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Orientation-First Strategy With Angle Attention
Module for Rotated Object Detection in Remote

Sensing Images
Yuxi Zhang , Yongcheng Wang , Ning Zhang , Zheng Li , Zhikang Zhao, Yunxiao Gao,

Dongdong Xu, and Guangli Ben

Abstract—Recently, object detection in remote sensing images
(RSIs) have received extensive attention and made significant
progress. Nonetheless, the arbitrary orientations of objects in RSIs
make their detection a challenging task. Most of the existing detec-
tion methods are difficult to extract the orientation features of ob-
jects due to the lack of directionality of conventional convolutions.
In addition, the boundary discontinuity in angle regression affects
the detection of object orientations. In response to these prob-
lems, this article proposes an orientation-first refinement detector
(OFRDet), which is based on a strategy that enables the detector to
detect the angle of an object ahead of others and presets oriented
anchors. In OFRDet, we propose an angle encoding regression
module (AERM) and an angle channel attention module (ACAM).
AERM transforms angle detection into multiparameter regression,
which eliminates boundary discontinuities. ACAM uses convolu-
tion kernels with different angles to extract directional features
purposefully according to the preset oriented anchors. After these
two modules, more accurate bounding boxes are generated and
sent to the refined stage to obtain the final detection results. We
evaluate our method and demonstrate the effectiveness of it by
conducting experiments on two challenging and credible datasets,
DOTA, HRSC2016. OFRDet achieves competitive results 79.56%,
96.29% mAP on the two datasets, respectively.

Index Terms—Angle channel attention, angle encoding, remote
sensing images, rotated object detection.

I. INTRODUCTION

OBJECT detection is a technique in computer vision that
requires locating and identifying the certain object in the

image. Remote sensing images (RSIs) are more challenging to
be detected since the scale of RSIs is larger and the content
is more complex than that of ordinary natural images [1].
In addition, objects are unevenly distributed on RSIs and are
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Fig. 1. (a) HBBs of objects with arbitrary orientations. (b) OBBs of objects
with arbitrary orientations.

generally small. With the continuous development of deep learn-
ing technology, neural networks are widely used in image pro-
cessing. Meanwhile the object detection based on convolutional
neural networks (CNNs) have made great progress. Numerous
CNN-based object detection methods aimed at addressing the
abovementioned challenges in RSIs have been proposed in
recent years [2], [3], [4], [5], [6], [7], [8]. These methods have
achieved pretty good results and solved some of the challenges
to a certain extent.

The object detection method based on neural network uses
the smallest rectangular boxes that can contain the objects to
locate the objects. Generally, the horizontal bounding boxes
(HBBs) are quite good at representing the objects in natural
images but not the ground objects in RSIs because the ground
objects have arbitrary orientation in the overhead view used
in RSIs. As illustrated in Fig. 1(a), HBBs representing rotated
objects may contain a lot of undesirable contents such as a large
amount of background for narrow objects with large aspect ratios
and parts of other objects for densely distributed objects. For
better localization of rotated objects, oriented bounding boxes
(OBBs) are widely used in RSIs objects detection [9], [10], [11],
[12], [13], [14], [15]. As can be seen in Fig. 1(b), the OBBs
better enclose the objects themselves and has almost none of the
problems described above in the horizontal boxes. The angle
value is required as well as the position and side length of the
box when defining an orientation box. There are various ways
to represent the angle of object, the most common is to use the
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Fig. 2. Angle boundary discontinuity in rotated object detection. The angle
between the long side of the bounding box and the positive x-axis of the image
is taken as the angle of the box, which is limited to the interval [−90°, 90°).
(a) OBB with an angle value of −88.2° near the lower boundary. (b) OBB with
an angle value of 87.8° near the upper boundary. Two objects of (a) and (b) with
similar orientations have very different angle values.

angle between one side of the bounding box (e.g., the long side)
and the x-axis of the image as the angle value of that object.
Based on the structure of the HBB object detector, the detection
of rotated objects is achieved by adding the angle prediction
module. Normally, angle prediction can be implemented by
increasing a channel in the location regression module.

Although the accuracy and efficiency of detection are getting
better as many methods with different network structures for
rotated object detection are proposed, there are still several non-
negligible problems in most rotated object detectors that have
not been perfectly solved. List three challenges as follows.

1) In the anchor-based detectors, a large number of anchors
with different angles are preset in the network in order
to make the anchors match the rotated objects as much as
possible, which causes a serious redundancy of the anchors
and greatly increases the computational complexity.

2) The problem of discontinuity in the upper and lower
boundaries of the angle values occurs when the angle is
expressed in common rotated object detectors. The angle
values near the two boundaries represent similar directions
and have similar visual features on the image, while they
are numerically jumpy and far apart, as sketched in Fig. 2.
This makes the angle learning of anchors in the network
somewhat confusing.

3) The structure of network has yet to be improved in terms
of orientation-sensitive features extraction because the
capability of extracting orientation-sensitive features is
the key in rotated object detectors. In addition, the shape
of the convolutional kernel in traditional CNN is gen-
erally horizontal and square, which also has a certain
adverse impact on the extraction of orientation-sensitive
features.

