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Thermal radiation, or photon heat flow, carries both energy 
and entropy1. When a hot and a cold object undergo radiative 
exchange, there is a net photon heat flow from the hot to the 

cold object2,3. Such a photon flow carries both energy and entropy 
away from the hot object, leading to radiative cooling of that hot 
object. The radiative cooling processes are passive processes that do 
not require any energy input. However, to perform radiative cool-
ing on a hot object, one does need to couple it radiatively to a cold 
object that serves as the heat sink.

Radiative cooling processes are in fact quite common in every-
day life. As one example, the ambient environment is usually colder 
than the human body. Hence, the human body can radiatively cool: 
it can dissipate a significant portion of its heat via thermal radiation 
to the ambient environment. As another example, outer space, at 
a temperature of 3 K, is far colder than the ambient environment 
on Earth. Moreover, the Earth’s atmosphere is largely transparent 
in the mid-infrared wavelength range of 8–13 μm. This wavelength 
range, commonly referred to as the transparency window of the 
atmosphere, coincides with the spectral peak of the thermal radia-
tion from an object maintained around the ambient temperature. 
Consequently, a sky-facing object on Earth’s surface can radiate its 
heat through the atmosphere to the cold outer space. This process 
has been used for many decades in the demonstration of night-time 
radiative cooling4–11, where a black emitter facing the night sky can 
become colder than the ambient temperature.

While radiative cooling processes do naturally occur, for practi-
cal applications, it is almost always necessary to engineer and con-
trol such radiative cooling processes. Certainly, to enhance radiative 
cooling it is useful to create structures with high emissivity in the 
mid-infrared wavelength range. Moreover, since the cooling demand 
typically peaks during the day, it is important to be able to perform 
daytime radiative cooling under direct sunlight. For the purpose of 
daytime radiative cooling, it is no longer possible to use the black 
emitters that are commonly used in night-time experiments, since 
a black emitter will be heated by the sunlight. Therefore, control of 
the absorptivity and emissivity over a broad wavelength range that 
spans from the ultraviolet to the mid-infrared becomes essential. 
Recent breakthroughs in radiative cooling have been built directly 

on the developments of nanophotonic structures, where designing 
subwavelength structural features has resulted in unprecedented 
capabilities to control light over very broad wavelength ranges.

The process of radiative cooling directly uses the photon heat 
flow to carry away energy from the hot object. Such heat flow can 
be harvested to generate useful work. In the understanding of such 
an energy-harvesting process, thermodynamics considerations, 
including both energy and entropy aspects, play a critical role. In 
particular, understanding the entropy content of thermal radiation 
is essential in determining the ultimate limit of energy harvesting in 
radiative cooling.

In this Review, we discuss the fundamental photonics and 
thermodynamics concepts that underlie the processes of radiative 
cooling. Understanding these concepts is essential both for the 
demonstration of cooling effects and for the development of prac-
tical technology. Radiative cooling is now emerging as a frontier 
in renewable energy research, with important potential for wide 
ranges of applications.

Photonics concepts
The demonstration of radiative cooling concepts relies on the capa-
bilities of photonic structures to control light over a broad spec-
tral range. In the past two decades, significant progress has been 
made in tailoring the thermal emissivity of photonic structures12–19. 
Moreover, in general, the strength of the interaction between light 
and a structure depends critically on the relevant length scales of 
the structure. For example, a dielectric particle can resonantly scat-
ter light when its size is comparable to the wavelength20. Similarly, 
a photonic bandgap effect occurs when the periodicity of the struc-
ture approximately matches the wavelength. Exploiting this prop-
erty, one can construct spectrally selective structures that strongly 
interact with one part of the spectrum while having a relatively weak 
interaction with the other parts.

