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A B S T R A C T   

Infrared and visible image fusion can synthesize complementary features of salient objects and texture details 
which are important for all-weather detection and other tasks. Nowadays, the deep learning based unsupervised 
fusion solutions are preferred and have obtained good results since the reference images for fusion tasks are not 
available. In the existing methods, some prominent features are missing in the fused images and the visual vi
tality needs to be improved. From this thought, attention mechanism is introduced to the fusion network. 
Especially, channel dimension and spatial dimension attention are jointed to supplement each other for feature 
extraction. Multiple attention branches emphasize on multi-scale features to complete the encoding. Skip con
nections are added to learn residual information. The multi-layer perceptual loss, the structure similarity loss and 
the content loss together construct the strong constraints for training. Comparative experiments with subjective 
and objective evaluations on 4 traditional and 9 deep learning based methods demonstrate the advantages of the 
proposed model.   

1. Introduction 

With the rapid development of computer science, integrated circuit 
system and sensor technology, image acquisition is no longer limited to a 
single sensor. Multi-modal image fusion is able to combine the mean
ingful information in different source images to generate a synthesized 
image with rich features, so as to achieve all-round description and 
expression of same scene or object which is more beneficial for subse
quent applications [1,2,3]. It can also meet the urgent needs of modern 
applications for comprehensive information. Infrared image gives 
expression to the thermal radiation intensity of objects. The penetrating 
force of infrared signal is quite strong. So, the image is not susceptible to 
weather conditions and environmental changes. But the spatial resolu
tion is low which is unavoidable. However, the imaging of visible sen
sors depends on the reflectivity of objects. The images with high 
resolution can well retain the environmental details in the scene, and the 
information is rich. But the visible imaging is greatly affected by the 
light source and illumination conditions. There are some shortcomings, 
such as short detection range and poor environmental adaptability. 
From here we can see that the fusion of the two images is good for 
integrating prominent targets and rich environmental details [4], which 

is of great importance in all-weather tasks. Image fusion as an 
enhancement method is widely used in many fields such as military 
detection, medical diagnosis, public safety, and industrial production, 
etc. [5]. 

At present, correlative studies on infrared and visible image fusion 
are gradually mature. Different extraction strategies and trans
formations are promoted and combined in various methods. Generally, 
they can be roughly divided into two groups which are traditional 
methods and the deep learning (DL) based methods [6]. Related 
methods are introduced below. The traditional fusion methods are 
mainly in the transformation domain, multi-scale transformation (MST) 
[7,8,9] and sparse representation (SR) [10,11] are often adopted. In 
addition, spatial domain methods [12,13] and artificial neural network 
methods [14,15,16] as well as hybrid methods [17,18,19] also play 
important roles. There are mainly three steps when implementing 
above-mentioned methods. Image transformations are carried out at 
first. Then activity level measurement and corresponding fusion rules 
need to be designed. All these are operated manually and the realization 
process becomes very complicated when getting better results. As to DL- 
based fusion methods, the biggest advantage is the representation ability 
of features. The fusion process is realized by training multi-layer 
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convolutional neural networks. All the features can be extracted auto
matically and we do not have to perform scale transformation and ac
tivity level measurement manually. Liu et al. [20] firstly realized 
infrared and visible image fusion using the Siamese network. Also, MST 
was included. Then Li et al. [21] added the DenseNet [22] to the encoder 
so as to retain more features of middle layers. VGG-network [23], 
ResNet [24] and other trained modules were also used as feature 
extraction sub-networks for the reconstruction of fused image. The 
above-mentioned DL-based methods almost depend on convolutional 
neural networks (CNN). In the last few years, Ma et al. began to study on 
generative adversarial networks (GAN) to implement the fusion task, so 
that more detail information could be preserved through the adversarial 
process. FusionGAN [25] and its variant [26] are representative and 
fundamental models for this fusion task. Moreover, Li et al. [6] came up 
with the RCGAN model with shared weights. After that, DDCGAN [27] 
and D2WGAN [28] were designed with two discriminators to comple
ment the information of the multi-modal images. 