To deal with the abovementioned problems of rotated objects
detection, we propose an orientation-first refinement detector
based on orientation-first strategy in this article. The orientation-
first strategy instructs the network to predict the orientation
of the object first, and then preset the high-quality anchor based
on the angle value. In this case, a large amount of redundancy in

the initial anchor is avoided and the accuracy of the network for
detecting rotated objects can be improved. An angle encoding
regression module (AERM) is proposed in which the angle
values are encoded as multiple parameters and the network
predicts the object angle by learning multiple parameter values.
The upper and lower boundaries of the angle values in this
representation, such as −90° and 90°, correspond to the same
encoded values, which solves the problem of discontinuity in
the boundaries of the angle values. An angle channel attention
module (ACAM) that uses the encoding parameters from the
abovementioned angle representation method is also constructed
in our network architecture. We use convolutional kernels with
different angles in this module to extract features, and then utilize
the abovementioned encoding parameters as weights to fuse
multiple feature maps to generate a new feature map.

The main contributions of this article can be summarized as
follows.

1) An orientation-first strategy for rotated object detection is
proposed. This method avoids a large amount of redun-
dancy in the preset anchor by predicting the object angle
first, while the high-quality anchors improve the detection
network for rotated objects.

2) We propose a new angle representation method that en-
codes the angle values into multiple parameters. This
method can well solve the problem of discontinuous angle
boundary and improve the learning ability of the network
for object orientation.

3) An orientation feature extraction module based on multi-
angle channel attention that fuses feature maps generated
by different convolution kernels is introduced to more
effectively extract orientation-sensitive features, enabling
the detector to detect rotated objects more accurately.

The proposed rotated objects detection framework in this
article achieves 79.56% and 96.29% accuracy in two challenging
datasets, DOTA and HRSC2016, respectively.

II. RELATED WORKS

In recent years, object detection based on deep learning have
gained great progress. Rectangular boxes are able to locate ob-
jects accurately and can be easily defined using a few parameters.
While HBBs achieve excellent performance in most cases, the
increased difficulty of object detection in specific environments
has caused OBBs with arbitrary angles to be emphasized in
research.

A. Object Detection Based on Deep Learning

The network architecture of object detection based on deep
learning can be broadly classified into two categories, namely
single-stage detector and two-stage detector, with the difference
between the two types of detectors being whether the proposed
regions are extracted. The two-stage detector will detect each
proposed region separately after extracting the proposed regions,
while the single-stage detector can detect all objects in an
image end-to-end. Generally speaking, the two-stage detector
has a higher accuracy rate, but its efficiency is reduced due
to the extraction of proposed regions, whereas the single-stage
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detector has higher efficiency and lower accuracy rate. The
R-CNN series [16], [17], [18] are representative algorithms of
two-stage detectors, and plenty of improved algorithms based
on Faster-RCNN [18] have emerged in recent years. SSD [19],
YOLO series [20], [21], [22] are classic single-stage detection
algorithms, among which YOLOv3 [22] has achieved brilliant
results in various practical scenarios. In order to improve the
accuracy of the single-stage detector, He et al. [23] proposed
RetinaNet, which uses focal loss to deal with the problem of
unbalanced positive and negative samples during the training
of the network. This problem is considered to be an important
reason why the accuracy of the single-stage detector is inferior
to that of the two-stage detector. The most important role of the
methods for extracting proposed region in the two-stage detector,
such as RoI Pooling [17] and RoI Align [24], is to generate
the refined feature maps corresponding to the proposed regions
derived from the first stage, namely feature alignment. Inspired
by this, Zhang et al. [25] proposed to use ordinary convolution
operation to achieve feature alignment in a single-stage detector,
and the potential is huge. With the introduction of the deformable
convolution [26], [27], the method to achieve feature alignment
is used by a variety of single-stage detectors and is called
alignment convolution [28], [29], [30], [31], [32], [33]. The
accuracy of single-stage detectors is gradually improved with
the use of abovementioned methods.

Since anchor was proposed in Faster-RCNN, anchor-based
algorithm have been extensively used in object detection because
of its high accuracy. This type of algorithm has been fully
developed and achieved great success in recent years, and it
is still the mainstream method in the field of object detection.
Anchors are rectangular boxes preset on the feature maps before
the network detects the object. During the training process, the
anchors are matched with the most similar bounding boxes of
the ground-truth objects, and then corrected by the network to
make the anchors as close as possible to the matched boxes. One
problem of the anchor-based approach is that it is impossible
for the anchors to match all the objects, especially the small
objects with very few pixels. In order to match objects as much as
possible, a lot of unnecessary anchors have to be preset, resulting
in a waste of computational resources. In addition to the anchor-
based approaches, the anchor-free models that does not require
preset anchors are proposed and become popular [34], [35], [36],
[37]. Law and Deng [34] proposed CornerNet based on corner
point detection, and Duan et al. [36] proposed CenterNet based
on center point detection. This type of method locates objects by
detecting the key points, and then predicts other information at
the positions of these key points. Subsequently, the application
of anchor-free for object detection in RSIs has been extensively
studied [38], [39], [40], [41], [42], [43].