Daytime radiative cooling. To illustrate the photonics concepts 
involved in radiative cooling, we first consider the example of day-
time radiative coolers (Fig. 1a) as proposed in ref. 21 and demonstrated 
initially in ref. 22. Such a radiative cooler, given access to a clear sky, 
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can reach a sub-ambient temperature, even under direct sunlight. 
Here we assume that such a radiative cooler has an area A and a 
temperature T, and faces the sky with its the normal direction point-
ing to the zenith direction. Its thermal balance is shown in Fig. 1b.  
Its cooling power Pcool can then be described as:

Pcool (T) = Prad (T)− Pc. (1)

Here, −Prad is the radiative thermal load of the emit-
ter due to the radiative exchange with the surrounding 
environment. In the context of daytime radiative cooling, 
Prad = Pemi (T)− Patm (Tamb)− Psun (T), where

Pemi (T) = A
∫

dΩ cos θ
∞

∫
0
dλIBB (T, λ) ε(λ, θ) (2)

is the power emitted from the cooler. Here, Ω is a solid angle, θ 
denotes the angle between the direction of the solid angle and the 
normal direction of the surface, ε(λ, θ) is the emissivity of the object 
at a wavelength λ and angle θ, and IBB(T, λ) is the spectral irradiance 
of a blackbody.

Patm (Tamb) = A
∫

dΩ cos θ
∞

∫
0
dλIBB (Tamb, λ) εatm(λ, θ)ε(λ, θ) (3)

describes the portion of the downwards radiation from the atmo-
sphere that is absorbed by the radiative cooler. Here, the emissiv-
ity of the atmosphere is εatm(λ, θ) = 1 − t(λ)1/cos θ, with t(λ) being the 
transmission coefficient of the atmosphere in the zenith direction.

Psun (T) = A cos θsun
∞

∫
0
dλIsun (λ) ε(λ, θsun) (4)

is the incident solar power absorbed by the radiative cooler, where 
Isun(λ) is the solar spectrum and θsun denotes the direction of the 
incoming sunlight. In equation (1),

Pc = Ah(Tamb − T) (5)

is the heat load on the cooler due to the conductive and convec-
tive heat exchange with the environment, including external objects 
that the cooler is in contact with as well as adjacent air, and h is a 
combined non-radiative heat transfer coefficient that describes such 
conductive and convective heat exchange.

The equations above highlight the central role that the emissivity 
ε(λ, θ) plays in controlling the behaviour of the radiative cooler. To 
achieve daytime radiative cooling, the emissivity must be designed 
to exploit various aspects of the radiative environment surround-
ing the cooler (Fig. 1c): (1) The atmosphere possesses a transpar-
ency window in the mid-infrared wavelength range of 8–13 μm. 
This window has a very large overlap with the blackbody radiation 
spectrum at typical ambient temperatures near 300 K. The cooler 
therefore should have high emissivity within such a transparency 
window so that it can dissipate heat to outer space through its ther-
mal radiation Pemi. (2) In the mid-infrared wavelength range, outside 
the transparency windows, there is significant downwards radiation 
from the atmosphere Patm. The cooler needs to have a low emis-
sivity outside these windows to minimize the absorption of such 
downwards radiation. (3) In the daytime, there is also significant 
incoming power from the sunlight. Thus, the cooler needs to have 
minimum emissivity in the solar wavelength range to minimize the 
parasitic heat absorption from the sun, Psun.