In fact, the imaging principles of infrared and visible images are quite 
different. One focuses on the highlighted thermal objects, the other on 
visible texture details in images. How to integrate these features is 
extremely important for fusion. Therefore, some researchers introduced 
the attention mechanism to stress the distinguishing features in DL- 
based fusion models. Li et al. [29,30] proposed two GAN-based 
models, called the MgAN-Fuse and AttentionFGAN, which could main
tain the important parts of each source image better. Mustafa et al. [31] 
and Li et al. [32] also achieved competitive performance based on 
convolutional attention networks. However, aforementioned methods 
mainly pay attention to channel dimension. Spatial attention is largely 
ignored which is complementary to the channel attention. Meanwhile, 
the multi-scale features extracted and preserved by those deep neural 
networks are relatively deficient so that the features of source images 
cannot be reflected well. 

To address the above-mentioned fusion problems, a CNN model with 
multi-scale attention mechanism is proposed. We introduce CBAM [33] 
with both channel attention and spatial attention to realize this multi- 
modal image fusion task. We learn from SKNet [34] and ResNeXt [35] 
to obtain multi-scale feature maps by designing various receptive fields 
and residual operations. Moreover, synthetical loss function is used to 
guide the process of parameter updating. Different levels of feature 
similarities are all well constrained. The main work of this article can be 
summarized to three points.  

1) We build a multi-scale convolutional fusion model with joint channel 
attention and spatial attention, so that more salient features can be 
concerned and efficiently extracted. Different perceptive fields 
adopted in this multi-branch architecture help to get complementary 
feature maps which are important for image fusion tasks. Skip con
nections are added to learn residual information and assist the back 
propagation. The network can be trained and tested end-to-end.  

2) The particular perceptual loss with the adjusted image is designed for 
dimension and feature matching. Also, it is associated with structural 
similarity (SSIM) loss and content loss to make a powerful feature 
constraint between original inputs and generated image during 
training. More prominent information and targets can be reserved. 
The loss can also accelerate the iterative convergence speed.  

3) The deep fusion model is trained on the amplified dataset and tested 
on image pairs from three different datasets. Related ablation ex
periments are used for contrastive analysis. The visual and numerical 
results of the proposed network are worth affirming compared with 
traditional and other latest DL-based methods. Both subjective and 
objective evaluations prove the feasibility of this network. Other 
contents of the article are summarized below. Section II focuses on 
the CBAM and the DL-based models with attention mechanism. 
Section III mainly explains the designed network, attention module 
and loss function. The details of training and comparative 

experiments are shown in Section IV. Section V outlines brief 
conclusion and expectation at the end. 

2. Related works 

2.1. Attention mechanism 

Attention mechanism can be regarded as a kind of allocation of re
sources. It can be understood that the resources originally distributed 
equally are redistributed according to the importance of the attentive 
objects. As to deep neural network, the weights for each layer are key 
resources that need to be noticed. Attention mechanism was first applied 
in natural language processing (NLP) [36] which greatly improved the 
capacity. Then, in computer vision (CV) field, some scholars have 
explored different strategies with attention mechanism to promote the 
deep neural networks. According to the different implementations, the 
attention mechanism can be classified into local-attention, soft-attention 
and hard-attention [37]. Among them, the soft-attention is the most 
widely used and generally consists of channel-wise and spatial-wise 
attention, as well as the joint module of the first two. The CBAM is the 
typical joint attention and can be embedded into any network branch 
easily. Therefore, the improved network will obtain ‘what’ and ‘where’ 
information simultaneously contained in different dimensions of the 
images. The content and location information are important for image 
process. Fig. 1 is the unique sketch map of CBAM. 

In this paper, the CBAM is embedded as sub-network to every branch 
for feature extraction. Different perceptive fields are adopted in spatial 
attention module to get multi-scale feature maps for image reconstruc
tion. All these help to preserve more details and targets for fusion tasks. 

2.2. Attention networks used for image fusion task 

Multi-layer networks embedded with attention modules now being 
used for fusing infrared and visible images. Mustafa [31] first put for
ward a dilated residual self-attention network to generate fusion images 
which included balanced details of source inputs. Li et al. [32] combined 
the DenseNet and attention unit [34] to produce fusion images, and got 
relatively accurate results. More typical DL-based models with attention 
mechanism were MgAN-Fuse and AttentionFGAN proposed by Li et al. 
They constructed the attention network by GAN and the final attention 
map was acquired through the mapping transformation in [38]. For 
channel attention, a series of global average pooling (GP), full connec
tion (FC) and sigmoid function (SG) are applied to normalize the fea
tures. For spatial attention, they usually take two ways to get final map. 
One is to compute the maximum values across the channel dimension. 
Another way is to concatenate the extracted feature maps directly in 
channel wise without other calculation. Fig. 2 gives the schematic 
illustration of the attention module used. 

