
Guo et al. [40] improve the dehazing capability of the network
by fusing different level features. Ma et al. [41] present a
hybrid network to improve the classification accuracy of hyper-
spectral images by mixing different level features. Inspired by
above researches, this article designs an innovative HTDM to
enhance the infrared and visible image fusion ability of the
proposed network.

As shown in Fig. 4, for the purpose of obtaining para-
meters adapted to different level features, two independent
decoder embranchments are adopted to deal with low-level
and high-level features. In the decoding stage, F1 and F2 are
considered as low-level features, and F3 and F4 are considered
as high-level features. Each decoder embranchment mainly
contains a CC and a series of residual decoder blocks (RDBs).
The low-level concatenate-convolution (LCC) and high-level
concatenate-convolution (HCC) are the same as CC. The
structure of RDB is similar to REB in Fig. 3. It should be noted
that hybrid transmission consists of two creative sections:
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Fig. 4. Schematic of hybrid transmission.

cross transmission and skip transmission. Cross transmission
aims to make the information of the high-level and low-
level supplement each other, thus improving the information
richness of the fused image. Skip transmission is on the
purpose of remedying the information loss in the process
of decoding. Cross transmission and skip transmission are
explained in detail as follows.

1) Cross Transmission: As shown in Fig. 4, LFM0

and HFM0 are low-level and high-level feature maps
obtained by LCC and HCC, respectively. LFM0 is
transmitted to the first low-level residual decoder block
(LRDB1) to produce the LFM1, and HFM0 is trans-
mitted to the first high-level residual decoder block
(HRDB1) to produce the HFM1. Then, LFM1 is not
only sent to the next step of the low-level decoder
branch, but also sent to the high-level decoder branch.
Similarly, HFM1 is also inputted to the low-level decoder
branch. This way of conveying information is named as
cross transmission. Next, these feature maps are sent to
the LRDB2 and HRDB2 to generate LFM2 and HFM2.
LFM2 and HFM2 undergo the cross transmission.

2) Skip Transmission: Skip transmission is expressed by
two cyan lines in Fig. 4. For the sake of compensating
information loss in the decoder process, the feature
information LFM0 and HFM0 is introduced into the
LRDB3 and HRDB3, respectively.

In the low-level decoder branch, LFM0, LFM2, and HFM2

are concatenated and sent to the LRDB3. In the high-level
decoder branch, HFM0, HFM2 andLFM2 are concatenated and
sent to the HRDB3. As shown in Fig. 2, feature maps produced
by LRDB3 and HRDB3 are combined together by an adding
operation; then, the fused feature map is sent to a 3 × 3
convolution layer to output the final fused image.

D. Loss Function

A high-quality fusion image should contain strong intensity
information and rich structure details simultaneously. There-
fore, we construct the loss function from two aspects: the
intensity loss and the structure loss, which is written by

L total = L intensity + αLstructure (4)

in which, L total, L intensity, and Lstructure represent the total loss,
intensity loss, and structure loss, respectively. α is a balance
parameter to control the tradeoffs between the intensity loss

and structure loss. The intensity loss can be calculated as
follows:

L intensity =
X∑

x=1

Y∑
y=1

‖If(x, y) − mean(Iir(x, y), Ivis(x, y))‖2
2

(5)

mean(Iir(x, y), Ivis(x, y))

= (Iir(x, y) + Ivis(x, y))/2. (6)

Here, If is the fused image, Iir is the infrared image, and Ivis

is the visible image. ‖·‖2
2 denotes the L2-norm. X and Y

indicate the width and height of the image.
To fuse rich textural information, gradient information is

generally utilized to calculate the structure loss [28]. Di Zenzo
[42] proposes the structure tensor to express gradient informa-
tion. According to [42], the gradient of infrared and visible
images can be summarized by Jacobian matrix as follows:

JI(x, y) =
[∇x Iir(x, y)∇y Iir(x, y)

∇x Ivis(x, y)∇y Ivis(x, y)