To further illustrate the importance of emissivity on the cooling 
performance, in Fig. 1d, based on equation (1), we plot the cooling 
power Pcool as a function of the temperature of the radiative cooler 
T, for various emissivity profiles ε(λ, θ). The equilibrium tempera-
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Fig. 1 | Daytime radiative cooling. a, Radiative heat-exchange process 
of daytime radiative cooling. b, Thermal balance of daytime radiative 
cooling. c, Solar spectrum (yellow shaded area) and the atmosphere 
transmission spectrum in the mid-infrared wavelength range (blue 
shaded area). The transparency window of the atmosphere at 8–13 μm 
has a large spectral overlap with the blackbody radiation spectrum 
at typical ambient temperatures near 300 K (red dashed curve). A 
spectral selective emitter (red solid curve) with an emissivity of unity 
at 8–13 μm and zero emissivity at other wavelengths can be used to 
realize daytime radiative cooling. d, Net cooling power Pcool as a function 
of radiative cooler temperature T under various emissivity profiles ε(λ, 
θ), including the 8–13 μm spectral selective emitter (red), black infrared 
emitter (black) and optimal spectral-angular-selective emitter (blue). 
The light-blue shaded region defines the region where radiative cooling 
can operate. e, The optimal emissivity profiles of the radiative cooler 
targeting different operating objectives (blue stars on the blue curve 
in d): to achieve a low equilibrium temperature (left); to maintain the 
radiative cooler at a certain temperature that is below the ambient 
temperature while maximizing the net cooling power (middle); and to 
maintain the radiative cooler at or above the ambient temperature while 
maximizing the net cooling power (right).
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ture Teq, where Pcool(Teq) = 0, defines the lowest temperature that the 
emitter can reach. Here we assume that Tamb = 20 °C and a transmis-
sion spectrum of the atmosphere as shown by the light-blue region 
in Fig. 1c. Such a transmission spectrum corresponds to the atmo-
sphere with an ambient temperature Tamb of 20 °C and 20% relative 
humidity23. We also assume that the emitters have zero absorption 
in the solar wavelength range (Psun = 0). We first consider the case of 
perfect thermal insulation (h = 0). A spectral selective emitter (the 
solid red curve in Fig. 1c), which has an emissivity of unity in the 
8–13 μm wavelength range and zero emissivity elsewhere, can reach 
Teq − Tamb ≈ −60 °C (the solid red curve in Fig. 1d). Experimentally, 
radiative cooling to a temperature of 40 °C below ambient has been 
demonstrated in ref. 24 using a selective emitter and a vacuum 
chamber for thermal insulation. By contrast, a blackbody emit-
ter, which has an emissivity of unity over the entire mid-infrared 
wavelength range, can only reach a much higher temperature of 
Teq − Tamb ≈ −20 °C (the solid black curve in Fig. 1d). Moreover, for a 
given atmosphere transmission spectrum, to reach the lowest tem-
perature possible, theoretically one can optimize ε(λ, θ) for every 
angle and wavelength25,26 (Fig. 1e, left). Such an optimized emit-
ter can reach Teq − Tamb ≤ −100 °C (the solid blue curve in Fig. 1d) 
with perfect thermal insulation (h = 0). Compared with the case of 
perfect thermal insulation as discussed above, in typical outdoor 
conditions without sophisticated thermal insulation (assuming 
h = 8 W m−2 K−1), the magnitude of the temperature reduction is far 
lower (Fig. 1d, dashed lines).

The emissivity profile optimized for the objective of achieving the 
lowest possible temperature features a narrow-band angle-selective 
profile (Fig. 1e, left). This is a consequence of optimizing the radia-
tive cooling process in every angle and wavelength channel by tun-
ing the emissivity, in consideration of the wavelength and angular 
dependency of the atmospheric radiation. Along this direction, an 
angle-selective emitter for a radiative cooler has been demonstrated 
experimentally in ref. 27. An emissivity optimized for other objec-
tives has a different profile. For example, to maintain the radiative 
cooler at or above ambient temperature, while maximizing the net 
cooling power, a black emitter in the infrared wavelength range with 
a broad angular range should be used (Fig. 1e, right). As another 
scenario, one may wish to maintain the radiative cooler at a certain 
temperature that is below the ambient temperature while maximiz-
ing the net cooling power. For this case, the spectral bandwidth of 
the optimal emissivity becomes broader (Fig. 1e, middle) compared 
with the profile required for achieving a very low temperature. A 
number of emerging applications for daytime radiative cooling, 
including non-evaporative water cooling for air-conditioning sys-
tems28,29, energy harvesting30 and water harvesting26,31,32, correspond 
to this scenario. Therefore, depending on the desired working con-
ditions, the optimized emissivity profile needs to be carefully tuned. 
In general, optimization of the emissivity profile ε(λ, θ) reflects the 
following trade-off between the equilibrium temperature and the 
cooling power: to reach a low equilibrium temperature requires a 
narrow-band angle-selective emitter, whereas to have a high cool-
ing power requires a broad-band emitter with a large angular range.