B. Rotated Object Detection in RSIs

Unlike natural images, where objects are mostly arranged
vertically under the effect of gravity, the objects on the ground
may have arbitrary orientations in the overhead view of RSIs.
If HBBs are used to represent these objects, the rectangular box
will contain a lot of irrelevant content, especially when the aspect

ratios of objects are large. In addition, the huge scale differ-
ences in RSIs, the complex and diverse earth surface, and the
uneven objects distribution make detection more challenging.
The abovementioned problem of HBB can seriously affect the
accuracy of objects detection in RSIs. Therefore, more and more
object detection methods use OBBs to locate objects in RSIs. In
general, it is possible to convert from a horizontal box to an ori-
ented box by simply adding one or few parameters to represent
the orientation. The convenient conversion allows most classical
object detection algorithms to detect rotated objects with minor
modifications. At the same time, new methods and network
structures have been proposed in order to further improve the
accuracy.

The detection of angle is an important part in the rotated
object detector and there is a difficult problem to deal with, i.e.,
the discontinuity of the angle boundary. This problem arises
from the contradiction between the continuity of the directions
and the discontinuity of the angle values. The DCL [44] and
CSL [45] methods proposed by Yang et al. deal with this
problem by converting the angle detection from a regression
problem to a classification problem, however, the number of
classifications limits the angle detection accuracy. The sliding
vertex method proposed by Xu et al. [46] determined the oriented
box by the minimum external horizontal box and the distance
from the vertexes of the direction box to the vertexes of that
horizontal box. Song et al. [47] designed a detector that first
extracts proposals containing rotated objects and then predicts
the endpoints of objects, avoiding the regression of angles. The
AProNet [48] proposed by Zheng et al. determines the oriented
box by the center point, the length and width of the object, and its
mapping length in the horizontal and vertical directions. Besides
the problem of angular boundary discontinuity, there is another
problem in anchor-based rotated object detection, which is high
difficulty of matching anchors with rotated objects. In [49],
[50], [51], and [52], in order to match the rotated objects as
much as possible, anchors with different angles are added at the
same position. This method further increases the redundancy of
the anchors, which greatly wastes computing resources. Zhong
et al. [53] proposed an anchor matching method that matches
a horizontal anchor to a horizontal box, which is obtained by
decoupling the oriented box. Another solution is used in [54],
[55], and [56], i.e., the horizontal anchor is still preset, but it
is matched with the smallest outer HBBs of the ground-truth
objects to increase the matching rate, and then let the anchor
learn the oriented box in the subsequent network. In this article,
the angle representation method of multiparameter regression is
proposed, which has a periodicity consistent with the direction
of object and fundamentally solves the problem of discontinuous
angle boundaries. In this method, the angle is first detected
before other information, and then the anchor with the angle
is preset so that the objects can be matched more accurately
with a small number of anchors.

III. PROPOSE METHOD

In this section, we detailed the OFRDet based on the
orientation-first strategy proposed in this article. First, each
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Fig. 3. Overall framework of the proposed OFRDet. OFRDet is a refinement detector with ResNet50-FPN as backbone to generate multiscale features. On each
scale of the feature map we apply a detection head with orientation-first strategy to predict objects. AERM first predicts the orientation information to preset the
oriented anchors. ACAM takes the outputs of AERM as attention maps and extracts directional features in multiple angle channels. The refined stage consists of
AlignConv, ORConv, classification branch, and regression branch.

component of OFRDet and the overall implementation process
are described in Section III-A. The overall network structure of
the detector is shown in Fig. 3. Then, the baseline we adopted
is introduced in Section III-B. Next, the designed AERM and
ACAM is introduced in Sections III-C and III-D, respectively.
Finally, our designed loss function of the overall network is
shown in Section III-E.

A. Overall Design Structure of OFRDet

OFRDet is a refinement detector proposed in this article
that can detect rotated objects in RSIs. In order to obtain the
feature information of objects with large scale differences in
RSIs and achieve correct detection, OFRDet uses ResNet50 [57]
and feature pyramid network (FPN) [58] as the backbone to
generate multiscale feature maps, and sets detection heads on
the feature maps of multiple scales. In each detection head we
adopt the orientation-first strategy, which makes the head first
detect the direction information among all the information of
objects. The strategy is to enable the network to preset anchor
boxes with angles to better match objects, and to extract direc-
tional features based on the initial angle information to better
regress bounding boxes. We design AERM to implement the
priority detection of angle, which predicts the angle values of
the objects at the positions of all feature points within the object
bounding boxes. And uses the multiparameter angle encoding
method to deal with the discontinuity of angle boundaries. Then,
the encoded values obtained on each feature point is decoded into
an angle value, and oriented anchor is preset on each feature
point according to the angle value. The angle of the anchor is
similar to the angle of the object to which the feature point
belongs, so the anchor can better match the object and be further

adjusted. There are two detection stages in the detection head,
the coarse stage, and the refinement stage, which detect objects
by adjusting the anchor boxes. In order to better distinguish
and extract features in different directions, in the coarse stage,
ACAM is designed to fuse feature maps of multiple angle
channels to generate a new orientation-sensitive feature map,
and the attention mechanism is adopted to give them different
weights during fusion. Subsequently, the convolution operation
is performed on the new feature map to complete the detection
at this stage. The refined stage adjusts the detection results of
the coarse stage through a series of convolution operations to
obtain the final detection results.

B. Refined Detector Based on RetinaNet as Baseline

We add the refined stage to RetinaNet and use it as our
baseline. ResNet50 and FPN are used as the backbone of the
network to extract features. The residual module in ResNet well
solves the problem of gradient disappearance in deep networks,
so it can better extract deep features containing rich semantic
information. FPN fuses deep and shallow features to generate
multiscale feature maps, so that objects with different scales
can be detected on the feature maps with the corresponding
scales. Both the object classification branch and the bounding
box regression branch of the detection head consist of ordinary
full convolutional networks. In addition, focal loss is used as
classification loss to solve the problem of imbalance of positive
and negative samples during training.

