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Abstract: Parallel phase-shifting digital holography (PPSDH) employing a polarization image sensor
can suppress zero-order and twin-image noise through a single exposure, achieve instantaneous
measurement of complex-valued dynamic objects, and have broad applications in the areas of
biomedicine, etc. To improve the imaging resolution of PPSDH, we propose an oversampled super-
pixel image reconstruction method, which can be expressed as the implementation of nearest-neighbor
interpolation to replace blank pixels in sparse sub-phase-shift holograms. We found experimentally
that the maximum spatial lateral resolution of the reconstructed image based on the existing super-
pixel method, B-spline, bicubic, bilinear, and the proposed nearest-neighbor interpolation was
12.4 µm, 11.4 µm, 9.8 µm, 8.8 µm, and 7.8 µm, respectively. The main reason for not reaching the
ideal value of 6.9 µm was the inherent residual zero-order and twin-image noise, which needs to be
removed in the future.

Keywords: parallel phase-shifting digital holography; imaging resolution; super-pixel; interpolation;
residual noise

1. Introduction

Digital holography (DH) enables two-dimensional quantitative complex amplitude
imaging or simultaneous amplitude and phase imaging, which is a very powerful method
for metrology, analysis, and detection, with broad applications in the areas of biomedicine,
instrument manufacturing, aquatic science, extraterrestrial life detection, 3D imaging and
displays, security and defense, etc. [1–4]. Zero-order and twin-image noise are serious
obstacles to achieving high-quality imaging in in-line DH, and the phase-shifting (PS)
technique is often required for noise suppression. Among the existing noise removal tech-
niques, the traditional temporal PS technique can theoretically provide the best quality of
reconstructed images [5,6]. However, due to the nonlinear response and response time
of practical PS devices such as piezoelectric transducers, temporal phase-shifting digital
holography (PSDH) has the following drawbacks: (1) it is extremely sensitive to envi-
ronmental vibration and turbulence; (2) the relative phase shifts between interferograms
cannot be precisely controlled [7,8]; and (3) real-time measurement of fast-moving targets
is not possible [9,10].

To exceed the limitations of PSDH, Y. Awatsuji et al. proposed parallel phase-shifting
digital holography (PPSDH) in 2004, using an optical-path-length-shifting array device
with a pixelated periodic thickness distribution, or a micropolarizer array device with a
pixelated periodic polarization direction distribution, to capture multiple digital holograms
with different phase shifts in a single exposure [9,11–15]. The spatial PS technique based
on the pixelated polarization mask has the advantages of being essentially simple to align
and compose, achromatic over a wide range, etc. [13,16], but also has the drawback that
there was no available commercial cost-effective polarization camera until the launch of
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the polarization-dedicated image sensor IMX250MZR by Sony for snapshot polarization
imaging in 2018 [17–19]. The IMX250MZR sensor, with an image resolution of 2448 × 2048
and a pixel pitch of 3.45 µm, not only promotes the development of snapshot polarization
imaging, but also solves the core device problem of PPSDH, and enables PPSDH to be more
widely studied [20–27].

Similar to polarization imaging, “hologram demosaicing” is also a crucial imaging
pipeline of PPSDH [28–30]. There are currently two classical demosaicing methods in
PPSDH: the first is the super-pixel method (SPM), which discards the blank pixels in the
sparse sub-phase-shift holograms [16,31,32]; and the second is the hologram interpolation
method (HIM), which uses adjacent pixel values instead of blank pixels [9]. Among them,
the SPM, which regards a set of four neighboring pixels corresponding to the four phase
shifts as a “unit cell”, is simple to implement, but can only calculate the complex amplitude
value of the optical field at one point, resulting in the maximum lateral spatial resolution
and image resolution of the reconstructed image of PPSDH both being reduced to one-half
of that of PSDH in the horizontal and vertical directions, respectively. Although the HIM
is more complex than the SPM, it can avoid the loss of image resolution [23]. Xia, P et al.
compared the root-mean-square error of the reconstructed image by the HIM based on
bilinear, bicubic, and B-spline through simulation in 2013 [30], and after that there has been
no specific analysis of the differences between the SPM and the HIM in PPSDH.

Lateral spatial resolution is one of the main parameters of PPSDH. To solve the
problem of limited lateral resolution caused by the decrease in the sampling frequency of the
traditional SPM in practical applications, we propose an oversampled super-pixel method
(OSPM), referring to the sensor-shifting implementation of pixel super-resolution (PSR) for
on-chip lensless digital holographic microscopy (DHM) [33,34]. The proposed OSPM can
not only achieve pixel resolution imaging in PPSDH, but also can be represented in the form
of an HIM based on nearest-neighbor interpolation for comparing the differences between
the SPM and HIM. In Section 2, the principles and methods of the proposed technique are
explained. The experimental verification of the proposed technique and discussion of the
results are shown in Section 3, which is followed by the conclusions in Section 4.

