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a b s t r a c t

Since the image sensor will produce blur problems in the process of collecting data of moving objects,
the image needs to be restored. Ringing is one of the most common artifacts in deblurred images. This
paper proposes a non-blind image deconvolution method based on texture mapping segmentation,
named texture-Richardson–Lucy (TRL) algorithm, which suppresses ringing while deblurring the image.
TRL is based on a novel ringing removal deconvolution algorithm, which adds a ringing detection term
as regularization in the iterative process of the Richardson–Lucy algorithm. Taking into account the
structural difference between the texture and the flat area, the image is segmented into several blocks
and restored through adaptive iterative texture maps based on the pixel intensity and texture features
of the image. In order to obtain a reasonable texture map, a Gaussian mixture model is used to fit the
pixel intensity distribution, and use the expectation maximization algorithm and local binary mode
to estimate. Experimental results and quantitative evaluations show that TRL can effectively reduce
ringing artifacts while retaining details and achieving robustness to suppress ringing of different blur
kernels. The processing time of a single 1 million pixel image in an 8-core CPU environment is about
3.5 s. And the PSNR and SSIM parameters are above 30 dB and 0.92, respectively. In conclusion, TRL
is superior to the current popular algorithms.

© 2022 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Image blur can be caused by factors such as focal length,
amera shake, and movement of target objects. Image motion
lur is an image degradation phenomenon caused by the relative
isplacement between the subject and the camera in an exposure.
he relative displacement will cause pixels in different positions
o overlap, resulting in reduced imaging quality. As one of the
ost common image degradation phenomena, motion blur exists
idely in many visual processing tasks. In different image ap-
lication fields, such as astronomy, military, medicine, industrial
ontrol, road monitoring and criminal investigation, high-quality
lear images are important in collecting image information for
arious analysis. Therefore, the problem of motion blurred image
estoration has always been the focus of research worldwide.

One of the most obstinate problems in photography is blurring
aused by various blur sources, such as atmospheric turbulence,
n out-of-focus lens and relative motion between the camera and
he scene. These blur sources can be modeled as a blur kernel K,
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convolved with the true image intensities L, which will generate
the degraded image B, as follows:

B = L ⊗ K + N (1)

where ⊗ denotes the discrete image convolution and N is an
additive noise term. Removing that blur from captured image B is
thus a form of image deconvolution, which is an ill-posed inverse
problem with a long history in many scientific applications.

To address this issue, deconvolution approaches, such as the
Wiener filter [1], the regularized filter [2], the Richardson–Lucy
(RL) algorithm [3,4], the total variation deconvolution [5–7], and
deconvolution by a Sparse Prior [8], have been proposed. How-
ever, the deblurred image usually contains a number of artifacts
because the blur often introduces zeros in the frequency domain
with high frequencies truncated and information lost. In addition,
it is challenging to estimate a blur kernel accurately in the pres-
ence of unavoidable noise because of the use of photo-sensors
and signal transmission. Manchester [9] proposed the existence
of Koopman eigenfunctions for a class of nonlinear models using
Koopman learning theory. This cutting-edge achievement is con-
sidered to be applied to the field of image restoration as our next
research direction.

https://doi.org/10.1016/j.isatra.2022.05.005
https://www.elsevier.com/locate/isatrans
http://www.elsevier.com/locate/isatrans
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isatra.2022.05.005&domain=pdf
mailto:suchang906@163.com
https://doi.org/10.1016/j.isatra.2022.05.005
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Null frequencies in the blur kernel, an inaccurate kernel, and
the presence of noise are common causes of excessively amplified
noise and ringing artifacts, the two most universal consequent
artifacts in deblurred images. Ringing artifacts are periodic light
and dark ripples around the edge and may span across an image.
They are extremely difficult to eliminate after the deconvolution
because they are mixed with the image structures at the mid-
frequency band. In addition, large-scale ringing artifacts cause
substantially more harm to the quality of the deconvoluted image
than do noise and blur [10].

Depending on whether the blur kernel is known, image de-
convolution is usually separated into the non-blind and blind
cases. In this paper, a non-blind deconvolution is concentrated
on where the kernel is acquired by relational methods, and only
the latent sharp image needs to be restored from the observed
blurry image. Many methods have been developed to estimate or
determine the kernel, for instance, from an accelerometer and/or
a gyroscope [11], a secondary sensor [12], a known synthetic
pattern [13], a single image [14–16].