In addition to the above methods, scholars [38] proposed the parallel 
fusion strategy based on spatial attention and channel attention models. 
They directly took L1 norm and global pooling with soft-max to perform 
channel and spatial dimension feature processing. Then all the feature 
maps extracted were added for subsequent integration. 

We can see that although the channel and spatial dimensions are 
considered in those methods, there are still some improvements can be 

Fig. 1. The overview of CBAM [33]. The module has two sequential sub- 
modules: channel and spatial module. 
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made on the network architecture and the series–parallel mode of the 
two attention sub-module, to get more prominent feature maps. 

3. Proposed method 

The specific designs of the convolutional attention network will be 
introduced in detail. First, we will give a general description about the 
network. Fig. 3 shows the overview of the designed network architec
ture. Then, the channel attention, the spatial attention and the residual 
learning used are explained. Furthermore, we analyze the mixed loss 
functions. Especially, the perceptual loss is focused on. 

3.1. Framework overview 

We can see from Fig. 3 that the whole framework is an end-to-end 
model composed of convolutional layers. The proposed CNN model is 
easy to train compared with GAN which needs to take cooperative 
training of generator and discriminator into consideration. The input in 
the far left is the concatenation of the source images in channel 
dimension, since this 2-channel layer is considered to have the highest 
flexibility [39] compared with the Siamese form or its variants. The first 
convolution group consisted of Conv, BN and LReLU can get the basic 
features of the input. Then the attention modules are followed to 
transform and extract significant features. We take different kernels 
when carry out the spatial attention in each branch to pays attention to a 
certain scale of the basic features. Skip connection is used to learn the 
residual of every branch. The features extracted by the three attention 
branches are concatenated afterwards to construct new prominent maps 
in channel dimension. This will help to preserve multi-scale targets or 
textures in source images. What stated above is the encoding process of 
the network. The latter layers mainly complete the decoding operations. 
The dimensionality of the concatenated feature maps are reduced 
through two convolution groups so that the number of channels is 
consistent with the basic features. Skip connection is again introduced to 

guarantee the completeness of basic features and extracted features 
which is crucial for image fusion tasks. The next three layers accomplish 
the final integration. Especially, at the last layer of the network, the 
kernel size is changed to 1x1. There is no BN and the activation function 
is changed to Tanh. The convolution can be regarded as the point to 
point multiplication between the 32-channel feature vector and the 
previous layer. After the operation, the multi-channel feature maps are 
transformed to single layer fused image. 

3.2. Attention modules 

In each attention branch, the Fb are reformed and recombined to get 
the FA with more salient features. Fig. 4 and Fig. 5 show the channel and 
spatial attention module respectively. 

3.3. Channel attention 

We can see from Fig. 4 that the channel attention mainly includes 
four steps: pooling, multi-layer perceptron, activation and multiplica
tion. The goal of channel attention is to get a scalar which can reflect the 
degree of dependence on each channel. First, the average-pooling (AP) 
and max-pooling (MP) are introduced so that important clues of 
different objects can be gathered. Then a shared network is used to 
produce channel attention maps. The result of addition is activated by 
sigmoid function to obtain the final descriptor to calculate the FC. 

The transformation equation of FC can be summarized as below: 

FC = Fb*σ(MLP(AP(Fb)) + MLP( MP(Fb))) (1) 

The channel attention can make feature adjustment channel by 
channel and improve the representation ability of the network. More 
useful and salient information of the source inputs will be extracted so 
that the pertinence and veracity of fusion are effectively enhanced. 

3.4. Spatial attention 

In the proposed method, the spatial attention is connected behind the 
channel attention and the FC are given as the input. There are also four 
steps to realize the transformation. Other than channel attention, the AP 
and MP operations in spatial attention act on channel neurons and the 
concatenated feature maps are in the same size with FC. Convolution is 
followed to make feature reforming. Then we take the sigmoid function 
to activate that spatial attention map which guides the tendency of FS. 
Equation (2) shows the arithmetic process. 

