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for hysteresis in piezo-nanopositioning
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Abstract
This paper first presents a rate-dependent Krasnosel’skii-Pokrovskii (RKP) model to capture the hysteresis of piezo-
nanopositioning stages. The dynamic density function of the RKP model is obtained via neural network with frequency
behavior input signal. Under the persistently exciting condition, the convergence of the neural network with
Krasnosel’skii-Pokrovskii (KP) operators is proved rigorously. In order to address the hysteresis issue, a direct compen-
sation control (DCC) approach with the KP compensation operator is proposed, where its dynamic density function is
same as that of the RKP model. Some experiments with different reference signals are conducted to verify the effective-
ness of the proposed modeling and DCC method on piezo-nanopositioning stages.
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1. Introduction

Owing to the advantages of high-frequency response,
ultrahigh resolution, large stiffness and few hot, piezo-
nanopositioning stages are widely adopted as nanoposi-
tioning equipments (Chen et al., 2016; Dong et al.,
2016). However, some nanopositioning stages based on
piezoelectric materials display complex rate-dependent
hysteresis, which makes their application quite challen-
ging (Nguyen et al., 2018; Zhang et al., 2019). When
the frequency of the input signal increases, the width of
the hysteresis loop increases and the stroke of piezo-
nanopositioning stages decreases. To describe and miti-
gate the complex hysteresis of nanopositioning stages,
many modeling and control approaches have been
investigated in existing literatures (Yu et al., 2021).

The existing hysteresis models are classified into
three categories: differential-equation-type (DET) hys-
teresis model, operator-type (OT) hysteresis model and
other machine learning (ML) hysteresis model. The
DET hysteresis model is proposed via a first-order non-
linear differential equation to reveal the mapping rela-
tionship between the input and output, which mainly
includes the Bouc-Wen model (Xu and Zhou, 2017a),
Duhem model (Zhou et al., 2016) and Jiles-Atherton
model (Liu et al., 2016), etc. However, the traditional
DET hysteresis model does not have the rate-dependent

characteristic, which causes modeling accuracy deterio-
rated to accommodate the input frequency changes. To
make the traditional DET hysteresis model have the
rate-dependent characteristic, the dynamical model of
nanopositioning stages is built to compose a Class-
Hammerstein hysteresis model with rate-dependent
characteristic (Guo et al., 2015). It is shown that such
modeling approach needs to understand the structure
of nanopositioning stages, which requires abundant
electronics and machinery knowledge and makes the
hysteresis modeling more difficult. The frequently-used
OT hysteresis model includes Preisach model (Iyer
et al., 2005; Tan and Baras, 2005), Prandtl-Ishlinskii
(PI) model (Zhang et al., 2015) and Krasnosel’skii-
Pokrovskii (KP) model (Li et al., 2018; Xu and Zhou,
2017b), etc. They are obtained via the accumulated hys-
teresis operators on Preisach plane. For instance, the
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Preisach model is formed by the summation of Preisach
operators with different weights, which simply describes
the symmetric hysteresis loop. The PI model is com-
posed of the Play or Stop operators, which is more
accurate to describe the hysteresis loop of the piezo-
nanopositioning stages. Al Janaideh et al. (2021)
adopted an adaptive identification algorithm to obtain
the play radii of the a PI operator, to improve the accu-
rate modeling of the hysteresis in smart material actua-
tors. The KP model is built by a superposition of KP
operators with density function, which not only can
capture the asymmetrical hysteresis loop, but also can
describe the major and minor hysteresis loops.
Different from the Preisach model, the KP model has
the continuity mapping space, and it requires less KP
operators and reduces the computational burden. In
addition, the KP model can describe the hysteresis
effects with saturation. So, the KP model has more
superior performance than other OT hysteresis models.
Nevertheless, the traditional OT hysteresis model can-
not describe the rate-dependent hysteresis characteris-
tic. To solve this issue, some rate-dependent Preisach
and PI models have been developed. For example, Xiao
and Li (2012) proposed a rate-dependent Preisach
model by linear superposition of the frequency weight
and the density function. Yang et al. (2015)introduced
a dynamic envelope function into the input function of
the play or stop operators, and a rate-dependent PI
model was established. In addition, Al Janaideh et al.
(2020) proposed temperature-dependent PI model to
capture the hysteresis nonlinearities of the piezoelectric
actuator. The temperature shape function and the
weights are obtained by the Grey Wolf Optimizer, the
experimental results demonstrate that the proposed
model can account for the temperature-dependent and
hysteresis of the piezoelectric actuator. However, so far
there has been few studies on the rate-dependent
Krasnosel’skii-Pokrovskii (RKP) model. In this study,
we have built a RKP model to describe rate-dependent
hysteresis of piezo-nanopositioning stages.

These hysteresis models are commonly used to cap-
ture the hysteresis of nanopositioning stages. How to
eliminate their hysteresis and improve the positioning
accuracy is a key problem for realizing the application
of nanopositioning stages in the precision drive field. In
existent research literatures, inversions of the Preisach
model and PI model were obtained to compensate the
hysteresis of smart material actuators. Hu et al. (2005)
designed a new inverse algorithm based on the inverse
dynamic Preisach model to mitigate the hysteresis of
the piezoceramic actuator. Song et al. (2005) proposed
an inverse Preisach model to compensate the hysteresis
of the piezoceramic actuator. To eliminate the hystere-
tic and creep effects in the piezoelectric actuator, a new
compensator based on the Preisach approach was
designed by Kuhnen and Krejci (2009), and it can be
implemented in a real-time way. Due to the inverse

Preisach model obtained by the numerical algorithm, it
increased the computational burden. The inverse PI
model was obtained via the relationship between the
play operator and stop operator and it was easier to be
obtained than the inverse Preisach model. For example,
Al Janaideh and Krejci (2012) adopted an inverse rate-
dependent PI model to design a feedforward controller
for piezo-micropositioning actuators. Compared with
the Preisach model and PI model, the KP model
requires fewer operators to describe a same hysteresis
loop (Li et al., 2018). In the existing literature (Webb
et al., 1998), the only way to gain the inverse of the KP
model was the recursive method, but this method had
no special advantages in computational cost compared
with other hysteresis models.