An improved Richardson–Lucy algorithm named texture-
Richardson–Lucy (TRL) algorithm is proposed. It restores im-
ages with explicitly fewer ringing artifacts and well-maintained
details. Two pivotal improvements are proposed based on RL
algorithm. First, TRL uses a multiscale image pyramid to measure
ringing artifacts and a regularization term to suppress them.
Second, image pixels are classified by a Gaussian mixture model.
Pixels with the same Gaussian distribution are divided into the
same class, forming a unique texture map. Every class is iterated
a diverse number of times based on its flatness and similarity
texture feature, achieving a better reconstruction effect of the
image and suppressing the ringing between different areas. This
approach has a significant effect on regenerating sharp edges and
details and constraining the ringing artifacts.

The remainder of the paper is structured as follows: In Sec-
tion 2, the related work and the differences in our approach are
reviewed. In Section 3, an adaptive regularization algorithm is in-
troduced to eliminate ringing by adding a ringing-detecting term
in the minimization and iterating adaptively via a texture map.
The ringing artifact removal and segmentation-based iteration
scheme are presented. In Section 4, the results of TRL for real
blurry images are presented; conclusions follow in Section 5.

2. Related work

Removing ringing is one of the most challenging problems
in image deconvolution. There have been several methods that
provide superior performance for this problem in the literature
in the past decades. Additional details concerning classic methods
can be found in [17]. This paper is primarily focused on the work
relevant to our approach.

One of the most common non-blind image deconvolution ap-
proaches is the RL algorithm [3,4], which is an iterative algorithm
that takes image intensities as Poisson statistics to transform the
inverse problem into exploring a maximum likelihood solution.
This approach can be used effectively in many deblurring pro-
cesses, but its results still contain noticeable ringing artifacts.
In addition, this method applies the same operation to both
smooth and textured regions during the iterative process, which
intensifies ringing artifacts parallel to image edges as the number
of iterations increases.

The ringing, one of the troubling artifacts at image edges or
boundaries in the deconvolution stage, was also addressed in
abundant literature. Whyte et al. [18] analyzed causes of ringing
artifacts in general and proposed a deblurring algorithm in order
to reduce ringing, which located these bright pixels in the latent
sharp image and separate them from the remainder of the latent
651
image. They pointed out that ringing can only be suppressed, but
not eliminated in image restoration. Shan et al. [15] introduced
a model of the spatial randomness of noise in the blurred im-
age and a local smoothness prior to reducing ringing artifacts,
which constrains contrast in the unblurred image wherever the
blurred image exhibits low contrast. Image edges can be kept by
introducing a segmentation-based regularization term. However,
using smoothing to suppress ringing can lead to a new blur in
the restored image. Cho et al. [19] regarded saturation pixels and
non-Gaussian noise as outliers and built a non-blind deconvo-
lution method in a blur model that considers these outliers to
reduce the visual artifacts they cause. The visual artifact area is
located and removed through outliers. The artifact area is re-
quired to be accurately recognized, requiring high accuracy of the
algorithm. Yang et al. [20] modeled the latent variable as a set of
independent random variables and regularized these variables by
the prior motivated from edge selection/reweighting. In addition,
Pan et al. [21] proposed an ℓ0-regularized prior based on the
distinctive properties of text images and selected salient edges
as stronger piecewise priors for text image deblurring. This algo-
rithm can recover natural images with complex scenes and low
illumination. The authors used the edge method to suppress the
ringing, which inspired us to suppress the ringing according to
the area. Ringing is mainly generated from the edge. The edge of
the image is the transition zone between one low-frequency area
and the other low-frequency area. If the different low-frequency
regions in the image are found out and processed separately,
there will be no ringing.