FS = FC*σ(Conv (AP(FC),MP(FC))) (2) 

Fig. 2. The attention module of MgAN-Fuse [29]. fm Denotes the m-th feature. 
Fmax represents the selection of max value across the channel dimension of all 
the reweighted features. ⊗ is the element-wise multiplication. 

Fig. 3. Architecture of the proposed. The input is the channel concatenation of infrared and visible images. The features are extracted and transferred by convolution 
operations. Fb and FA are the basic features and the features with attention. CA and SA represent the channel attention and the spatial attention. Different perceptive 
fields are marked in SA. ⊗, ⊕, © donate the element-wise multiplication, element-wise summation and concatenation respectively. Conv, BN and LReLU are the 
abbreviations of convolution, batch normalization and Leaky ReLU. 
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The kernel size of the original CBAM is 7 × 7 when carrying out the 
convolution. In consideration of the particularity of the multi-modal 
image fusion, we creatively design different perceptive fields like 3 ×
3 and 5 × 5 to complement the multi-scale spatial features in source 
inputs. The three branches with distinct kernels contribute to collect the 
highlighted information from source inputs to generated fusion image. 

3.5. Residual learning 

We all know that the fundamental features and deeply extracted 
features are all important for fusion tasks. In the proposed network, each 
attention branch conducts feature refining from Fb to FA in a specific 
scale. Skip connection is added in every branch to realize residual 
learning. More shallow features are combined with noticed features 
when encoding. Also, the connection is built in the decoding process. So 
the final FA of each branch is obtained by equation (3): 

FA = Fb +FS (3)  

3.6. Loss function 

The network structure proposed in this paper is a multi-layer CNN. 
We need to design forceful loss function so that the training process and 

fusion effect can be guaranteed. The loss function should have the ability 
to make full-scale constraint between input and output images. The 
similarities of low-level and high-level features need to be considered 
simultaneously. So, we come up with the mixed loss (L) composed of 
three parts which are SSIM loss (LSSIM), perceptual loss (LPer), and con
tent loss (LCon). The loss function with adjustable ratios is defined as 
equation (4). 

L = αLSSIM + βPer + θLCon (4)  

3.7. SSIM loss 

At present, the LSSIM is most widely used in the training of unsu
pervised fusion networks. Mainly because the brightness, contrast and 
structure information are taken into account and it just similar to the 
observation mechanism of the human visual system. The whole calcu
lation process effectively establishes the structure correlations between 
images. So, we take the LSSIM as the fundamental loss to conduct the back 
propagation of the proposed network. The calculation equation is 
illustrated in (5): 

LSSIM = 1 − (w⋅SSIM(I,F) + (1 − w)⋅SSIM(V,F) ) (5) 

I, V, and F indicate the infrared image, visible image and the fusion 

Fig. 4. The diagram of channel attention. Fb and FC are the basic features and the features after channel attention. MLP represents the multi-layer perceptron. σ is the 
Sigmoid function. h, w, and c denote the height, width and the number of channels of the feature maps. 

Fig. 5. The diagram of spatial attention. FS are the features maps after spatial attention. h, w, and c denote the height, width and the number of channels of the 
feature maps. k denotes the kernel size of convolution. 

D. Xu et al.                                                                                                                                                                                                                                       



Infrared Physics and Technology 125 (2022) 104242

5

image. w denotes the adjustable coefficient. SSIM(~) executes the 
calculation of structural similarity which is consistent with [40]. 

3.8. Perceptual loss 

Johnson et al. [40] first came up with the perceptual loss and the 
findings behaved well on image style transfer and super-resolution. 
Unlike normal losses, this loss acts on feature maps other than calcu
lating the similarity between the original source inputs and outputs. 
There is an intermediate loss network used to extract the high-level 
features of the reference and the generated image on the same layer. 
Generally, if the two groups of output features are numerically similar, it 
can be considered that the reference and the generated image are closely 
related indirectly. As for image fusion, the loss will effectively ensure the 
similarity of the extracted information, and finally achieve the feature 
retention from source inputs to the fusion image. 