In our baseline, the regression branch of detection head adds
a channel to predict the angle θ. The OBB is represented by
five parameters (x, y, w, h, θ), where (x, y) is the position of the
center point of the bounding box in the image, w is the length of
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the long side, h is the length of the short side, θ � [−π/2, π/2)
represents the angle from the positive x-axis to the direction of
the long side w.

In refined detector, the detection in the refined stage is adjusted
bounding boxes according to the result of the coarse stage, so it
is necessary to perform feature alignment according to the result
of the coarse stage before the detection in the refined stage. We
use AlignConv [33] to complete feature alignment. AlignConv
calculates the offsets of the anchor adjustments in the coarse
stage, applies the offsets to the convolution kernel, and uses the
deformable convolution to perform the convolution operation
on the feature map to achieve feature alignment. Furthermore,
ORConv [59] is used after feature alignment. ORConv captures
features in different directions by rotating the same convolution
kernel N times (we set N to 8) and using them to perform con-
volution operations separately, with 1/N of the original number
of channels in each direction and the total number of channels
in the feature map unchanged.

C. Angle Encoding Regression Module

We propose a multiparameter encoding and decoding method
that encodes an angle value into multiple regressable parameters
(here, we use four parameters to introduce the method, and in
the following, if not specifically stated, all four parameters are
used as examples). The whole angular range T was divided into
four intervals all bounded by θ1, θ2, θ3, θ4, and θ5. Particularly,
θ5 and θ1 are the upper and lower limits of the angular range,
which differ by T and represent the same direction. In direction
detection, θ and θ+nT (n is an arbitrary integer) represent the
same direction due to periodicity. Considering this periodicity
and subsequent decoding operations, the four parameters xθ1,
xθ2, xθ3, xθ4 correspond to θ1+nT, θ2+nT, θ3+nT, and θ4+nT,
respectively. When encoding an angle value θ, the interval in
which the angle is located needs to be determined first, i.e., θ
� [θa, θb), where (a, b) � {(1, 2), (2, 3), (3, 4), (4, 5)}. And
then values of the two corresponding parameters xθa and xθb
were determined according to the difference between θ and the
two bounding angles θa and θb in that interval. The larger the
angle difference, the smaller the corresponding parameter, and
the sum of two parameters is 1. The parameters xθa and xθb is
given by

xθa =
|θ − θb|
T/4

, xθb =
|θ − θa|
T/4

. (1)

Finally, the other two parameters are set to 0, and the encoding
of the angle θ is completed. The coding example is shown in
Fig. 4, the interval [−π/2, π/2) with the range T of π is divided
into 4 parts, bounded by−π/2,−π/4, 0, π/4, and π/2. The angle
θ to be encoded lies between [−π/2, −π/4), and its difference
from the boundary angle −π/2, −π/4 is α and β, respectively.
Its encoding result is

E(θ) =

(
β

π/4
,

α

π/4
, 0, 0

)
. (2)

Based on the abovementioned encoding principle, it can be
inferred that the upper and lower limits of angle range θ1 and

Fig. 4. Example of four-parameter angle coding method. The range of angle
detection is [−π/2, π/2), which is divided into four intervals, bounded by−π/2,
−π/4, 0, π/4, and π/2. The angle θ is encoded as E(θ) consisting of four
parameters xθ1, xθ2, xθ3, and xθ4, each corresponding to−π/2+nπ,−π/4+nπ,
0+nπ, π/4+nπ.

Algorithm 1: angle decoding with four parameters.
Input: Parameters x1, x2, x3, x4 are acquired from

regression module, θ1, θ2, θ3, θ4, θ5 are angle
interval bounds, T is the whole angular range of
detection.

Output: θ is decoded angle value.
1 begin
2 i← index of maximum (x1+x2, x2+x3, x3+x4, x4+x1)
3 if i is equal to 0 then θ is in interval [θ1, θ2)
4 θ = x4(θ4 − T ) + x1θ1 + x2θ2 + x3θ3
5 else if i is equal to 1 then θ is in interval [θ2, θ3)
6 θ = x1θ1 + x2θ2 + x3θ3 + x4θ4
7 else if i is equal to 2 then θ is in interval [θ3, θ4)
8 θ = x2θ2 + x3θ3 + x4θ4 + x1θ5
9 else if i is equal to 2 then θ is in interval [θ4, θ5)

10 θ = x3θ3 + x4θ4 + x1θ5 + x2(θ2 + T )
11 end if
12 return θ
13 end

θ5 have the same encoding value, and the encoding values of
angles slightly larger than θ1 and slightly smaller than θ5 are
approximate and continuous at θ1 and θ5. From the above, it
can be seen that the encoding value has the same continuity and
periodicity as the direction to be detected, so the problem of
discontinuity of the angle boundary is solved.