]
(7)

where ∇x and ∇y indicate the derivative of the horizontal and
vertical directions, respectively. Based onJI(x, y), the structure
tensor is given by

SI(x, y) = (JI(x, y))T × JI(x, y). (8)

Combing (7) and (8), the structure tensor of input images
can be described as follows:

SI(x, y) =
[

τ1τ2

τ3τ4

]
(9)

τ1 = (∇x Iir(x, y))2 + (∇x Ivis(x, y))2 (10)

τ2 = ∇x Iir(x, y) × ∇y Iir(x, y)

+ ∇x Ivis(x, y) × ∇y Ivis(x, y) (11)

τ3 = ∇y Iir(x, y) × ∇x Iir(x, y)

+ ∇y Ivis(x, y) × ∇x Ivis(x, y) (12)

τ4 = (∇y Iir(x, y))2 + (∇y Ivis(x, y))2. (13)

Similarly, the gradient information Jf (x, y) and structure ten-
sor Sf (x, y) of the fused image can be expressed as follows:

Jf (x, y) = [∇x If(x, y)∇y If(x, y)
]

(14)

Sf (x, y) =
[

(∇x If(x, y))2∇x If(x, y) × ∇y If (x, y)
∇y If(x, y) × ∇x If (x, y)(∇y If (x, y))2

]
. (15)

On the basis of (9) and (15), the structure loss can be written
by

Lstructure =
X∑

x=1

Y∑
y=1

‖Sf − SI‖2
F (16)

where ‖·‖2
F denotes the Frobenius norm.

To sum up, L intensity prefers the intensity content of the fused
image and the input images to be the same, whereas Lstructure

tends to make the structure tensors of the fused image and the
input images to be identical. Consequently, the MHTNet can
generate fused images with the strong intensity information
and detailed structure textures of source images.
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E. Training Setup

We select 36 pairs of infrared and visible images with
various military and surveillance scenarios from TNO database
[43] as the training data. In order to train a good model, each
image of the training data is cropped with the stride 16, and
each patch is the same size 120 × 120. Then, 15 712 pairs
of infrared and visible patches are randomly chosen as train-
ing samples. The proposed MHTNet is trained on PyTorch
1.7 with 12-GB NVIDIA TITAN XP GPU. In the training of
the MHTNet, the epoch is 150, the batch size is 16, and the
learning rate is initialized as 10−3 and halved every 20 epochs
until the end. In addition, the number of REB is 4, and the
balance factor between intensity loss and structure loss is 0.01.
Section IV-D will discuss the settings of REB number and α.

IV. EXPERIMENTAL DATASETS AND SETTINGS

A. Infrared and Visible Image Datasets
In this article, the MHTNet is tested on three public datasets:

TNO [43], KAIST [44], and Bristol Eden Project Multisensor
(BEPM) [45]. TNO dataset includes many pairs of registered
infrared and visible images under different scenes, which can
be freely used for research purpose. Images of TNO dataset
have different sizes, such as 360 × 270, 505 × 510, and
768 × 576. KAIST dataset contains many registered infrared
and visible image pairs under various regular traffic scenes.
BEPM dataset is a registered infrared and visible image
dataset with a man dressed in camouflage walking through
thick foliage, which is given by the Rochester Institute of
Technology (RIT), Rochester, NY, USA.

B. Comparison Methods

Several classical and advanced image fusion methods are
selected to evaluate the proposed MHTNet, including dual-tree
complex wavelet transform fusion method (DTCWT) [46],
multiresolution singular value decomposition fusion method
(MSVD) [47], gradient transfer and total variation minimiza-
tion fusion method (GTF) [48], fourth-order partial differential
equations fusion method (FPDE) [49], deep unsupervised
fusion method (DeepFuse) [26], FusionGAN [22], dense
block-based fusion method (DenseFuse) [25], deep image
fusion (DIF) [50], and VIF-Net (VIF) [51]. Experiments of our
method and other deep learning methods (including DeepFuse,
FusionGAN, DenseFuse, DIF, and VIF) are implemented with
a 12-GB NVIDIA TITAN XP GPU. The traditional methods
(including DTCWT, MSVD, GTF, and FPDE) are conducted
in MATLAB 2018a on a computer (Intel Core i7-9700F,
3.0-GHz CPU).