As discussed above, achieving sub-ambient daytime radiative 
cooling requires detailed control of the emissivity and absorptivity 
profile of the cooler. Recent advances in nanophotonics have pro-
vided powerful tools to satisfy these requirements. Figure 2a shows 
the theoretical design of a photonic structure capable of achiev-
ing daytime radiative cooling21. Figure 2b shows the structure and 
results from the experimental demonstration in 201422, where the 
experimental structure consists of several alternating layers of SiO2 
and HfO2 deposited on a silver (Ag) mirror. SiO2 is known to pro-
duce strong thermal emission in the mid-infrared wavelength range 
due to its phonon polaritons. The combination of SiO2 and HfO2 
layers further tailors the emissivity spectrum in the mid-infrared, as 
well as the reflectivity spectrum of the silver mirror in the ultraviolet 

wavelength range that is within the solar spectrum. When placed in 
a rooftop measurement setup (Fig. 2c), such a structure was able to 
reach a temperature that is 5 °C below the ambient temperature—in 
spite of having about 900 W m−2 of sunlight directly impinging on it.

Since the initial demonstration, daytime radiative cooling has 
now been realized in a very large number of different structures in a 
diverse set of material systems27,28,33–49, including polymer films27,28,35 
(Fig. 2d), glass–polymer metamaterials36 (Fig. 2e), hierarchically 
porous polymers37,50, structural woods38 (Fig. 2f) and polymer nano-
fibre films39. Moreover, significant efforts have been made towards 
the scalable manufacturing of daytime radiative coolers and towards 
the large-scale deployment of this technology for many different 
applications. For example, as an important step towards integrat-
ing radiative cooling technology into air-conditioning systems, 
sub-ambient non-evaporative fluid cooling has been demonstrated 
using large-area (~1 m2) fluid-cooling panels (Fig. 2d). These panels 
can cool water to 3–5 °C below the air temperature28. Injecting such 
cooled water into the air-conditioning systems should improve the 
system efficiency by 20% (refs. 28,51). Radiative cooling also enables 
water harvesting from the ambient atmosphere. By cooling to a tem-
perature below the dew point, water can be harvested on a radiative 
cooler during both the day and at night-time32,52.

Most existing radiative cooling systems are static, that is, the 
thermal emissivity profiles of the photonic structures are fixed once 
constructed. However, the ambient temperature varies across the 
days and seasons. When the ambient temperature is below a critical 
temperature and hence cooling is no longer desired, radiative cool-
ing may no longer be desirable and may even increase the energy 
consumption if heating is required. Therefore, it would be desir-
able to achieve an active radiative cooling system, where cooling 
can be adjusted or turned on/off. Efforts towards an active radia-
tive cooling system have been made53 using phase-change materi-
als54, liquid–porous polymer mixtures55, mechanical deformation56, 
translation and rotation57.

In most radiative cooling systems, the solar radiation is reflected 
and therefore not harvested. On the other hand, it is in fact pos-
sible to perform simultaneous solar-energy harvesting and radiative 
cooling. Reference 58 placed a solar absorber consisting of a germa-
nium wafer on top of a radiative cooler. The germanium wafer is 
transparent in the mid-infrared wavelength range. Therefore, it can 
harvest the incoming sunlight, while allowing the thermal radiation 
from the cooler to transmit into the sky. In the experiment, the ger-
manium wafer is heated above the ambient air temperature by the 
sunlight, whereas the radiative cooler remains at a temperature that 
is below ambient. From a practical point of view, the results here 
indicate that radiative cooling need not compete with solar cells for 
roof space. The same roof space can be used to accommodate both 
renewable energy technologies.