Due to the recent success of Convolutional Neural Networks
(CNN) and Generative Adversarial Networks (GAN) in object de-
tection [22], recognition [23] and related tasks [24], several CNN-
based methods have been proposed for image deblurring [25].
We analyze the development of image restoration algorithms in
the field of deep learning, and compare the processing results
of deep learning image restoration algorithms in recent years.
Zhang et al. [26] integrated model-based optimization methods
with discriminative learning methods. They trained a set of CNN
denoisers that were integrated into the model-based optimization
method to solve inverse problems. Li and Pan [27] presented a
blind image deblurring method based on a data-driven discrimi-
native prior. And this image prior is treated as a binary classifier
to distinguish whether an input image is clear or not and em-
bedded it into the maximum a posterior to help blind deblurring.
Shen et al. [28] presented a human-aware convolutional neu-
ral network which integrated foreground/background deblurring
models with a supervised attention mechanism for global and
harmonious deblurring. Lu et al. [29] proposed an unsupervised
method to disentangle the content and blur features in a blurred
image and added a blurring branch and cycle-consistency loss
to remove unrealistic artifacts. Kaufman and Fattal [30] broke
the deblurring network into an analysis network for estimating
the kernel, and a synthesis network for deblurring the image.
The above methods to generate different blur kernels are used
to compare the effects of TRL algorithm under these blur kernels.

These approaches attempt to implicitly handle ringing arti-
facts by finding a better balance between ringing suppression
and detail conservation in the recovered image. TRL shows that
ringing artifacts can be more effectively eliminated by explicitly
adaptively iterating the image with the regularized deconvolution
algorithm. The potential of our model in general image restora-
tion is demonstrated, and a subjective study on the deblurring
quality of real blurred images is conducted. At the same time,
three popular benchmarks (PSNR, SSIM, and efficiency) to demon-
strate the most advanced performance achieved by TRL are used
to compare popular algorithms. The quantitative indicators PSNR
and SSIM are stable at around 30 dB and 0.94 respectively. In
terms of efficiency, TRL is faster than these popular algorithms.
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. Texture-Richardson–Lucy (TRL) algorithm

Based on standard RL algorithms, a ringing-detecting term is
dded into this algorithm as a regularization to suppress ringing
rtifacts and preserve the edges in the deconvolution process.
uilt on this regularized algorithm, adaptive iterations are applied
o the blurred image by its texture features to recover addi-
ional details in texture regions and to prevent flat regions from
verestimating.
The RL algorithm assumes that the image noise submits to the

oisson distribution, and the likelihood probability of the image
can be denoted as:

(B|L) =

∏
x

(L ⊗ K )B exp[−(L ⊗ K )]
B!

(2)

Because the maximum likelihood solution of p(B|L) is also the
minimum solution of the corresponding − log[p(B|L)] function,
maximizing the likelihood is equivalent to minimizing the energy
function:

L∗
= argmin

L
E(L) (3)

where

E(L) =

∑[
(L ⊗ K ) − B · log(L ⊗ K )

]
(4)

Setting the derivative of E(L) equal to zero with the kernel con-
straint

∑
x K (x) = 1, by the RL algorithm, the iterative estimation

of the image can be generated as follow:

Lr+1
= Lr

[
K ∗

⊗
B

(Lr ⊗ K )

]
(5)

where K ∗ is the adjoint of K and r is the iterative number. This
algorithm not only preserves the total energy of images in the
iteration process but also maintains the approximated values as
nonnegative if the starting approximation is nonnegative. How-
ever, because its iterative number is uncertain, additional image
details and ringing artifacts are simultaneously introduced as the
number of iterations increases.

3.1. No-Reference ringing-detecting term as a regularization

To reduce ringing artifacts in deconvolution, the first consid-
eration is to detect and quantify them in images. A method to
measure large-scale ringing was proposed by Liu et al. [10], which
estimates ringing in flat regions, but avoids image structures in
textured regions. Similarly, one multiscale ringing-detecting term
is adopted as a regularization term to the energy in Eq. (3):

L∗
= argmin

L

[
E(L) + λER(L)

]
(6)

where λ is the regularization factor and the term ER(L) is defined
as:

ER(L) =

X∑
x=1

1
2

(
∥Sh ⊗ Gx−1 ⊗ Lr − Sh ⊗ Gx ⊗ Lr∥2

2

+∥Sv ⊗ Gx−1 ⊗ Lr − Sv ⊗ Gx ⊗ Lr∥2
2

) (7)

here ∥•∥2 denotes the ℓ2-norm function, Gx is a scaled Gaussian
lur kernel with the size of 4x + 1(x = 0, 1, 2 . . . X), and Sh
nd Sv denote the horizontal derivative operator and the vertical
erivative operator, respectively. Here, the noise robust gradi-
nt operators that Holoborodko proposed are used. Combining
sotropic noise suppression and precise partial derivatives es-
imation, the operators can effectively perceive horizontal and
ertical high frequencies and avoid the details and the noise being
etected [31]. The horizontal operator is presented as follows,
652
nd the vertical operator is simply a 90-degree rotation of the
orizontal operator:

h =
1
32

[
−1 −2 0 2 1
−2 −4 0 4 2
−1 −2 0 2 1

]
(8)