2. Principles and Methods
2.1. Hologram Recording

Figure 1 shows the optical schematic of the PPSDH system based on the Mach–Zehnder
interference structure. A polarized He–Ne laser source (Thorlabs HNL020LB) with a
wavelength of 632.8 nm, whose output amplitude is continuously adjusted by a polarizer,
acts as the source beam for the proposed PPSDH system. The beam is spatially filtered and
collimated to generate a uniform beam with a plane wavefront. The ratio of the p-polarized
and s-polarized components of the source’s linearly polarized light is continuously adjusted
by a half-wave plate (HWP). The reflected beam (s-polarized) from a polarizing beam
splitter (PBS) illuminates the transparent object, and the illumination light is modulated by
the complex amplitude of the object to form the object beam u(x, y), while the transmitted
beam (p-polarized) acts as the plane wavefront reference beam. The object diffracted
beam and the reference beam are combined by a non-polarizing beam splitter (BS), and
their polarization states become right-handed circular polarization and left-handed circular
polarization, respectively, through a quarter-wave plate (QWP) with the fast axis oriented at
−π⁄4. The polarization direction of the object diffracted beam o(x, y) (right-handed) and the
reference beam r(x, y) (left-handed) at the plane of the monochromatic polarization camera
(FLIR BFS-U3-51S5P-C) has the same rotational angular velocity, but in opposite directions.
Thus, relative phase shifts of δ = 0, π/2, π, 3π/2 are formed between the object beam and
the reference beam through a micropolarizer filter array with the optical axis direction of
0, π/4, π/2, 3π/4. Due to the circular arrangement of a set of 2 × 2 adjacent pixels with
different polarization directions, the four sub-phase-shift holograms I0(x, y; 0), I0(x, y; π/2),
I0(x, y; π), I0(x, y; 3π/2) in a spatially multiplexed hologram I0(x, y; δ) (SMH) recorded by
the polarization camera are also cross-distributed, as in a checkerboard [7,26,27,35,36].
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Figure 1. Experimental geometry of PPSDH. He–Ne laser: helium–neon laser source; P: polarizer;
SF: spatial filter assembly: MO: microscope objective, Pi: pinhole, CL: collimating lens; M: mirror;
HWP: half-wave plate; PBS: polarizing beam splitter; BS: non-polarizing beam splitter; QWP: quarter-
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2.2. Hologram Reconstruction

Figure 2 illustrates the SPM calculation procedure of image reconstruction for
PPSDH [16,31,32]. Pixels with the same phase shifts are extracted to obtain four sparse
sub-phase-shift holograms: I0(x, y; 0), I0(x, y; π/2), I0(x, y; π), and I0(x, y; 3π/2). The
SPM obtains four aligned phase-shift holograms—I(x, y; 0), I(x, y; π/2), I(x, y; π), and
I(x, y; 3π/2)—by downsampling the sparse sub-holograms and discarding the blank pixels.
The PS technique provides complex amplitude distribution of the object diffracted beam
o(x, y) at the plane of the image sensor, and the diffraction calculation of o(x, y) is performed
by the angular spectrum method (ASM) to obtain the reconstructed image of the object beam
u(x, y), using the following equations [26,37]:

o(x, y) = [I(x, y; 0)− I(x, y; π)] + j[I(x, y; π/2)− I(x, y; 3π/2)] (1)

u(x, y) = F−1
{
F [o(x, y)]exp

[
−jkz

√
1− (λ fx)

2 −
(
λ fy
)2
]}

(2)

where F and F−1 denote the Fourier transform and inverse Fourier transform, respec-
tively; k = 2π/λ is the wave number; λ is the wavelength of the illumination light source;
z is the numerical diffraction propagation distance, which is equal to the recorded dis-
tance from the object to the sensor; and

(
fx, fy

)
represents the two-dimensional spatial

frequency components.
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The object diffracted field o(x, y) calculated by the SPM can be equivalently regarded
as the result of direct sampling of o(x, y) by an imaginary light-field image sensor with
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a pixel pitch of 2∆ and an image resolution of Nx × Ny/4, where Nx, Ny and ∆ represent
the image resolution and the pixel pitch of the actual sensor, respectively. Considering the
horizontal direction, a frequency sampling bandwidth of BSPx = 1/2∆ corresponding to
the 2∆ super-pixel (SP) sampling interval of the light-field sensor filters out high-frequency
information beyond BSPx in the diffraction field, with a bandwidth of Bx = Nx∆/λz:
(1) when BSPx > Bx, the imaging lateral resolution mainly depends on Bx; (2) when
BSPx < Bx, the lateral resolution mainly depends on BSPx, and is not more than twice the
sampling interval of the light-field sensor, which equals 4∆ in the SPM. Therefore, the
lateral resolution can be improved by reducing the sampling interval or increasing the
sampling bandwidth of the imaginary light-field sensor.