Solar cell cooling. The success in the demonstration of daytime 
radiative cooling has also motivated researchers to examine many 
other situations where similar concepts can be fruitful. One exam-
ple is to perform radiative cooling of solar cells59–65. During opera-
tions, standard solar cells heat up under sunlight, and the resulting 
increased temperature has adverse consequences on both the solar 
cell efficiency and reliability66. On the other hand, a solar cell natu-
rally faces the sky and therefore can radiate some of its heat out as 
infrared radiation. Therefore, it is important to explore the pho-
tonic approach to engineer the radiative heat transfer process of  
solar cells.

To develop a photonic approach for solar cell cooling, one needs 
to consider the impact of different parts of solar and thermal spectra 
on the radiative thermal load of a solar cell61 (Fig. 3a). The radiative 
thermal load of a solar cell can be computed using formalisms that 
are similar to equations (1)–(5). Certainly, solar cells are designed to 
absorb sunlight. In particular, the part of the solar spectrum that is 
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above the bandgap of the solar cell contributes to the generated pho-
tocurrent. Therefore, the photonic approach for solar cell cooling 
should not affect the absorption of this usable part of the solar spec-
trum. On the other hand, part of the solar spectrum that is below 
the bandgap of the solar cell does not contribute to the photocur-
rent. To minimize the radiative heat load of the solar cell it is impor-
tant to minimize the absorption of the sub-bandgap solar spectrum. 
Finally, in the mid-infrared wavelength range of 4–30 μm, there is 
minimal solar power. On the contrary, the infrared radiation from 
the cell in this wavelength range can carry the heat away. Therefore, 

it is also beneficial to maximize the thermal emissivity of the cell 
in this mid-infrared wavelength range. We note that a solar cell 
typically operates above ambient air temperature. Thus this entire 
mid-infrared wavelength range of 4–30 μm can be used for radiative 
cooling purposes59. There is no need to restrict the emission of the 
cell structure to only the transparency window of the atmosphere as 
in the case of daytime radiative cooling.

One approach towards solar cell cooling is to place a layer on top 
of an encapsulated cell61 (Fig. 3a). Based on the consideration above, 
this layer needs to be highly transmissive for the part of the solar 
spectrum that is above the bandgap and highly reflective for the 
part of the solar spectrum that is below the bandgap. Moreover, this 
layer needs to have near-unity emissivity in the wavelength range of 
4–30 μm (Fig. 3b). It has been shown that these requirements can be 
satisfied with a suitably designed multilayer coating61. Theoretical 
calculations have indicated that such a layer can reduce the temper-
ature of the cell by 5–10 °C, which should translate into an absolute 
improvement of the cell efficiency by more than half a percentage 
point. Experimentally, radiative cooling of a solar absorber has been 
demonstrated by placing a SiO2 photonic crystal cooling layer on 
top of a silicon wafer60 (Fig. 3c). Compared with the silicon wafer by 
itself, under direct sunlight the cooling layer can reduce the temper-
ature of the silicon wafer by 5 °C without affecting the absorption 
of sunlight in the silicon wafer. One may envision the placement of 
such a layer as a retrofit to reduce the temperature of existing cells.

Management of the radiative thermal load of an outdoor  
coloured object. The concept of radiative cooling in general is 
connected to the broader context by the need for controlling the 
radiative thermal load of an outdoor structure, such as a building or 
an automobile. Given the practical importance and the enormous 
energy consumption of air-conditioning for these structures, the 
ability to control the radiative thermal load is of general significance 
for global energy consumption and human health.