The multiparameter angle encoding method makes angle
prediction a multiparameter regression problem. As shown in
Fig. 5(a), we designed the AERM to predict angle values. The
module consists of three convolutional layers and two activation
layers following the first two convolutional layers. The input is
a 256-channel feature map, and the output is a four-channel
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Fig. 5. Structure of AERM and ACAM. (a) AERM. It takes the 256-channel
feature map as input and outputs a four-channel map after convolution and
Softmax. The angle map after four-parameter encoding is used as the label to
calculate loss with the output. (b) ACAM. It has four angle channels, each of
which generates feature map using rotated kernels. The output is obtained by
weighted summation of the four feature maps according to the attention maps
gained from AERM.

angle encoding map that can be divided into four maps X1,
X2, X3, X4. Each of the four maps corresponds to an encoding
parameter. Since the sum of the four target encoded values is 1,
the network performs a Softmax operation on these four channels
for more efficient regression and decoding. The target encoding
maps Xθ1, Xθ2, Xθ3, and Xθ4 is obtained from the angle map
through four-parameter encoding. The value of each point on
the angle map is the angle value of the object to which the point
belongs (if a point does not belong to any object, then no loss
is calculated at that point). After the prediction of the angles in
this module, the angle values that need to be adjusted in the next
coarse stage and refined stage are not randomly distributed in
the entire detection range, but are clustered around 0°, and the
angle discontinuity problem basically disappears. Therefore, the
encoded values obtained by this module is decoded into an angle
value and provided to the coarse stage for further adjustment.

It can be known from the abovementioned encoding method
that θb is larger than θa by T/4, and then according to (1), θ can
be obtained by

θ = xθaθa + xθbθb. (3)

Therefore, in order to decode the angle θ from the encoded
value, it is necessary to determine, which interval the angle
θ lies in. Ideally, only two or one of the encoded values are

nonzero, and it is easy to find the corresponding angle interval.
However, the four values are all nonzero in practice because
of the deviation of the network regression results. From this,
we design the decoding process in Algorithm 1. The adjacent
two of the four coded values are added in turn, and the two
with the largest sum are considered ideal nonzero values. Its
corresponding angle interval can be subsequently obtained. To
make the decoding more robust, four boundary angle values are
obtained by expanding two intervals outward from this interval,
and then weighting and summing them using their corresponding
coding parameters. In this case, the four encoded values obtained
by the network regression can all participate in the calculation
of decoding the angle.

D. Angle Channel Attention Module

In the coarse stage, we designed the ACAM to extract
orientation-sensitive features, whose structure is shown in
Fig. 5(b). In this module, we design an attention mechanism
based on the angle channel, while other attention mechanisms
have gained special interest in the field of remote sensing in
recent years [60], [61]. The input of this module is the feature
map extracted by the backbone network, and the output is a new
feature map with the same shape as the input. In ACAM, the four
angle channels are designed to perform convolution operations
using rotated kernels with angles θ1, θ2, θ3, and θ4 to extract
features in corresponding directions, and generate four feature
maps fθ1(x), fθ2(x), fθ3(x), fθ4(x), respectively. In oriented object
detection, objects with arbitrary directions to be detected have
various directional features. When detecting various objects,
the degree of attention to the four angle channels should be
different. From this, the angular channel attention mechanism is
proposed, which assigns different weights to the four channels
on each feature point, and obtains the final feature map after the
weighted summation of the feature maps generated by the four
angle channels. The output feature map fo(x) can be given by

fo(x) = X1fθ1(x) +X2fθ2(x)

+X3fθ3(x) +X4fθ4(x). (4)

In the above formula, X1, X2, X3, and X4 are the weight maps
corresponding to the four angle channels, which are cascaded
together to form an attention map with the shape of h × w ×
4. The angle of the object has been predicted in AERM, so the
four weight values on each feature point here can be determined
by the angle of the object to which the point belongs. The closer
the angle of the convolution kernel used by the channel is to
the angle of the object, the greater the weight of the channel.
And the sum of the four weights is 1. Ingeniously, the setting
principle of the weight values is the same as the setting principle
of the encoding parameters in AERM. Therefore, provided that
the angles of the convolution kernels used by the four channels
are the same as the first four boundary angles of the intervals
in AERM, the four weights can correspond one-to-one with the
four encoding parameters. In this case, as shown in Fig. 5, the
output of AERM can be directly used as the attention map.

As illustrated in Fig. 6(a), the rotated convolution kernel is
obtained by rotating the regular convolution kernel around the



8498 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 6. (a) Rotation convolution from regular convolution with kernel size
3 × 3. Since the rotation causes the change of convolution location, offsets
are determined by the rotation angle. (b) Rotation convolution with kernel size
3× 3 on a map. The kernel after adjusting the sampling position can specifically
extract features in this direction.

center point by a certain angle. The offsets from the horizontal
regular kernel to the rotated kernel can be calculated by the
size of the kernel and the rotation angle value. As shown in
Fig. 6(b), the convolution operation on the map using this rotated
kernel can sufficiently extract features in a certain direction. And
the rotated convolution with different angles in different angle
channels can perform feature extraction in different directions.
In addition, according to the angle of the preset anchors, the
features in certain directions can be extracted more purposefully,
and the generated feature maps are beneficial to the detection of
rotated objects.