C. Evaluation Metrics
Six metrics are selected to comprehensively evaluate the

fusion performance of the proposed MHTNet, which are the
sum of the correlations of differences (SCD) [52], visual
information fidelity fusion (VIFF) [53], entropy (EN) [54],
standard deviation (SD) [55], mutual information (MI) [56],
and image quality metric of Chen–Varshney metric (Qcv) [57].

These above metrics evaluate the quality of fused images
from different perspectives. SCD measures the complementary

information of the fused image, VIFF evaluates the visual
information fidelity of the fused image, EN expresses the infor-
mation richness of the fused image, SD indicates the spread
of the information in the image, MI calculates the amount
of information obtained from the source images, and Qcv is
a comprehensive evaluation metric, which is associated with
the edge, saliency, and similarity of images. Among these
indicators, SCD, VIFF, EN, SD, and MI are positively cor-
related with fusion image quality, whereas Qcv is negatively
correlated with the fusion image quality. Thus, in this article,
Qcv is denoted as Qcv-.

D. Parameter Settings
In the proposed MHTNet, two vital parameters will affect

the performance of image fusion. The one is the balance factor
α of the loss function, and the other is the number of REB
in MREM. In this section, we discuss the influences of these
two parameters on image fusion.

1) The Analyses on Different Values of the Balance Factor
α: In this article, the loss function consists of two terms:
intensity loss and structure loss. α is a balance factor to
control the tradeoffs between the two terms. The value
of α will directly affect the image fusion ability of the
proposed algorithm. In order to get an optimal α to
obtain a good fusion model, we train the proposed
algorithm under α with diverse orders of magnitude
(including 0.1, 0.01, and 0.001) and test the image
fusion performance on three public datasets mentioned
in Section IV-A. As provided in Table II, when the
value of α is 0.01, evaluation metric values are the best
among these three conditions, which means MHTNet
has the best performance. As a result, in this article,
the balance factor α between L intensity and Lstructure is set
to 0.01.

2) The Analyses on the Number of REB: As introduced
in Section III, MREM contains several REBs. Dif-
ferent numbers of REB represent different depths of
the proposed network and different levels of features.
In Table II, K represents the number of REB. We ana-
lyze the effect of the number of REB by comparing
the results from K = 4 with those from fewer REBs
(K = 2) and more REBs (K = 6). Table II provides the
average values of six evaluation metrics for the fused
images obtained by the proposed MHTNet with different
K . When K = 4, most of the evaluation metric values
on three public datasets are the best, which means the
fusion quality is the highest. Therefore, in this article,
the number of REB is set to 4.

V. EXPERIMENTAL RESULTS AND ANALYSES

This section analyzes the self-comparison experiments of
our algorithm and compares the proposed MHTNet with other
fusion methods subjectively and objectively.

A. Self-Comparison Experimental Results and Analyses of
the Proposed Fusion Network

This article proposes the MHTNet to realize infrared and
visible image fusion. MHTNet mainly includes two parts:
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TABLE II

AVERAGE VALUES OF SIX EVALUATION METRICS FOR THE FUSED IMAGES OBTAINED BY THE PROPOSED MHTNET WITH DIFFERENT α AND DIFFERENT
K . α IS THE BALANCE FACTOR OF LOSS FUNCTION, AND K IS THE NUMBER OF REB. “−” INDICATES THAT THE SMALLER THE EVALUATION

METRIC IS, THE BETTER THE FUSION PERFORMANCE (Bold: THE BEST)

Fig. 5. Examples of self-comparison experimental results on “Lake” image of TNO dataset: (a) infrared; (b) visible; (c) CON1; (d) CON2; (e) CON3; and
(f) CON4.