As we have discussed in the section ‘Daytime radiative cooling’, 
to minimize the radiative thermal load one can use a near-perfect 
mirror to reflect all of the sunlight while maximizing thermal emis-
sion22. Alternatively, to maximize the radiative thermal load, one 
can use a black object that absorbs all the sunlight but which has 
minimal thermal radiation67–71. However, in many practical situ-
ations, the colour of outdoor structures is usually chosen first for 
functional or aesthetic reasons. The approaches as described above 
are therefore not directly applicable for controlling the thermal 
load of coloured outdoor structures since they are either perfectly 
reflecting or completely black.

For each given colour, there is in fact a very significant tunable 
range in its radiative thermal load72,73. (The range is defined as the 
difference between the maximum and minimum radiative thermal 
load that a colour can have in an outdoor environment under direct 
sunlight.) This arises from both the physical effects of infrared solar 
absorption and radiative cooling, very similar to the considerations 
discussed for solar cell cooling, as well as the physiological effects of 
metamerism (Fig. 3d,e), where different visible spectra may give rise 
to the same colour response of the human eye. Taking into account 
all of these effects, it has been determined theoretically that the tun-
able range exceeds 680 W m−2 for all colours and can be as high as 
866 W m−2 (ref. 72). Experimentally, it has been demonstrated that 
two photonic structures with the same pink colour can have their 
temperatures differ by 47.6 °C under sunlight72 (Fig. 3f). These 
structures are either cooler or hotter than a commercial paint of the 
same colour by over 20 °C. Furthermore, the hotter pink structure 
is 10 °C hotter than a commercial black paint. These results dem-
onstrate the significant potential of the photonic thermal manage-
ment of coloured objects. Along this line, a number of photonic 
systems has been investigated to control the radiative thermal load 
of coloured objects74–79.
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nanophotonic design of a daytime radiative cooler. b, Emissivity profile of 
an experimental daytime radiative cooler in the solar (left) and infrared 
(right) wavelength range. The inset shows the structure. c, Experimental 
demonstration of daytime radiative cooling. When placed on the rooftop 
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sub-ambient non-evaporative fluid cooling. e, Photo (top) and schematic 
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material made of wood. Panels adapted with permission from: a, ref. 21, 
American Chemical Society; b,c, ref. 22, Springer Nature Ltd; d, ref. 28, 
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In connection to coloured objects where the visible appearance 
and the radiative thermal load can be independently controlled, 
another emerging direction in radiative cooling is to achieve vis-
ibly transparent radiative coolers. In this direction, there have 
been a number of attempts to realize transparency and radiative 
cooling simultaneously80–82. These efforts are conceptually con-
nected to some of the concepts in solar absorber cooling58, such as 
shown in Fig. 3c, but developed in the different contexts of building  
thermal management.

Cooling textiles. The radiative cooling concept can also be applied 
in an indoor environment for cooling the human body83–88. A typical 
indoor environment has a temperature that is lower than the human 
body. Moreover, in a typical indoor scenario, the radiative heat dis-
sipation in the infrared wavelength range contributes to more than 
50% of the total body heat loss. Therefore, facilitating radiative heat 
transfer from the human body to the ambient environment can con-
tribute significantly to human body cooling. Since we typically wear 
textiles in an indoor environment, there is a significant opportunity 
in considering the radiative properties of textiles.

To maximize radiative heat transfer from the human body, the 
textile should have a high infrared transmissivity in the thermal 

wavelength range (Fig. 3g,h). Conventional textiles such as cotton 
are strongly absorptive in the thermal wavelength range, which is 
therefore suboptimal for the dissipation of body heat. Reference 84 
demonstrated a cooling textile that consists of nanoporous poly-
ethylene (Fig. 3i). Polyethylene has a low material loss in both 
the thermal and visible wavelength ranges. This textile consists of 
nanopores with sizes comparable to the visible wavelength range. 
Thus the textile strongly scatters visible light and appears opaque 
and white. On the other hand, since the size of the nanopores is far 
smaller than the thermal wavelength, thermal radiation from the 
human body is not strongly affected by the nanopores and can be 
transmitted through them. The experiment in ref. 84 covered heat-
ing elements with different textiles, and demonstrated that, with the 
same power input, the heating element that is covered by the cool-
ing textile has a temperature that is 2.7 °C lower compared with the 
heating element that is covered by cotton.