E. Loss Function

The loss of the whole network consists of three components,
including the angle encoding regression loss, the coarse stage
detection loss, and the refinement stage detection loss. The loss
function is defined as

L =
λ1

NE

∑
m

∑
n

Lr

(
pEmn, p

∗
mn

)

+
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i
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∗
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))
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(5)

In the first term of (5), the angle encoding regression loss,
λ1 is the balance coefficient, NE is the total number of encoded
values that have a target, m represents each feature point that has
target encoded values, n represents each encoding parameter on
a feature point, Lr is the regression loss, where smoothed L1
loss is used, pE mn represents the encoded value obtained by
the network, and p∗mn represents the target encoded value. The

detection loss consists of object classification loss and bounding
box regression loss, where the bounding box regression loss is
obtained from positive samples only. In the second and third
terms of (5), λ2 and λ3 are the balance coefficients, NC and NR

are the number of positive samples in the coarse and refined
stages, respectively, i represents each sample, Lc is the classifi-
cation loss, where focal loss is used, cC i and cR i are the category
predictions for sample i in the two stages, l∗i is the ground-truth
label of that, [l∗i>1] is the Iverson bracket indicating equation,
i.e., the value is 1 when i is a positive sample, xC i and xR i are
the location predictions for sample i in the two stages and g∗i is
the ground truth of that.

IV. EXPERIMENTS AND ANALYSIS

A. Data Sets

1) DOTA-v1.0 [1]: This is a large-scale aerial remote sensing
dataset made for object detection, which contains 2806 aerial
images collected from satellites such as Google Earth, satellite
JL-1, and 188282 ground objects on them. All the objects are
grouped into 15 common categories, which are plane (PL),
baseball diamond (BD), bridge (BR), ground track field (GTF),
small vehicle (SV), large vehicle (LV), ship (SH), tennis court
(TC), basketball court (BC), storage tank (ST), soccer-ball field
(SBF), roundabout (RA), harbor (HA), swimming pool (SP),
and helicopter (HC). Instances in this dataset are annotated with
HBBs and OBBs, and we use the OBB annotation in it for
experiments. The entire dataset is randomly divided into three
parts, where 1/2 is used as the training set, 1/6 as the validation
set, and 1/3 as the test set.

The image sizes in DOTA vary widely, ranging in size from
800 × 800 to 4000 × 4000 pixels. We crop the original image
into a series of 1024 × 1024 patches with a stride of 824. In
the experiments with multiscale data augmentation, the original
images were resized using three scales (0.5, 1.0, and 1.5) and
change the cropping step size to 512. If instances are segmented
during cropping, we decide whether to adopt them or not accord-
ing to the method in [1]. In testing, the cropped images were fed
into the network for detection and merge the results into the
original size image.

2) HRSC2016 [62]: This is a high-resolution image dataset
for ship detection containing arbitrarily oriented ships from open
sea or coast side. The images in the dataset are collected from
Google Earth with resolutions ranging from 2 to 0.4 m and image
sizes ranging from 300 × 300 to 1500 × 900 pixels. There are
1061 images in the dataset, including 436 images in the training
set, 181 images in the validation set, and 444 images in the test
set. We use the OBB annotations in the dataset for experiments.
And all the images are resized to the range (512, 800) without
changing their aspect ratio, i.e., each image has a short side of
512 pixels and a long side of up to 800 pixels.

B. Implementation Details

This article uses ResNet50 FPN as the backbone network in
the following experiments. The ResNet50 is initialized using the
parameters pretrained on ImageNet. In the pyramidal feature
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TABLE I
RESULTS OF ABLATION EXPERIMENTS FOR ACAM, AERM IN OFRDET ON DOTA DATASET

maps generated by FPN, (P3, P4, P5, P6, P7) are selected to
preset the anchors of different scales. An anchor box with an
aspect ratio of 1:1 is set on each feature point, whose side length
is four times the stride of the feature map (i.e., 32, 64, 128, 256,
512) and whose angle is determined by the network prediction.
In the loss function, the balance parameter of the angle encoded
regression loss is set to 0.1, and other balance parameters are set
to 1. The hyperparameters α and γ in Focal loss are set to 0.25
and 2.0, respectively. For the matching strategy, the Intersection
over Union (IoU) threshold of foreground and background are
set as 0.5 and 0.4 in both the coarse stage and the refined stage.
In the training phase, a single NVIDIA 3080Ti GPU is used for
the experiments with the batch size set to 4. SGD optimizer is
used to update the parameters of the model, in which the initial
learning rate is set to 0.005, the learning rate is reduced to 1/10
of the previous one each time it decays, and the momentum
and weight decays are set to 0.9 and 0.0001, respectively. When
using the DOTA dataset, the network is trained with 18 epoches,
compared to 36 epoches when using the HRSC2016 dataset.
To prevent overfitting, we use horizontal flipping to increase the
complexity of the dataset, and we also use zero-padding random
rotation and multiscale data augmentation when employing a
data enhancement strategy. In the testing phase, we also use a
single 3080Ti GPU for inference. We keep bounding boxes with
classification scores greater than 0.05, and set the IOU threshold
in rotated nonmaximum suppression to 0.1. At the same time,
considering that an image contains a limited number of objects,
we set the upper limit of the number of objects in each image to
2000.

C. Ablation Studies

We conduct ablation experiments on the DOTA dataset to
verify the effectiveness of our method, using mAP as a criterion
for evaluating method performance. To compare the best re-
sults achieved by various architectures, all ablation experiments
below are performed using the data augmentation strategy de-
scribed in Section IV-B.