encoder and decoder. In the encoder part, we design the
MREM with two independent branches to obtain practicable
features. In the decoder part, we construct the HTDM to

utilize the multilevel features adequately. HTDM contains two
major structures: cross transmission and skip transmission.
The purpose of cross transmission is to make the information
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TABLE III

OBJECTIVE EVALUATION OF SELF-COMPARISON. “−” INDICATES THAT
THE SMALLER THE EVALUATION METRIC IS, THE BETTER THE FUSION

PERFORMANCE (Bold: THE BEST)

between low-level and high-level complement each other, and
the function of skip transmission is to compensate for infor-
mation loss in the decoding process. To verify effectiveness
and advantages of these novel designs in MHTNet, we conduct
the self-comparison experiments under four conditions labeled
CON1, CON2, CON3, and CON4, respectively.

CON1: using the MREM and the simple decoder module
without cross transmission and skip transmission.

CON2: using the MREM and the decoder module with cross
transmission.

CON3: using the MREM and the decoder module with skip
transmission.

CON4: using the MREM and the decoder module with cross
transmission and skip transmission. CON4 is the proposed
MHTNet. The self-comparison experiments are carried out
on three public datasets mentioned in Section IV-A. The
subjective and objective experimental results are shown in
Fig. 5 and Table III, respectively.

As shown in Fig. 5, in order to better analyze the quality
of fused images under different conditions, the contents in red
boxes are enlarged and exhibited at the bottom of experimental
results. The fused image of CON1 contains the clear word
“AUTO” of the infrared image and the lake wave light of

the visible image, which means the proposed MREM can
obtain features from source images effectively. Compared with
CON1, the fused image produced by CON2 has more salient
fork road and richer background information, which illustrates
that the cross transmission can improve the image fusion
quality by enhancing the communication between low-level
and high-level features. The fused image of CON3 contains
more intensity information than that of CON1 and CON2,
which proves that skip transmission can further improve the
image fusion quality through compensating the information
loss during the decoding process. Compared with other three
conditions, the fused image of CON4 has more salient path,
more clear edges, richer background details, higher contrast,
and visual quality, which demonstrates that the proposed
network has better fusion performance by comprehensively
utilizing the above innovative modules.

Table III provides the objective evaluation results of the
three conditions. These values of CON1 on three public
datasets are acceptable, which shows the effectiveness of
MREM. Compared with CON1, the evaluation metric values
of CON2 and CON3 are increased, which indicates that the
cross transmission and skip transmission of decoder module
are effective to enhance the fusion performance. Moreover,
these evaluation metric values (excepting SCD in KAIST
dataset) of CON4 are the best among four conditions, which
proves that the proposed MHTNet can generate higher quality
infrared and visible fusion images when combing MREM,
cross transmission, and skip transmission.

B. Evaluation of the Experimental Results

To test the fusion performance of our proposed method,
MHTNet and comparison methods are carried out on TNO,
KAIST, and BEPM datasets. In the previous infrared and
visible image fusion works, researchers generally choose about
20 pairs of images to test the fusion algorithms [24]. Thus,
we select 20 infrared and visible image pairs of each dataset
for testing. The subjective and objective analyses on three
public datasets are presented as follows.

1) Experiments on TNO Dataset: Examples of the fused
images on TNO dataset are provided in Fig. 6. Overall, the
proposed method exhibits better fusion performance than its
competitors. As shown in red boxes, fused images of DTCWT,
MSVD, GTF, FPDE, DenseFuse, and VIF miss much salient
information, e.g., the helicopter and the person. In addition,
as shown in blue boxes, fused images produced by MSVD,
FusionGAN, DenseFuse, DIF, and VIF have fuzzy edges
and weak contrast. Especially in blue boxes of “movie_18,”
DTCWT, GTF, FusionGAN, and VIF can hardly integrate the
texture details from the window of car into the fusion image.
Compared with other methods, MHTNet can obtain fused
images with more salient target information, more sharpened
and clear textures, and higher visual quality.