Cooling textiles have now been made in both woven and non- 
woven forms, with different colours and a variety of textile mate-
rials83–92. For these textiles, other properties that are essential for 
human comfort, such as wicking capabilities, can be optimized 
while maintaining the radiative properties90. Finally, the cooling 
textile can be developed to implement the daytime cooling concept 
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as discussed in section ‘Daytime radiative cooling’. For this pur-
pose, that textiles are strongly emissive in the thermal wavelength 
range and strongly reflective in the solar wavelength range has  
been demonstrated48,49.

Thermodynamic concepts: harvesting outgoing thermal 
radiation
In the section above we primarily focused on achieving cooling by 
using radiative heat flow to carry heat away from a hot object. On the 
other hand, from a fundamental thermodynamic point of view, any 
heat flux between two reservoirs that have different temperatures 

can be used to generate usable work. Therefore, one should be able 
to generate usable work from the outgoing thermal radiation from 
the Earth to outer space. The magnitude of such outgoing thermal 
radiation is enormous. For the Earth to maintain an approximately 
constant temperature, the total power flux in the outgoing thermal 
radiation must balance that of the incoming solar radiation.

The heat engines used to harvest outgoing thermal radiation 
have interesting connections and contrasts compared with those for 
harvesting incoming solar radiation. In both cases, the heat engine 
is in contact with the Earth as one of the two thermal reservoirs. To 
harvest incoming solar radiation, the Earth is the low-temperature 
reservoir. On the other hand, to harvest outgoing thermal radiation, 
the Earth is the high-temperature reservoir.

As one of the techniques used to harvest the outgoing thermal 
radiation, since a radiative cooler facing the sky can reach a tem-
perature below the ambient air temperature, one can connect a ther-
moelectric generator between the radiative cooler and the ambient 
to generate electricity. Reference 30 demonstrated this concept dur-
ing the night-time. The radiative cooler consists of an aluminium 
plate that is painted black. When facing the sky, the cooler can reach 
a temperature that is a few degrees below the ambient air tempera-
ture. A thermoelectric generator, connected to the cooler, is then 
able to generate electricity with a power density of 25 mW m−2 when 
normalized to the area of the cooler. The generated electricity was 
used to drive a light-emitting diode, demonstrating that light can 
be generated from the darkness of the night sky30 (Fig. 4a). Further 
simulations have indicated a power density exceeding 1 W m−2 may 
be achievable with existing technologies25. These results highlight 
a renewable approach for night-time electric lighting without the 
need for an electric grid or energy storage.

The optoelectronic physics of photovoltaic power generation 
can also be used for harvesting outgoing thermal radiation. When a 
photovoltaic cell undergoes radiative exchange with a thermal emit-
ter that has a temperature below that of the cell, there is net outgoing 
thermal radiation from the cell to the emitter, and this net outgoing 
radiation results in a difference between the generation and recom-
bination current within the cell. Consequently, the cell can generate 
a net electric current that can be used to drive an external electrical 
device93. Electricity generation in this way has been demonstrated 
using a HgCdTe photodetector facing the sky94 (Fig. 4b).