SDPNet [41] and some methods took the networks they designed to 
calculate the loss. Since our purpose is high-level feature extraction and 
comparison, we tend to choose mature loss network with better per
formance for calculation. At present, the ready-made VGG networks 
[23] and residual networks are preferred for loss networks. The source 
infrared and visible images are scarce and the gray images contain 
limited information, so the shallow network is appropriate to calculate 
the loss and prevent the excessive extraction. So the VGG-16 is even
tually selected. Moreover, another two issues have to be faced. Since we 
cannot get the ground-truth image for reference, how to simulate the 
inputs is important. The loss network is trained on colorful images, so we 
also need to make image concatenation to meet the requirements of 
three-channel form. Taking the two problems of channel correspon
dence into account at the same time, the definition of adjusted image is 
proposed to supplement the features of the source inputs. The image is 
targeted calculated by intensity and gradient weighting of infrared and 
visible images to adjust the lack of brightness, contrast and other in
formation. Then, the infrared image, visible image and the adjusted 
image are organized as the reference. The three same fusion images are 
concatenated to simulate the generated image. The high-level features of 
the two simulated inputs are respectively extracted. Fig. 6 shows the 
diagram of the calculation process. 

The perceptual loss can be formulated as equation (6). 

LPer(Y1,YF) =
∑

j=7,10,13

1
CjHjWj

⃦
⃦φj(YI) − φj(YF)

⃦
⃦2

2 (6) 

In the formula, φ means the VGG-16. YI represent the combined 
source images and the adjusted image. YF indicates the fused images 
with three channels. j is the serial number of convolution layer. CjHjWj is 
the total parameters in jth convolution layer. φj(YI) and φj(YF) denote 
the outputs of the jth layer and calculated with the L2 norm. The join of 
the LPer greatly improve the characteristics of the fusion results on 
contrast and visual information fidelity. 

3.9. Content loss 

The content loss is mainly used in calculating the similarity of low- 
level features. For infrared and visible image fusion, not only the in
tensity, but also the gradient information is taken into account. The 
infrared radiation is strong and the visible textures are sufficient. So, the 
LCon is organized as (7). 

LCon =
1

HW
(
‖F − 1‖2

F+‖∇F − ∇V‖2
F

)
(7) 

∇ indicates the gradient computation. HW means the size of the 
images. The Frobenius norm is applied to calculate the content loss. 

4. Experimental results and analysis 

4.1. Training and testing particulars 

4.1.1. Training and test datasets 
In reality, the infrared and visible image pairs accessible to the public 

are quite limited, so some researchers often make advance training on 
large datasets or make data augmentation. Since the fusion tasks are 
hugely dependent on the original information, data augmentation is 
adopted. 41 pairs of source images were collected from TNO [42] for 
training. Generally, the most direct and effective way for augmentation 
was image cropping. The minimum size of the source images and the 
computer capacity were together taken into consideration, so the 
cropping size 128 × 128 was adopted. Then the moving stride was set to 
25 and the new dataset with 12,768 pairs of amplified image pairs was 

Fig. 6. The illustration of the proposed perceptual loss. LPer1, LPer2, and LPer3 respectively represents the perceptual loss calculated by the high-level features after the 
third, fourth and fifth convolution group. 
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established. The proposed network was trained with these small size 
pairs and the images were ergodic in every epoch. Notably, in order to 
show the generality of the proposed method, the test process was con
ducted on the TNO, RoadScene [1] and MFNet [3] datasets. It was an 
end-to-end module and the fusion results of the original source image 
pairs were obtained after each training epoch. 

4.1.2. Detailed settings 
Except above-mentioned cropping, other requirements and settings 

were introduced below. In order to enhance the training efficiency, the 
TITAN V GPU with Intel E5-2680 V3 processor was targeted. The way of 
mini-batch was used to guarantee the equilibrium of the input. The 
batch size and the learning rate were determined after multiple itera
tions, 32 and 10-5 were the final values. As to the optimizer, we chose the 
Adam which was a self-adaptive optimization algorithm with strong 
applicability and better convergence. The default parameters were used. 
In addition, the mixed loss function also involved some adjustable pa
rameters existed in equation (4), (5). In the total loss, α, β, and θ were set 
as 160, 1, 1 after repeated experiments. In equation (5), w was 0.5 to 
balance the SSIM. During testing, in order to make the size of input and 
output consistent, the padding way of “SAME” was used when calcu
lating the convolutions. But this would cause undesirable gray blocks 
around edges in fused images. To solve this problem, the source image 
pairs were padded in advance before put into the network. So, the ob
tained fused images with gray blocks were larger than original source 
images. Then we cut the gray blocks according to the padding value 

which was 6 in the proposed method. The value was closely related to 
the depth of the network. 