1) Baseline: As a classical object detection network, Reti-
naNet can fit the detection tasks in most scenarios and achieve
good results. In our baseline, the refined stage is added to
RetinaNet to pursue better results. We add an angle prediction
channel to the regression branch of the detection head so that it
can be used to detect OBBs. The training and test parameters of
each part in the baseline are exactly the same as the parameters of
the network structure in other ablation experiments that follow.
In the refined stage, we use AlignConv to realign the feature
map. When using an oriented box to locate an object, the object
can mostly occupy a higher proportion inside the box compared
to using a horizontal box. Therefore, feature alignment within

the oriented boxes can play an important role and significantly
promote the feature representation of the object in the box. From
the detection results, the network based on RetinaNet with the
addition of refined stage has good performance in rotated object
detection. As shown in the first row of Table I, the mAP of
baseline network is 77.65% for 15 types of objects on the DOTA
dataset.

2) Effectiveness of ACAM in the Orientation-First Strategy:
To evaluate the effectiveness of the ACAM in OFRDet, the
experiment is conducted by adding this module in the coarse
stage based on the baseline method. At the same time, in order
to make the attention mechanism work by obtaining effective
angle channel weights and not let AERM affect our judgment
on the test results, we change the AERM that implements the
priority angle detection to the angle detection method in the
baseline, i.e., the conventional angle value regression. As shown
in the second row of Table I, with these settings, the mAP of the
detector for 15 categories of rotated objects in the DOTA dataset
is 78.67%, which is 1.02% higher than the baseline method. This
enhancement is due to the fact that the ACAM is able to extract
directional features more purposefully under the guidance of
the angles prior predicted, and the oriented anchors preset by
the orientation-first strategy can be more easily adjusted to the
ground bounding boxes. In addition, the detection results of
different categories of objects are presented in Table I, and
it can be found that the APs of categories such as GTF, SV,
SBF, HC have been increased significantly. These objects have
various features in different directions, and this performance
indicates that ACAM is more effective in extracting directional
features.

3) Effectiveness of AERM: The complete OFRDet is used in
this ablation experiment to evaluate the effectiveness of AERM.
Compared with the previous experimental settings to verify the
effectiveness of the ACAM, OFRDet only changes the part
that implements the priority detection of angles to AERM, and
the other parts remain unchanged. As shown in the third row
of Table I, the mAP obtained by OFRDet is 79.56%, which
is about 0.89% higher than the previous experimental result
without AERM, and about 1.91% higher than the baseline
method, with a significant improvement. The main reasons
for this enhancement are, first, that the angle representation
method using multiparameter encoding is easier to be learned
by the network when performing orientation-first detection, and
second, the multiparameter encoding method fundamentally
eliminates the boundary discontinuity problem of angle regres-
sion. The qualitative visualization detection results of the two
networks for rotated objects with angle values close to the upper
and lower limit are shown in Fig. 7. It can be seen that the
performance of OFRDet using AERM is significantly better,
and the bounding boxes in the detection results have smaller
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Fig. 7. Visual detection examples of plane on DOTA. (a) Detection results of
OFRDet without AERM. (b) Detection results of OFRDet with AERM.

TABLE II
EXPERIMENTS WITH DIFFERENT MODULE SETTINGS

errors and more suitable orientation, which confirms that AERM
effectively handles the boundary discontinuity problem of angle
regression.

4) Setting of the Number of Angle Channels and Encoding
Parameters: In OFRDet, as described in Section III-D, the mul-
tiple parameters obtained by AERM to encode the angle values
can be directly used as weights for angle channels in ACAM.
There is a one-to-one correspondence between angle channels
and encoding parameters, and the number of these is the same. In
the abovementioned ablation experiments, the number of angle
channels and angle encoding parameters were set to 4. The
influence of the number of angle channels and angle encoding
parameters on the detection results is explored in the following
experiments. In addition to four-channel four-parameter, three-
channel three-parameter, and six-channel six-parameter are also
set in the network for experimentation. The experimental results
are shown in Table II, where the mAPs under the three settings
are 79.22%, 79.56%, and 79.18%, respectively. These results
show that the effect of the number of channels and parameters
is relatively small compared to the enhancement effect of the
ACAM and the AERM on the detection results. Moreover,
the four-channel four-parameter has a better detection effect
than the three-channel three-parameter and six-channel six-
parameter, which shows that when extracting directional features
through ACAM, the moderate angle interval can maximize its
extraction ability. If the angle interval is too large, the extracted
directional features are incomplete, and if it is too small, the
extracted directional features are redundant.

D. Comparisons With the State-of-the-Art

In this section, we compare the proposed OFRDet with
other state-of-the-art detection methods on two datasets, namely
DOTA and HRSC2016. Their introduction and experimental
details are in Sections IV-A and IV-B, respectively.

1) Complexity and Speed Comparison: We compare our
method with other methods in terms of speed and complexity,

and the comparison results are shown in Table III. The compar-
ative experiments are carried out on the DOTA dataset, and the
cropped image patches of size 1024 × 1024 are detected.

We reflect the speed and complexity of the detector by the
number of frames per second (FPS) and the amount of model
parameters, respectively. The FPS shown here is average FPS
obtained after detecting the entire validation set of 5297 split
images. For fairness, all the methods are inferred with batch
size of 1 on a single RTX 3080Ti. The detection speed of our
method is 13.8 FPS and the model size is 38.21M. It can be
seen from Table III that both the detection speed and the model
size of our method are in the middle level among the compared
methods.