To obtain the solution of the updated formula, Eq. (6) is
inimized, and then a regularized RL algorithm is obtained:

r+1
=

Lr

1 + λ∇ER(Lr )

[
K ∗

⊗
B

(Lr ⊗ K )

]
(9)

here

ER(L) =

X∑
x=1

(
S∗

h ⊗ Sh ⊗ (Gx−1 ⊗ L − Gx ⊗ L)

+S∗

v ⊗ Sv ⊗ (Gx−1 ⊗ L − Gx ⊗ L)
) (10)

here S∗

h and S∗
v are adjoints of Sh and Sv , respectively.

From Eq. (9), the deviation of ER(L) places a penalty on ringing
rtifacts and regularizes each pixel. The ER(L) is based on the
dea that the larger Gaussian blur kernel can make the images
moother, including wavy ringing; moreover, the differences be-
ween the edges of images blurred by Gx−1 and Gx are mainly
inging artifacts. In addition, these differences are expected to
ave little distinctions in larger-sized blurs, while the differences
re significant in smaller-sized blurs. Therefore, the sum of the
ultiple-level detection results should push the ER(L) towards

inging artifacts instead of real edges.
Image quality metrics commonly include PSNR [32] and mul-

iscale SSIM [33]. PSNR (Peak Signal-to-Noise Ratio) is the most
ommon and widely used image objective evaluation metric,
hich is based on the corresponding pixel point. It is based on
he error-sensitive image quality evaluation. PSNR is often ex-
ressed in logarithmic decibel units. A larger value equals better
mage quality. However, human eyes are more sensitive to the
ontrast difference with lower spatial frequency and the contrast
ifference of brightness instead of chromaticity. Since the visual
haracteristics of human eyes are not considered, there will be
nconsistencies between the evaluation results and human eyes’
ubjective perceptions. SSIM (structural similarity index measure)
s a type of measurement of image similarity. From the per-
pective of image composition, structure information is defined
s properties that reflect the structure of objects in the scene
ndependently of brightness and contrast. Distortion is modeled
s a combination of three different factors brightness, contrast,
nd structure. The mean is used as an estimate of brightness,
he standard deviation is used as an estimate of contrast, and
he covariance is used as a measure of structural similarity. Their
alues can better reflect the subjective feeling of the human eye.
Fig. 1 shows a comparison of standard RL and TRL algorithms.

he motion blur image is generated by adding the motion blur
f the known blur kernel to the original clear image, and both
lgorithms are iterated 50 times. In the ringing-detecting regu-
arization term, three resolution levels are considered as default,
.e., X = 3. Although both the standard RL algorithm and the TRL
lgorithm with ringing-detecting regularization cannot recover
ll the details due to high frequency loss, the results still show
hat this regularized algorithm can generate images with fewer
inging artifacts and well-preserved image edges compared to
he standard RL algorithm. Peak Signal-to-Noise Ratio (PSNR) and
tructural Similarity (SSIM) are used to compare RL and TRL
lgorithms. The PSNR of TRL is 30.13 dB, which is 2.6 dB higher
han that of RL; the SSIM of TRL is 0.912, which is 0.15 higher
han that of RL.



W. Wang and C. Su ISA Transactions 131 (2022) 650–661

l

1
1
1
1
1
1

1
1
1
1
2
2
2

2

2

2

p
o
t

Fig. 1. Effect of the regularization in the proposed deblurring model. (a) Original Lena image. (b) Blurred Lena image with Gaussian blur. (c) Standard RL result. (d)
The result of the improved RL with ringing-detecting regularization.
Algorithm 1 Deblurring algorithm with ringing-detecting regu-
arization and segmentation-based texture map
Input: blurred image: B; blur kernel K ; resolution level X; regu-

larization factor λ; number of clusters Q ; number of iterations
t

Output: deblurred image Lfinal
1: procedure Initial deblurred image
2: - L0 = B, r = 0
3: - Update:
4: ∇ER(Lr ) =

∑X
x=1

(
S∗

h ⊗ Sh ⊗ (Gx−1 ⊗ Lr − Gx ⊗ Lr )