4.2. Quality evaluation of the fused image 

4 traditional fusion methods (CVT [43], DTCWT[44], LP [45], NSCT 
[46]) and 9 DL-based methods (CNN [20], Densefuse [21], Deepfuse 
[47], RCGAN [6], DDcGAN [27], U2Fusion [1], NestFuse [38], SeAFu
sion [3], CBAM [33]) were chosen together to evaluate the image 
quality more accurately. We tried our best to give an overall comparison 
on these methods. The traditional methods were implemented with the 
MATLAB toolbox and the DL-based models were carried out mainly 
referring to the program codes supplied by authors. For Deepfuse, we 
could not get the original codes and took the codes provided by [21]. As 
to CBAM, the original CBAM was embedded for feature extraction and 
the loss functions were consistent with the proposed method. Next, 
subjective and objective evaluation are synthesized to compare the 
fusion quality. 

4.3. Subjective evaluation 

As to subjective evaluation, the two source inputs and the images 
fused by these methods are arranged and marked for legible interpre
tation. Fig. 7, Fig. 8 and Fig. 9 are three typical groups of source images 
(a and b) and corresponding fused images (c to p) of Marne_04, 
FLIR_04602 and 01023 N from TNO, RoadScene and MFNet. In 

Fig. 7. Visual fused results of Marne_04 image pair obtained by different fusion methods.  
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Fig. 8. Visual fused results of FLIR_04602 image pair obtained by different fusion methods.  

Fig. 9. Visual fused results of 01023 N image pair obtained by different fusion methods.  
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Densefuse, there are two kinds of fusion strategies and the better fusion 
results are used for comparison. For purposeful observation, the red and 
green boxes on the images are advantageous to distinguish and recog
nize salient objects or features. 

On the whole, the three pairs of the source images are all obviously 
distinguishable. The following four images acquired by traditional 
methods can only contain partial synthetical information of the source 
images. As a result, the brightness and the contrast are low leading to 
blurred visual effects. The fused images of CNN always have higher 
contrast and the targets can be easily recognized. Nevertheless, some 
undesirable and aggravated areas appear on these images, such as the 
roof in Fig. 7. From visual view, the Densefuse and Deepfuse methods 
both can retain visible details and infrared objects from the multi-modal 
inputs, and the fusion results are fine. But the contrast and the definition 
are slightly defective. Also, the fused images of RCGAN are not clear 
enough and respective specialties of the inputs are not highlighted. The 
fusion results of DDcGAN tend to reflect more infrared intensity and the 
objects are distinct. But the texture details in visible images are some
how neglected. The outputs of U2Fusion are relatively clear, but specific 
contents in few visible images are not reflected. The fusion results of 
NestFuse and SeAFusion contain comprehensive information, only the 
visual effect of several pairs like the one in Fig. 7 need to be improved. 

With regard to CBAM and the proposed method, since the convolu
tional block attention module is introduced, the models can simulta
neously lay more emphasis on obvious objects and details information of 
the source inputs. So the fusion results are always sufficient with 
prominent features. The images look clearer with less noises. Both in 
contrast and fidelity, the fused images behave quite well. Most notably, 
in our method, the multi-branch architecture is adopted and the 
different perceptive fields in spatial attention help a lot to get comple
mentary feature maps. Skip connections are also added to learn residual 
information which are important for fusion tasks. If we enlarge the 
above three groups of pictures, corresponding images fused by our 
attention model have great advantages. 

4.3.1. Evaluation metrics 
For image fusion tasks, there are always no reference images. 

Different fusion purposes focus on different image characteristics and 
the standards for image quality evaluation are different. At the moment, 
most researchers adopt the way to use multiple objective indicators for 
multi-angle evaluation [48]. By drawing on their achievements, we have 
established a system for comprehensive evaluation by measuring the 
single generated image itself and the correlation between output and 
source inputs. The entropy (EN) [49] measures the amount of infor
mation of the fusion image. Spatial frequency (SF) [50] reflects the 
image definition. The standard deviation (SD) [51] helps to calculate the 
contrast. The following metrics focus on correlation between fusion 
images and the input images. The mean structural similarity (MSSIM) 
[52] can compare the overall structural information in detail. 