2) Results on DOTA: On the DOTA dataset, we compare with
a variety of advanced or classical methods at single-scale or
multiscale, and the results are shown in Table IV. Among these
methods, FR-O and RetinaNet-O are implemented by adding
angle prediction channels in the bounding box regression branch
of the classical computer vision algorithms Faster-RCNN [18]
and RetinaNet [23], respectively. Other methods are specially
proposed to detect rotating objects in remote sensing images.
CAD-Net [10] learns global and local contextual information of
objects by computing their correlations with the global scene and
local adjacent features. DAL [13] is a dynamic anchor learning
method that uses a new matching mechanism to evaluate anchors
and assign them more efficient labels. S2A-Net [14] uses a
new alignment convolution, which can adaptively align con-
volution features according to anchors. FoRDet [15] leverages
the information of foreground regions from the perspectives of
feature and optimization. Different from compared methods, our
method proposes a new multiparameter angle coding and angle
channel attention mechanism to enhance the angle regression
and direction feature extraction of the network, so as to improve
the detection ability of rotated objects. Our proposed OFRDet
achieves a mAP of 74.19% on the single-scale dataset and
79.56% on the multiscale dataset. We achieve state-of-the-art
results in 7/15 categories among the methods of comparison,
and it is worth noting that our results have a large lead in the
detection of GTF, SBF, and HC. The directionality of these
classes of objects is obvious, indicating that our detector has
a strong ability in direction detection. The qualitative visual test
results produced by our method in detecting some images of
the DOTA dataset are shown in Fig. 8. Although we preset only
one anchor on each feature point, we finally obtained excellent
detection boxes, which can closely surround objects, even for
objects with large scale differences or densely arranged, which
shows the effectiveness of the preset rotated anchor. For objects
with arbitrary orientations in complex environments, our method
can assign bounding boxes a suitable orientation with fewer
errors to complete the detection.

3) Results on HRSC2016: OFRDet is compared with various
methods on HRSC2016 dataset, and the comparison results are
shown in Table V. Among these methods, R2CNN [67], Rotated
RPN [68], and SBD [69] are proposed in the field of computer
vision to detect slanted text with angles. Other methods are
proposed to detect rotated objects in RSIs. It is worth noting
that we use the PASCAL VOC2012 metric to calculate mAP for
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TABLE III
COMPARISON OF SPEED AND COMPLEXITY OF DIFFERENT METHODS

TABLE IV
COMPARISON WITH STATE-OF-THE-ART METHODS ON DOTA DATASET. R50-FPN REPRESENTS RESNET 101 WITH FPN (LIKEWISE R101-FPN, R152-FPN),

H-104 REPRESENTS HOURGLASS 104, AND VGG-16 REPRESENTS VGGNET 16. THE RESULTS MARKED IN RED AND BLUE ARE THE BEST AND SECOND BEST IN

EACH COLUMN, RESPECTIVELY

TABLE V
COMPARISON WITH STATE-OF-THE-ART METHODS ON HRSC2016 DATASET. (12) MEANS THAT PASCAL VOC2012 EVALUATION METRIC IS USED TO

CALCULATE THE RESULT

the detection results, and the mAPs of other methods compared
are also calculated under this metric. OFRDet achieves 96.29%
mAP on HRSC2016 dataset, outperforming all other methods
compared. OFRDet only use one scale of oriented anchor to
achieve the current results. Part of the visual detection results of
OFRDet on the HRSC2016 dataset are shown in the Fig. 9, from
which it can be seen that OFRDet can always give a suitable OBB
to tightly enclose ships with arbitrary orientations, although
some ships have the characteristics of large differences in scale
and dense arrangement. Even in the different environments such
as harbor, coast, and sea, the method can complete the detection
with high quality.

E. Limitations of the Method

Although OFRDet has obtained competitive experimental
results, it still has limitations in object detection that cannot be
ignored. As shown in the Fig. 10(a), OFRDet can correctly detect
the large vehicle and the small vehicle in most cases, however,
in the case where the visual features of the two are very similar,
the detection results will be misclassified. In addition, the feature
information of objects is insufficient when they are extremely
small, and then the objects are immersed in the background,
resulting in the failure to be detected, which can be seen from
the Fig. 10(b). The abovementioned problems are extremely
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Fig. 8. Some visualization results from our proposed OFRDet on DOTA. The confidence threshold is set to 0.3. One color represents one object category.

Fig. 9. Some visualization results from our proposed OFRDet on HRSC2016. The confidence threshold is set to 0.3.

Fig. 10. (a) Classification error of object detection. The blue box represents
the detection results of LV, and the green box represents SV. Inside the red circle
is a large vehicle that was mistakenly classified as a small vehicle. (b) Missing
detection of tiny objects. The red circles are undetected small vehicles.

challenging in RSIs detection and test the feature extraction and
discrimination ability of the detection network, which requires
further specialized research.

V. CONCLUSION

This article provides a strategy for the detection of rotated
objects in RSIs, namely orientation-first strategy, and OFRDet
is proposed based on this strategy. In OFRDet, the ACAM is
proposed to extract the orientation features of objects more
accurately, thereby improving the regression accuracy of OBB.
The AERM is proposed to solve the problem of discontinuous
boundary in angle prediction, so as to obtain more accurate angle
information of objects. We demonstrate the effectiveness of our
proposed method on the DOTA and HRSC2016 datasets through
extensive experiments.
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