To solve the above problem of the SPM, we propose an OSPM for PPSDH, referring
to PSR for on-chip DHM [33,34]; Figure 3 depicts the proposed technique. As shown
in Figure 3a, the OSPM calculates four object light diffraction field images by overlap-
ping each independent SP, which is equivalent to four images captured after moving the
imaginary light-field sensor in the horizontal and vertical directions by half an SP offset.
After interpolating and merging four low-resolution images, a light-field image with an
SP interval of ∆ and an image resolution of Nx × Ny can be obtained. Figure 3b shows
that the implementation of the OSPM for enhancing the sampling frequency of the light
field can be simplified to perform nearest-neighbor interpolation on the extracted sparse
phase-shift holograms I0(x, y; δ) in the form of HIM, obtain four interpolated aligned
phase-shift holograms I(x, y; δ), and calculate the object light field u(x, y) according to
Equations (1) and (2). Compared with the traditional numerical calculation implementation
of interpolation [23,30], a simpler implementation can be represented by the convolution of
an image and an interpolation kernel using the following equation [26]:

I(x, y; δ) = I0(x, y; δ) ∗ f (x, y) (3)

where ∗ denotes the convolution operation, and f (x, y) represents the interpolation kernel.
Table 1 shows the classical convolutional interpolation kernels, including nearest-neighbor
interpolation [31]. To reduce the calculation time, [26] proposed a fast image reconstruction
technique based on the convolution theorem.
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Table 1. The classical convolutional interpolation kernels [31].

Method Kernel Function f (x, y) = hhT Size

0 elements h = ( 1 )T 1× 1
Nearest-neighbor h = ( 1 1 )T 2× 2

Bilinear h =
(

1
2 1 1

2

)T 3× 3

Bicubic h =
(
− 1

16 0 9
16 1 9

16 0− 1
16

)T 7× 7

B-spline
h =(

− 3
152 0− 9

76 0 91
152 1 91

152 0− 9
76 0− 3

152

)T 11× 11

The proposed OSPM increases the frequency sampling bandwidth of the object light
diffraction field from BSPx = 1/2∆ to BOSPMx = 1/∆, which is equivalent to increasing the
imaging lateral resolution in the case of BSPx < Bx < BOSPMx. In addition, the maximum
lateral resolution can also be increased from 4∆ to 2∆, which is twice the pixel pitch ∆ of
the actual image sensor. To further increase the sampling frequency, additional physical
operations such as a source or sensor shifting are required [34]. However, due to the limited
bandwidth Bx of the diffraction field caused by the minimum recording distance, which
is equal to the thickness of devices such as the BS in Figure 1, further PSR imaging in
PPSDH has a smaller effect on the resolution improvement than the digital holographic
microscopy [34,38].

Since the proposed OSPM can be regarded as the HIM based on nearest-neighbor
interpolation, the image resolution and lateral spatial resolution of the reconstructed
image of the HIM are not worse than those of the SPM. In addition, the nearest-neighbor
interpolation—which may be ignored in PPSDH due to poor reconstruction accuracy—has
a smaller kernel size and, thus, can retain more high-frequency information of the target,
which perhaps corresponds to a higher lateral resolution.

3. Results and Discussion

The proposed OSPM was verified experimentally based on the PPSDH system shown
in Figure 1. A negative test target USAF1951 (Thorlabs R1DS1N) was used as a recording
object. The central 2048 × 2048 pixels of the FLIR polarization camera based on the
IMX250MZR sensor were used for hologram recording. Figure 4a–e show the reconstructed
enlarged amplitude images obtained using the conventional SPM, and Figure 4f–j show
those obtained using the proposed OSPM at different recording distances z.
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proposed OSPM at different recording distances z.

Among them, the reconstructed image resolutions by the SPM and OSPM are 1024× 1024
and 2048× 2048, respectively, while the lateral spatial resolution of the reconstructed images
increases with decreasing z. The critical distances z beyond where the lateral resolution of
the SPM and OSPM is limited by the sampling interval are 77 mm and 38.5 mm in the case
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of Bx = BSPx and Bx = BOSPMx, respectively. The maximum lateral spatial resolution of the
reconstructed images at recording distance z = 29.059 mm corresponds to group 6 element 3
(80.6-line pairs/mm, 12.4 µm) and group 7 element 1 (128.0-line pairs/mm, 7.8 µm) of the target.
Thus, the proposed OSPM can simultaneously improve the image resolution and the maximum
lateral spatial resolution of the reconstructed image.