Correlation coefficient (CC) [53] and the sum of the correlation of dif
ferences (SCD) [54] can count the linear correlation degree between 
images from two angles. The last metric called visual information fi
delity for fusion (VIFF) [55] is now widely applied. The metric is built up 
on image distortion and human visual distortion, so it can be used to 
measure the visual perception. 

The larger value means the better fusion result is suitable for all the 
seven metrics. They are encoded through MATLAB and the codes pro
grammed by the original researchers are used for reference. 

4.3.2. Objective evaluation 
20 (10 of TNO, 5 of RoadScene, 5 of MFNet) infrared and visible pairs 

are selected to generated images for test. Average values of the indexes 
are calculated and the numerical results are listed in Table 1. The first 
four lines of the results are the quantitative values of traditional 
methods. The others are results of DL-based methods. The best values of 
different methods are in bold. 

Among these comparative methods chosen, we can see that the nu
merical behaviors of the DL-based methods are generally better than 
traditional methods. This also indirectly proves the superiorities of deep 
neural networks. In these DL-based methods, there are no additional 
activity level measurements and the fusion rules are simplified. The 
whole transformation process is implemented by designing the network 
structure and restraining the loss. The features are extracted efficiently 
by repetitive training. 

Next, numerical results of different methods are analyzed one by one. 
The proposed method behaves preferably when the average values are 
taken together. We get the best values on three metrics which are EN, CC 
and VIFF. The bigger EN means that the images are informative with 
details. The bigger CC indicates the correlation between the inputs and 
fusion image is close and more important features are transferred. 
Furthermore, the VIFF of this proposed model is very prominent. The 
fused images with higher fidelity are conductive to be observed by 
human visual system. The SF and SCD metrics of the proposed method 
are just inferior to the values of SeAFusion method. With regard to the 
SeAFusion method, gradient residual dense blocks are embedded to 
extract fine-grained detail information of feature maps and they crea
tively devise a semantic loss to adequately boost the semantic infor
mation of fused images. All these operations help to improves the image 
quality of SeAFusion method. The method also gets the biggest value on 
SD. The corresponding results of CNN, NestFuse and the proposed 
method are slightly smaller. As to MSSIM, the results of the CBAM and 
the proposed method are not desired. The Densefuse and Deepfuse 
methods achieve better values on it. In Densefuse, the densely connected 
structure is innovatively introduced which is useful to retain informa
tion of middle layers. Moreover, the encoding and decoding network are 
well adjusted by pre-training. For Deepfuse, the better performance is 
mainly attributed to its unique MEF SSIM. All these excellent designs of 
the above methods can be used for reference in our follow-up studies. 

Table 1 
The Numerical Values of Seven Metrics.  

Methods EN SF SD MSSIM CC SCD VIFF 

CVT  6.7105  12.0074  30.3249  0.5506  0.5211  1.5998  0.3985 
DTCWT  6.6530  11.9894  29.6035  0.5664  0.5269  1.6030  0.3929 
LP  6.7876  12.3804  33.0202  0.5752  0.5229  1.6148  0.4894 
NSCT  6.6762  12.1322  30.1654  0.5834  0.5314  1.6196  0.4441 
CNN  7.1198  12.2810  45.9716  0.5698  0.4923  1.6215  0.5263 
Densefuse  6.8092  9.4475  35.4260  0.6049  0.5507  1.6466  0.4950 
Deepfuse  6.8257  9.4367  35.7491  0.6044  0.5506  1.6378  0.5019 
RCGAN  6.5885  8.2742  29.7809  0.5634  0.4890  1.5175  0.3213 
DDcGAN  7.2039  10.1917  41.1310  0.4470  0.4714  1.3316  0.3742 
U2Fusion  6.7259  12.1825  35.0473  0.5755  0.5342  1.6349  0.5415 
NestFuse  7.0422  11.2979  45.2945  0.5886  0.5096  1.5921  0.4435 
SeAFusion  7.1253  13.6405  46.9932  0.5777  0.5142  1.7011  0.5274 
CBAM  7.1201  12.3843  40.7179  0.5302  0.5564  1.6481  0.5934 
Proposed  7.2783  13.5923  44.3380  0.5336  0.5594  1.6709  0.6845  

D. Xu et al.                                                                                                                                                                                                                                       



Infrared Physics and Technology 125 (2022) 104242

9

Moreover, we will continue to optimize the composition and specific 
form of the loss function. 