+S∗
v ⊗ Sv ⊗ (Gx−1 ⊗ L − Gx ⊗ Lr )

)
5: Lr+1

=
Lr

1+λ∇ER(Lr )

[
K ∗

⊗
B

(Lr ⊗ K )

]
6: r = r + 1
7: until r > 4
8: end procedure
9: procedure Generate texture feature map m
0: - Using EM approach to divide the image into Q sections;
1: - Calculate the LBP of each section;
2: - Rank sections according to LBP value of each section:
3: Z = Q
4: Do:
5: m =

Z
Q for the section which has the largest

6: LBP value
7: delete the largest LBP value
8: m = m − 1
9: Until Z<1
0: end procedure
1: procedure Final deblurred image Lfinal - L0 = Linit , r = 0
2: - Update for each section:
3: ∇ER(Lr ) =

∑X
x=1

(
S∗

h ⊗ Sh ⊗ (Gx−1 ⊗ Lr − Gx ⊗ Lr )

+S∗
v ⊗ Sv ⊗ (Gx−1 ⊗ L − Gx ⊗ Lr )

)
4: Lr+1

=
Lr

1+λ∇ER(Lr )

[
K ∗

⊗
B

(Lr ⊗ K )

]
5: r = r + 1

26: until r > m ∗ t
27: Return: The deblurred image Lfinal
28: end procedure

3.2. Adaptive iterations by texture feature map

Because the ringing-detecting term inevitably misclassifies
arts of image edges as ringing, the introduced regularization not
nly suppresses the ringing artifacts in the iterative process but
ends to smooth the whole restored image, including regions with
653
Fig. 2. Quantitative evaluations of recovered images with various Q.

ample textures. One simple method for addressing this situation
is to increase the number of iterations, but this will result in more
artifacts in both textured and flat regions even if the regularized
RL algorithm is used. Therefore, based on the regularized RL
algorithm, we further apply different iterations to diverse regions
to adequately restore details in textured regions and lessen the
overestimates of the flat regions of the image.

A Gaussian mixture model is used where the classifications
of the image are estimated by fitting Gaussian conditional pixel
intensity distributions. The main idea of this method is to classify
pixels into Q categories according to the fitting result and to rank
the region whose pixel intensities belong to the same category in
proportion to the complexity of its texture feature. For classifica-
tion, a texture feature map m is generated. In matrix m, for the
area with the roughest texture, the element of matrix m is set as
value 1; and for the flattest area, the element of matrix m is set
as value 1/Q. The values of other regions increase sequentially in
steps of 1/Q. For each rank, a different number of iterations in the
deconvolution process is adopted.

To know the map m, the maximum likelihood estimation of
the Gaussian mixture model by the expectation maximization
(EM) algorithm is first acquired. Then, the image is partitioned
into Q sections and pixels in each section subject to the same
Gaussian distribution with the same mean and variance. Finally,
the local binary pattern (LBP) is used to assess the image textures.
The sum of the normalized LBP of pixels of each section is calcu-
lated and used to rank these sections to obtain the texture feature
map m.

Fig. 2 shows an example of deblurring results with various Q
to illustrate the impact of the number of partitions on the quality
of the restorations. The figure is divided 1(a) into Q categories,
with the Q between [1, 5] and plots the variation of PSNR and
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Fig. 3. Deblurring the synthetically blurred image from Fig. 1(b). (a) The texture map of blurry Lena. (b) The result by TRL algorithm.
Fig. 4. Effects of the λ with different values. (a) λ = 0.1. (b) λ = 0.5. (c) λ = 0.7. (d) λ = 0.9.
SIM of restored images. In this example, when Q becomes larger
han about three, PSNR and SSIM level off. That is, as the number
f sections is increased, PSNR and SSIM are decreased since more
reas are over-fitting to cause more ringing artifacts. Therefore,
is set to three for all examples.
The texture feature map m and the result deblurred by TRL

lgorithm are shown in Fig. 3. For comparison, Fig. 1(b) remains
s the blurred input. To obtain an accurate texture map, the fitting
f the Gaussian mixture model and ranking by texture feature are
onducted after five iterations for all examples. Compared with
he results in Figs. 1(c) and 1(d), the quality of the recovered
mage in Fig. 3(b), which comprises less ringing and more detail,
s further improved by this segmentation-based scheme.