Quantitative comparisons on TNO dataset are given in
Table IV. Six metrics mentioned in Section IV-C are used for
evaluation. In general, the evaluation metric values obtained by
MHTNet on TNO dataset are all commendable. Specifically,
the proposed method ranks best on EN, MI, SD, and Qcv-,
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Fig. 6. Comparison experimental results on TNO dataset: (a) infrared; (b) visible; (c) DTCWT; (d) MSVD; (e) GTF; (f) FPDE; (g) DeepFuse; (h) FusionGAN;
(i) DenseFuse; (j) DIF; (k) VIF; and (l) MHTNet.

which indicates that it can generate the fused image with
sufficient intensity information, fine information distribution,
clear edges, and high fidelity with source images. In addition,
our method ranks second on VIFF, which means that MHTNet
can produce fused images with high visual quality. These
metric results prove that the proposed method has a better
performance in infrared and visible image fusion field.

For assessing the proposed fusion framework intuitively,
the bar charts of different fusion methods about six evalua-
tion metrics on TNO dataset are shown in Fig. 7. Different
color bars represent the average evaluation metrics values

of different fusion methods. It can be seen that bars of
MHTNet on metrics EN, MI, and SD are significantly higher
than those of other methods, which proves that the proposed
fusion method can retain sufficient information. Moreover, the
Qcv- bar of MHTNet is the shortest among those of com-
parison methods, which illustrates that the proposed method
performs the best comprehensive fusion ability.

2) Experiments on KAIST Dataset: As shown in red boxes
of Fig. 8 on KAIST dataset, the light information in the
fused images of MSVD, FPDE, FusionGAN, DenseFuse, and
VIF is weaker than that of other methods. As presented
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TABLE IV

AVERAGE EVALUATION METRIC VALUES OBTAINED BY DIFFERENT FUSION METHODS ON TNO, KAIST, AND BEPM DATASETS. “−” INDICATES THAT
THE SMALLER THE EVALUATION METRIC IS, THE BETTER THE FUSION PERFORMANCE (RED: THE BEST AND BLUE: THE SECOND BEST)

Fig. 7. Bar charts of different fusion methods about six evaluation metrics
on TNO dataset.

in blue boxes of Fig. 8 on KAIST dataset, fused images
obtained by GTF, FPDE, FusionGAN, and DenseFuse have
less intensity information of roadblocks. In addition, fused
images of GTF and FusionGAN lack contour structures of

the trees. In contrast, the proposed method can generate fused
images with more intensity information, clearer structure, and
higher visual quality.

Objective results on KAIST dataset are provided in Table IV.
Metrics values (including EN, MI, SD, and Qcv-) of MHTNet
are the best among these comparison methods. In addition,
MHTNet ranks second on SCD and VIFF. These values prove
the effectiveness and advantages of the proposed method in
the field of infrared and visible image fusion.

The bar charts of different fusion methods about six evalu-
ation metrics on KAIST dataset are presented in Fig. 9, which
visually represents the superiority of the proposed method.
Significantly, bars of MHTNet on SCD, VIFF, EN, SD, and
MI are higher than those of most comparison methods, and
bars of MHTNet on Qcv- are much lower than those of other
methods. The above results reflect the excellent performance
of the proposed method in infrared visible image fusion.

3) Experiments on BEPM Dataset: Qualitative results on
BEPM dataset are shown in Fig. 8. As exhibited in red
boxes on BEPM dataset, fused images of MSVD, GTF,
FPDE, FusionGAN, DenseFuse, and VIF miss many detailed
features of leaf texture in visible images. As exhibited in blue
boxes on BEPM dataset, fused images produced by DTCWT,
MSVD, FPDE, DenseFuse, DIF, and VIF have weaker human
information of infrared images. By contrast, the fused image
of the proposed method has stronger pixel contrast and clearer
leaf texture structures.