Figure 5 shows the magnified amplitude images and Fourier spectral images of the
normalized reconstructed images of the hologram with z = 29.059 mm, obtained using the
HIM for comparing the effects of the interpolation algorithms. From the bottom to the top
of Table 1, the sizes of the interpolation kernels are reduced from 11 × 11 to 1 × 1, and the
attenuation effects of the corresponding low-pass filters on high-frequency information
of the diffracted field o(x, y) are gradually weakened. Thus, the lateral resolutions of the
reconstructed u(x, y) images based on B-spline, bicubic, bilinear, and nearest-neighbor in-
terpolation are gradually improved, corresponding to group 6 element 4 (11.4 µm), element
5 (9.8 µm), and element 6 (8.8 µm), and group 7 element 1 (7.8 µm) of the target, respectively.
However, the reconstructed image with zero interpolation is seriously degraded by the
residual zero-order and twin-image noise. Thus, the proposed OSPM implemented by
nearest-neighbor interpolation has the highest spatial lateral resolution of 7.8 µm.
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Figure 5. Magnified amplitude images and spectral images of the normalized reconstructed images
obtained using the HIM when the interpolation algorithms were (a,f) 0 element, (b,g) B-spline,
(c,h) bicubic, (d,i) bilinear, and (e,j) nearest-neighbor.

The maximum lateral resolution of the proposed OSPM is more than the theoretical
resolution of 2∆ = 6.9 µm, which may be an inherent error introduced by super-pixels.
Figure 6 compares the reconstructed images of PSDH and PPSDH by numerical simula-
tion. The simulation target was the processed reconstructed image of the R1DS1N with
z = 29.059 mm, and the simulated pixel pitch was 3.45 µm, corresponding to group 7
element 2 (6.9 µm). The simulation results were in good agreement with the experimental
results shown in Figure 5. Group 7 element 2 can be resolved in PSDH reconstructed
images, but not in PPSDH, which is influenced by the residual zero-order and twin images
in PPSDH.

The analysis of the above experimental results is mainly aimed at the target recon-
structed image with z = 29.059 mm, which can highlight the differences between the pro-
posed OSPM and SPM, between interpolation methods, and between PSDH and PPSDH.
Our experimental results prove that the proposed OSPM can effectively improve the max-
imum imaging lateral resolution for PPSDH compared with the traditional SPM. In the
OSPM, the nearest-neighbor interpolation with the smallest kernel size is used, which can
retain more of the high-frequency information of the object while suppressing the residual
zero-order and twin-image noise. Compared with classical interpolation methods, such as
bilinear interpolation, the lateral resolution of the reconstructed image of OSPM can reach
up to 7.8 µm.
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The failure to achieve the ideal resolution of 6.9 µm that can be obtained by PSDH
may be an inherent problem of PPSDH, caused by the residual zero-order and twin-image
noise in Figure 5f. When the phase in the complex-valued test target that is different from
the intensity modulation of USAF1951 changes drastically, the high-frequency information
contained in the +1 order and −1 order images of the target is very strong. Since the
frequency center of the −1 order image is located at the vertex of the spectrum rectangle,
its strong high-frequency information is reflected in the low-frequency region, resulting in
degradation of the reconstructed +1 order image. Therefore, the residual noise removal of
PPSDH is one of the main problems to be solved in the future [39], and considering new
sub-phase-shift hologram interpolation methods [17,40] or the interdependence between
the four sub-phase-shift holograms [28,29] will be helpful to solve the above residual noise
problem in PPSDH.

In addition, as shown in Figure 4, when the recording distance z is gradually reduced,
the bandwidth Bx of the diffracted light field at the detector plane is also gradually reduced,
and the requirement for the sampling bandwidth of the sensor is also reduced accordingly.
When Bx ≤ BSPx (z ≥ 77 mm), the OSPM and SPM will have similar spatial resolution,
and an interpolation method with a larger kernel size can be used to reduce the root-mean-
square error of the reconstructed image [30].

4. Conclusions

In this study, we propose an oversampled super-pixel image reconstruction method
that can approximately achieve pixel resolution imaging, and the main reason for not
reaching the ideal value is the inherent residual zero-order and twin-image noise of PPSDH.
Compared with the existing image reconstruction methods in PPSDH, the proposed tech-
nique can retain more high-frequency information of +1 order images of the target, while
suppressing the low-frequency components of the residual noise. However, the strong
high-frequency components of the target may still lead to serious degradation of the recon-
structed image quality; thus, the removal method of residual noise needs further research
in the future.
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