As shown in Fig. 4, the experimental effect of λ with values
f 0.1, 0.5, 0.7 and 0.9 respectively. In addition, Fig. 5 shows the
SNR after image restoration in Fig. 1(b) when the λ is different.
n Fig. 5, the PSNR effect is the best when the correction value
s about 0.7. The following parameters can also be properly cor-
ected for the restoration of different images to achieve a better
estoration effect.

This paper provides a novel ringing-detecting regularization
or the energy function and a texture feature map for adaptive
terations. These two approaches combine a new non-blind de-
onvolution algorithm that is a convincing solution to reducing
he ringing of the recovered image in a single image deblur-
ing. The pseudo code of image deconvolution using ringing-
etecting regularization and a segmentation-based texture map
s in Algorithm 1.

. Experimental and discussion

Fig. 6 shows the results deblurred by two different kernels. The
wo kernels are approximated by Fergus et al. [14] and Krishnan
t al. [16]. The results by the standard RL and TRL algorithm
654
Fig. 5. PSNR of recovered images with various λ.

for comparison are presented in this paper. For the standard RL,
twenty iterations for all blurry examples are performed. Figs. 6(b)
and 6(c) are the results deblurred by Fergus’ kernel and Figs. 6(d)
and 6(e) are the results deblurred by Krishnan’s kernel. As seen
from these images, for the kernel estimated by Fergus’ method,
the standard RL shows severe ringing artifacts, but TRL algorithm
result has high performance for both ringing removal and detail
enhancement. For the kernel estimated by Krishnan’s method,
it is shown that the standard RL is adequate to reconstruct the
deblurred image, and TRL algorithm result has the same sharp
edges as the standard RL’s while having fewer artifacts (as shown
in the green rectangle in the figure). This comparison of two
sets of results indicates that TRL has good robustness against
ringing even if the kernel is not sufficiently accurate and avoids
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Fig. 6. Deblurred results with two different kernels. (a) The input blurry image (b) Standard RL result and PSF (lower left corner) estimated by Fergus et al. [14]. (c)
Our result using PSF estimated by Fergus et al. [14]. (d) Standard RL result and the PSF (lower left corner) estimated by Krishnan et al. [16]. (e) Our result using the
PSF estimated by Krishnan et al. [16]. (f) Close-up views of (b), (c), (d) and (e) correspond to the rectangles of the same color. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. (a) The input blurry image and its PSF estimated by Shan et al. [15]. (b) The standard RL result. (c) The result of Shan et al. [15]. (d) The result of TV
regularization of Chan et al. [6]. (e) TRL’s result and some close-ups.

655
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e
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Fig. 8. Comparison to Cho et al. [19] and Yuan et al. [18]. (a) Blurred image and PSF estimated by Cho et al. [19]. (b) Blurred image. (c) The result of Cho et al. [19].
(d) The result of Whyte et al. [18]. (e) TRL’s result.
Fig. 9. Comparison to Cho et al. [19] and Yuan et al. [18]. (a) Blurred image and PSF estimated by Cho et al. [19]. (b) Blurred image. (c) The result of Cho et al. [19].
(d) The result of Whyte et al. [18]. (e) TRL’s result.
Fig. 10. Comparison to Pan et al. [21] and Zhang et al. [26]. (a) The blurry image and its PSF estimated by Pan et al. [21]. (b) The result of Pan et al. [21]. (c) The
result of Zhang et al. [26]. (d) TRL’s result.
generating over-smoothened structures in the texture region and
over-sharpened details in the flat region.

To evaluate the performance of the ringing suppression and
egmentation scheme on deblurring, TRL is applied on a vari-
ty of real images. In experiments, the factor λ of the TRL can
e adaptively regulated. The regularization factor controls the
656
constraint on ringing and makes a better compromise between
ringing suppression and edge sharpness. For all examples, the
default value of λ is set to 0.7.