Through the numerical analyses, it can be summarized that the 
evaluation results are coincident whether on objective calculation or 
subjective judgments. For convenient comparison of the comprehensive 
performances of different methods on these metrics, we draw a radial 
map to reflect the numerical resultsas shown in Fig. 10. 

4.4. Ablation study 

For the sake of proving the originality of the designed method, 
ablation experiments are done to test the effects of the attention 
mechanism introduced, also check the influence of the perceptual loss. 

4.4.1. Analysis of multi-scale attention module 
The loss function is consistent with the proposed method when 

designing the two comparative experiments. The first network without 
attention module is consisted of eight layers of convolutional network. 
Five layers are used for encoding and three layers are used for decoding. 
The second network has the same structure with the proposed method 
whose perceptive fields are in the same size of 3 × 3 in spatial attention. 

In Fig. 11, the images generated with attention module look clearer 
and more attractive. Whether the infrared objects or texture details are 
easy to identify and recognize. Especially, in the proposed method, 
different sizes of kernel are adopted in the three branches for convolu
tion calculation in the spatial attention. This helps to acquire multi-scale 
salient features from the distinct inputs which are advantageous to 
construct better outputs. The multi-scale attention network achieves 
excellent effects on this multi-modal image fusion task. Hot maps are 

drawn to clearly show which area in the image is focused by the 
network. 

4.4.2. Analysis of multi-layer perceptual loss 
In this group of contrast experiments, the attention networks are 

consistent and we make differences on perceptual loss. One network is 
trained without perceptual loss while another one is trained with only 
LPer1. SSIM loss and content loss are reserved. 

In Fig. 12, the fused images gained by the attention network without 
perceptual loss are fuzzy. Meanwhile, a certain amount of information is 
missing. It is evident that the images obtained by the network con
strained with perceptual loss are informative. The visual effect is also 
improved since less noise and useless information are brought. We can 
see that the attention network only with LPer1 is capable of achieving 
preferable fused images. In the proposed method, further promotion is 
made by combining the LPer1, LPer2, and LPer3 to construct a multi-layer 
perceptual loss. This makes the image quality be improved again. The 
targets and the outlines of the images become clearer. In fact, other 
combinations have also been tried, the selected mode has the best effect. 
Hot maps are also drawn at the end. 

5. Conclusion 

The paper focuses on the application of attention mechanism in 
infrared and visible image fusion. An unsupervised CNN model is built 
and mixed loss functions are constructed. As to the attention structure, 
channel attention and spatial attention are put into use together. Espe
cially, different perceptive fields are adopted in spatial attention of each 
branch. This will help to obtain multi-scale targets or textures in source 

Fig. 10. The radial map of numerical results on different metrics.  
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images. Moreover, infrared objects and visible details are extracted and 
preserved effectively. For better constraint of the back propagation, 
mixed loss functions are adopted. Especially, multi-layer perceptual loss 
is proposed so that the similarity of high-level features can be restrained. 
All these designs have got obvious quality improvements on fusion im
ages. The image information is richer and the visual effect gets better. 
Both subjective observations and objective calculations show that the 
proposed method is feasible and has superiorities. 

The framework and the loss of the proposed method have strong 

universality. With appropriate modifications, the model will be used for 
other multi-modal or multi-focus fusion tasks. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Fig. 11. The fused results of ablation experiments on attention module. From 
top to bottom: infrared image, visible image, fusion results of conventional 
convolutional neural network without attention module, attention network 
with same perceptive fields in spatial attention and the proposed method, the 
hot maps of the proposed method. 

Fig. 12. The fused results of ablation experiments on perceptual loss. From top 
to bottom: infrared image, visible image, fusion results of attention network 
without perceptual loss, attention network with only LPer1 and the proposed 
method, the hot maps of the proposed method. 
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