The experimental developments for harvesting outgoing thermal 
radiation motivate the theoretical development in understanding 
the associated fundamental limits on the power that can be gener-
ated95–97. There is in fact a duality relation that maps between the 
fundamental limits of solar-energy harvesting and the harvesting of 
outgoing thermal radiation (Fig. 4c,d). The use of the thermoelec-
tric module or the photovoltaic cell discussed above, for example, 
map to the thermophotovoltaic system and the photovoltaic system 
for solar energy harvesting. In addition, similar to solar-energy har-
vesting, the ultimate limit for the power density in harvesting out-
going thermal radiation is defined by the exergy, E, of the outgoing 
radiation is given by

E = TambSout − Pout (6)

where Sout and Pout are the net entropy and power flow in the out-
going radiation, respectively, and Tamb is the ambient tempera-
ture. Assuming that the emitter is a blackbody (at a temperature 
Tamb = 300 K), which is radiating to outer space, which is also 
assumed to be a blackbody (at a temperature To = 3 K), one then 
has E = Tamb

[ 4
3σ

(
T3
amb − T3

o
)]

− σ(T4
amb − T4

o), which is equal 
to 153.1 W m−2 (ref. 96). Here, σ is the Stefan–Boltzmann constant. 
This result is closely analogous to the Landsberg limit for solar- 
energy harvesting98 (Fig. 4d). Reaching the Landsberg limit requires 
the use of non-reciprocal devices as shown in Fig. 4d. Such a  
theoretical limit significantly exceeds the experimentally observed 
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power density by several orders of magnitude and indicates that 
there is significant room for future developments. A similar limit 
has also been established for schemes that seek to simultaneously 
harvest both sunlight and the outgoing thermal radiation for 
improving the harvesting efficiency of solar energy97.

Summary and outlook
In the past few years, radiative cooling has emerged as a significant 
new direction in renewable energy research, with important poten-
tial for wide ranges of applications. In this Review, we have dis-
cussed the fundamental photonics and thermodynamics concepts 
that underlie the processes of radiative cooling. We end this Review 
by discussing a few emerging directions.

From a photonic design point of view, controlling the emissivity 
profile is essential for achieving high-performing radiative cooling. 
As outlined in Fig. 1d, depending on the application objective, the 
optimal emissivity profile can have complex spectral and angular 
shapes. Moreover, the variability of the atmosphere at different 
locations and climate conditions plays a very important role in the 
radiative cooling process99–101. Therefore, when designing a radia-
tive cooler with an optimized emissivity profile, these factors must 
be considered. Achieving a high-performing radiative cooler that is 
compatible with large-scale fabrication techniques represents a sig-
nificant challenge. A promising direction is the application of the 
computational inverse design technique102–104 for radiative cooling, 
which has been applied for radiative coolers that consist of multi-
layer films22,61,72,105–107. Such a technique may find broader applica-
tion in the design of radiative coolers.

In addition to the absorption and scattering processes, other 
light–matter interaction processes may have implications for radia-
tive cooling. In this direction, we note the use of fluorescence pro-
cesses to enhance the effective solar reflectivity of a building for 
radiative cooling43,79 and for increasing the production of green-
house produce108.

The energy-harvesting processes from outgoing thermal radia-
tion, as discussed in the section ‘Thermodynamic concepts: har-
vesting outgoing thermal radiation’, are certainly at a very early stage 
of development. The experimentally observed power densities30,94 
are several orders of magnitude lower than the theoretical limits96. 
Future improvements may occur through co-optimization of pho-
tonic engineered thermal emissivity profiles, heat transfer design 
and optoelectronic properties of low bandgap semiconductors.

We anticipate significant developments in combining the radia-
tive cooling concept with many other types of renewable energy tech-
nology, including solar-energy harvesting and water generation. The 
harvesting of outgoing thermal radiation may also be used to boost 
the power density in schemes that harvesting existing heat sources 
such as human body heat, waste heat and solar thermal heat97.

More broadly, from a thermodynamic point of view, a low- 
temperature heat sink is equally as important as a high-temperature 
heat source in the efficient conversion of heat to work. Existing 
thermodynamic cycles primarily use the ambient environment 
as the heat sink. The development of radiative cooling shows that 
outer space can be used as the heat sink instead. Since outer space 
has a much lower temperature compared with the ambient, radia-
tive cooling may point to the pathway for systematically improv-
ing a wide range of thermodynamic cycles and significantly impact 
energy technology in general.
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