In Fig. 7, TRL algorithm is compared with three superior meth-
ods of standard RL, TV regularization [6], and Shan’s method [15].
The blur kernel is estimated by Shan’s method. For TV
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Fig. 11. Comparison to Pan et al. [21] and Zhang et al. [26]. (a) The blurry image and its PSF estimated by Pan et al. [21]. (b) The result of Pan et al. [21]. (c) The
result of Zhang et al. [26]. (d) TRL’s result.
Fig. 12. Comparison to Pan et al. [21] and TRL again. (a) The result of Pan et al. [21]. (b) TRL’s result. (c) The detail of the results. The right image of the red box and
the bottom image of the green box are TRL’s results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
regularization, the most visually pleasing result that balances the
recovered details and ringing reduction is generated by altering
its regularization factors. The deblurred image produced by the
standard RL has the most obvious ringing. In addition, the other
657
two approaches can suppress the ringing artifacts to some extent
but also blur or smooth details of the image. Our approach can not
only recover additional image details and sharper image edges
but also effectively lessen ringing.
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Fig. 13. Monkey D. Luffy taken by a Canon camera. (a) Blurred image and kernel (lower left corner) estimated by Krishnan et al. [16]. (b) The result of the standard
L. (c) Krishnan et al.’s result. (d) TRL’s result.
Figs. 8 and 9 compare non-blind deblurring results. Compared
o the results of Cho et al. [19], the results of the proposed
ethod contain plainer characters and sharper edges. Based on

he Richardson–Lucy algorithm, TRL algorithm generates a clearer
esult on a natural image and a comparable result on saturated
mage with Whyte et al. [18], which is specially designed for the
aturated images.
Figs. 10 and 11 show examples with large blur kernels and

eblurred results from the state-of-the-art methods [21,26]. For
air comparisons, the kernel estimated is used by the method [21]
o generate the latent images in all algorithms. Due to the pro-
osed adaptive iteration mechanism, TRL’s result does not have
ignificant ringing overall and preserves more salient edges and
etails in the restored images.
At the same time, we also further compared the details of

he restoration effect of the Pan’s [21] algorithm and the TRL
lgorithm as shown in Fig. 12. It can be seen from the detailed
icture that the restoration effect of Pan’s algorithm is relatively
ague, and its details are not clear enough, including grass, floor
iles, railings, eaves, etc. For example, in Pan’s result, the light
reen floor tiles in the outer ring of floor tiles have been clearly
isplayed, and the texture lines at the joints of the floor tiles
re also blurred or even disappeared; the eaves are relatively
lurred and flat, and the texture cannot be clearly restored; the
exture of the grass is not clear enough. In our algorithm, the light
reen part of the outer circle of the floor tiles is very clear, and
he detailed texture is richer; the pattern on the eaves circle is
lso more obvious; the grass texture is more realistic. Because
ur algorithm utilizes image texture, the restoration effect is
etter for areas with rich image texture details. This is also the
eason why the quantitative indicators such as PSNR of the Pan’s
lgorithm are relatively low. Their algorithm flattens the image
oo much, which will blur the details of the image.

TRL is also applied to a real image taken by a handheld camera.
ig. 13(a) is the blurry image and the estimated kernel by Krish-
an et al. [16]. For the comparison, the result of the standard RL
nd the method of Krishnan et al. [16] is displayed. As Fig. 13 indi-
ates, the proposed approach significantly diminishes the ringing
rtifacts in the deblurred image. In summary, the experimental
esults show that TRL algorithm brings about significantly fewer
inging artifacts.

To further illustrate the effectiveness of the proposed algo-
ithm, information entropy of restored images is calculated. In-
ormation entropy reflects the average amount of information
onveyed by each pixel in the image, which can measure the
mportance of the target in the image. The greater the information
ntropy, the more information is contained in the image. Table 1
hows information entropy of recovered images of different algo-
ithms in Figs. 6 to 13, and the bold fonts indicates the optimal

alue of each set of results. It can be seen from Table 1 that TRL’s

658
Table 1
Information entropy of recovered images in Figs. 4 to 10.
Image Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12

Sub-graph (a) 6.8811 7.6648 – – 7.0058 7.5275 6.7912
Sub-graph (b) 6.8231 7.7549 7.5750 7.4574 7.0357 7.6728 6.9658
Sub-graph (c) 6.8924 7.6993 7.5622 7.4477 7.0010 7.7558 6.8801
Sub-graph (d) 6.8112 7.6909 7.5770 7.5877 7.1367 7.7611 6.8870
Sub-graph (e) 6.8853 7.7745 7.5935 7.6245 – – –

Table 2
PSNR, SSIM and inference efficiency of different algorithms.