As exhibited in Table IV, MHTNet obviously performs
better than competitors on BEPM dataset. MHTNet ranks the
best on EN, SD, MI, and Qcv-. The average values on SCD
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Fig. 8. Comparison experimental results on KAIST and BEPM datasets: (a) infrared; (b) visible; (c) DTCWT; (d) MSVD; (e) GTF; (f) FPDE; (g) DeepFuse;
(h) FusionGAN; (i) DenseFuse; (j) DIF; (k) VIF; and (l) MHTNet.

and VIFF metrics of MHTNet are not the maximum, but they
are still acceptable. These values mean that compared with
other algorithms, the proposed method has more competitive
ability in the field of infrared and visible image fusion.

To observe the advantages of the proposed method directly,
Fig. 10 shows the bar charts of different fusion methods

about six evaluation metrics on BEPM dataset. Obviously,
bars (including SCD, VIFF, EN, SD, and MI) of MHTNet are
higher than those of most comparison methods. The Qcv- bar
of MHTNet is the lowest among these methods. As a result,
the proposed method still shows better performance on BEPM
dataset than competitors.
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Fig. 9. Bar charts of different fusion methods about six evaluation metrics
on KAIST dataset.

Fig. 10. Bar charts of different fusion methods about six evaluation metrics
on BEPM dataset.

Above subjective and objective analyses of the experimental
results on TNO, KAIST, and BEPM datasets demonstrate
that the proposed method can generate fused images with

TABLE V

TIME LOSS OF IMAGE FUSION WITH DIFFERENT IMAGE
SIZES BY DIFFERENT METHODS

more salient target information, more sharpened edges, richer
details, and higher visual quality than comparison methods.
In addition, as shown in Table IV, DTCWT shows good per-
formance on BEPM dataset, and DeepFuse expresses well on
TNO and KAIST datasets, whereas MHTNet can achieve sat-
isfactory image fusion on TNO, KAIST, and BEPM datasets.
Although the fused images of DeepFuse and MHTNet are
visually similar, values of these evaluation metrics in Table IV
demonstrate that MHTNet outperforms DeepFused in three
datasets. As a result, MHTNet has better fusion performance
than DeepFuse.

To sum up, the proposed method has not only better
infrared and visible image fusion performance, but also better
robustness to environmental changes than competitors.

4) Analyses of Time Complexity: The advantages of the pro-
posed method in terms of fusion performance and robustness
have been described above. Running time is also an important
factor that must be considered in the image processing system.
Therefore, we test the running time of the proposed and
comparison methods.

The same fusion method has different computational com-
plexities to process different size images. We compare
the fusion time of different fusion algorithms under three
image sizes 359 × 247, 505 × 510, and 768 × 576.
As shown in Table V, the running time of MHTNet is sig-
nificantly smaller than that of DTCWT, MSVD, GTF, FPDE,
FusionGAN, DenseFuse, and VIF. Although the processing
time of MHTNet is larger than that of DIF, it already has
good real-time performance. Moreover, the fusion speed of
MHTNet is obviously faster than DeepFuse, which demon-
strates that MHTNet has more comprehensive fusion capability
than DeepFuse. The average running time of MHTNet to fuse
a pair of images is about 0.013630 s, that is, MHTNet can fuse
73 pairs of infrared and visible images per second. Experimen-
tal results of the time loss show that the proposed method has
high computational efficiency and satisfies the requirement of
real-time while maintaining good fusion performance.
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VI. CONCLUSION

In this article, an MHTNet has been developed. To extract
features from source images effectively, an MREM with two
independent branches has been designed. In order to avoid
complex manual fusion strategies, the CC has been utilized to
fuse feature maps at the same level. Moreover, to make full use
of the information of different levels and improve the fusion
performance, an HTDM has been presented, which includes
two ingenious parts: cross transmission and skip transmission.

Extensive experiments have been conducted on TNO,
KAIST, and BEPM datasets to verify the fusion performance
of the proposed network. Experimental results convincingly
demonstrate that the proposed network not only can produce
fusion images with strong intensity information, sharpened
edges, rich texture details, and high visual quality, but also
performs better than comparison methods in terms of qualita-
tive and quantitative aspects. In addition, the time loss of the
proposed network has been tested, and values of the running
time with different image sizes show that the proposed network
has better real-time performance and faster computing speed
than most comparison algorithms.
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