PSNR SSIM Runtime

Cho et al. [19] 26.32 0.862 2.4
Yuan et al. [18] 27.03 0.869 3.5
Pan et al. [21] 27.82 0.897 5.7
Zhang et al. [26] 27.38 0.876 8.3
DeblurGAN-v2 [35] 29.89 0.907 9.1
MPRNet [36] 30.24 0.916 17.4
MIMO-UNet [34] 31.08 0.918 7.8
TRL 31.73 0.925 3.2

results have a higher information entropy, which indicates that
this method can recover more details from the blurred image.

Due to the recent success of Convolutional Neural Networks
(CNN) and Generative Adversarial Networks (GAN) in object de-
tection [22], recognition [23] and related tasks [24], some scholars
have tried to use deep learning for motion blur images recovery.
TRL is also compared with a popular deep learning algorithm
MIMO-UNet [34], as shown in Fig. 14. TRL is based on a single
image for restoration, and MIMO-UNet needs to use a data set
for training, the result in Fig. 14 is obtained by using the training
weight provided by the authors [34]. Since the MIMO-UNet model
has requirements for the size of the input image, the results
are compared after cropping the pictures used in the previous
part. In Fig. 14, we can see that the effect of MIMO-UNet is not
very satisfactory. This is also a common problem of current deep
learning algorithms. It requires a lot of training to get better
results. However, there is often only one single image instead of
large data set for training in the actual restoration work. This is
also the advantage of TRL algorithm.

At the same time, we use the training data set GoPro which
was also used by MIMO-UNet [34] for testing. In Fig. 15, our
algorithm is not as effective as MIMO-UNet. Our algorithm is
based on the restoration of a single picture, while MIMO-UNet
is a deep learning training conducted on this data set GoPro.
Therefore, our result is also acceptable practically.

In order to quantify the superiority of TRL algorithm, standard
performance indicators (PSNR, SSIM) and inference efficiency (av-

erage running time per image measured are compared on an
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Fig. 14. Deblurred results with MIMO-UNet [34] and TRL using the images mentioned above. (a) The input blurry images. (b) The results of MIMO-UNet [34]. (c)
The results of TRL.

Fig. 15. The results of the image deblurred result of the GoPro dataset used by the MIMO-UNet model and TRL. (a) The input blurry image. (b) The result of
MIMO-UNet. (c) The result of TRL.

659
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Fig. 16. More results of TRL, including the dataset of [21] (temple eaves and license plate) and photograph taken by the author (author’s pet cat). (a) The input
blurry images. (b) The results of TRL.
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-core CPU) are carried out using more than 800 images. The im-
ges size resize to 1 million pixels. The running time is expressed
n seconds. TRL is compared with many state-of-the-art methods,
mong whom are not only traditional algorithms, but also deep
earning algorithms. It can be seen from Table 2 that in terms of
verage PSNR and SSIM, TRL is higher than other algorithms and
un much faster than deep learning algorithms. Meanwhile, TRL
as 50% less inference time than MIMO-UNet. The reason may be
hat deep learning is slow to run in CPU environment.

Moreover, we also added more representative pictures (tem-
le eaves and license plate) in the dataset of [21] and pictures
aken by mobile phone in the life (author’s pet cat) to show the
ffect of the TRL algorithm. It can be seen from Fig. 16 that the
ecovery effect of the TRL algorithm is very good.

The TRL algorithm not only has a remarkable restored effect
ut also is convenient and efficient. Compared with the popular
eep learning motion blur image restoration algorithm in recent
ears, the TRL algorithm does not need to train a large number
f data set in advance, achieving directly restored results by
roviding the target image. While the deep learning algorithm
ften needs a large number of data sets for training in one scene
or image restoration, retraining is required for another scene.

. Conclusion

A new method named TRL is applied to suppress disturb-
ng ringing artifacts during image deconvolution while ensuring
etter restoration. TRL uses regularization to suppress ringing
y quantifying ringing through a pyramid of multi-scale image
airs with low-pass filters of two sizes. Besides, TRL calculates the
mage texture using a Gaussian mixture model. The image is clas-
ified according to the flatness and similarity of the texture map,
nd performs different iterations in different areas to achieve a
etter reconstruction effect of the image and suppress the ringing.
xperimental results show that the combination of regularization
nd adaptive segmentation-based iteration can fully balance the
inging suppression and edge restoration in deblurred images. In
onclusion, our method is superior to other methods in terms of
peed and accuracy. In future work, the image texture map will
urther be optimized to achieve a better restoration effect.
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