In this paper, we make use of the advantages of KP
model in describing the asymmetrical major and minor
hysteresis loop. The rate-independent characteristic of
the KP operator is analyzed theoretically. Next, to
establish RKP model and capture the dynamic hyster-
esis, the derivative of the input voltage signal is used as
the input of neural network to obtain the dynamic den-
sity function with persistently exciting input signals.
The convergence property of the neural network with
KP operators is demonstrated under the persistently
exciting conditions of the input. In order to deal with
the hysteresis issue, we design a direct compensation
control (DCC) by analyzing the structure of RKP
model for the hysteresis in the piezo-nanopositioning
stage. Experimental results are provided to demon-
strate the effectiveness of the proposed RKP model
and DCC method on the piezo-nanopositioning stage.

The main contributions of this paper are as follows:

(1) The RKP model is first designed and we just use
ten KP operators to accurately capture the rate-
dependent hysteresis of the piezo-nanopositioning
stage and it reduces the computational consump-
tion of the hysteresis modeling.

(2) The convergence of the neural network for
obtaining the dynamic density function of the
RKP model is proved theoretically under the
persistently exciting condition.

(3) A DCC technique is proposed to mitigate the
impact of the hysteresis and achieve high-
precision tracking control on the piezo-
nanopositioning stage.

2. Recall of the Krasnosel’skii-Pokrovskii
model

2.1. KP operator

Due to the ability of describing the major and minor
hysteresis loops, the KP model is widely used to
describe the hysteresis of smart material actuators. The
KP model is composed of the KP operators and density
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function. The KP operator is shown in Figure 1(a), and
its equation is written as

cn1, n2
½u(t); z(n1, n2)�=
max z(n1, n2), r u(t)� n2ð Þ½ � _u(t).0

min z(n1, n2), r u(t)� n1ð Þ½ � _u(t)ł 0,

� ð1Þ

where u(t) is the input voltage of the KP operator;
cn1, n2

½u(t); z(n1, n2)� is the output of the KP operator,
which is expressed as Gkp for the sake of simplicity. The
(n1, n2) are a pair of thresholds of the Preisach plane
(P), which satisfies P= fP(n1, n2) 2 <2 : nmin ł n1 ł

n2 ł nmaxg. The nmin and nmax are the boundary values
of the Preisach plane. The r(u(t); n1, n2) is the Lipschitz
function, which influences the major loop shape of the
KP operator. The formula of r(u(t); n1, n2) is shown as

r(u(t); n1, n2)=

0 u tð Þ 2 ½�‘, 0�
nmax � u tð Þ=s u tð Þ 2 ½0,s�

nmax u tð Þ 2 ½s, +‘�,

8<
: ð2Þ

where s 2 ½0,‘) is the slope of r(u(t); n1, n2), which is
calculated by s= 1=(L� 1), L is the cutting line num-
ber of each axis on Preisach plane. z(n1, n2) is the previ-
ous maxima and minima value of the KP operator,
which embodies the memory feature and is updated
based on the input-output data of the KP operator.
The z(n1, n2) is written as

z(n1, n2)(t)=

0 t = T0

Gkp(t) t= Ta ø Ta�1, _u(t)sgn( _u(t))\0

z(n1, n2)(Ta�1) t 2 ½Ta�1,Ta�, _u(t)sgn( _u(t))ø 0,

8><
>:

ð3Þ

where a is the times of the _u(t)sgn( _u(t))\0. According
to (3), Gkp can record all previous extremum values.
The KP model can describe the memory characteristic
of hysteresis in smart material actuators. In addition,
the KP operator is rate-independent, which meets the
following Theorem 1.

Theorem 1. Visintin (2013) If a continuous increasing
function ’ : ½0, T � ! ½0, T � meets ’(0)= 0 and
’(T )= T , then for the u(t) 2 C½0, T � (C½0, T � is the space
of the continuous function on ½0, T �), x½u 8’; x0�(t)=
x½u(t); x0�(’(t)), 8 t 2 ½0, T �. Then, the function x is the
rate-independent.

According to the KP operator defined in (1), the KP
model with the input u(t) 2 ½umin, umax� is expressed as

y(t)=

ð ð
P

cn1, n2
½u(t); z(n1, n2)�- n1, n2ð Þdn1dn2, ð4Þ

where - n1, n2ð Þ is the density function of the KP model.

2.2. Discretization of the KP model

As shown in (4), the formula of the KP model is a dou-
ble integral function. It is difficult to obtain the output
of the KP model in the practical application. Thus, the
KP model should be discretized in mathematical way.
In this work, we assume that the KP operator is
regarded as a cell on the discrete Preisach plane and
the density function of the KP model is the constant.
The discrete Preisach plane is obtained by dividing
uniformly P into a mesh using L, which is given in
Figure 1(b). The Preisach plane is divided into
N = L(L+ 1)=2 cells. As L! ‘, the discrete Preisach
plane approximates to the continuous-Preisach
plane. Then, each KP operator corresponds to each
cell. We assume that the ½umin, umax� � ½nmin, nmax� is
the input maximum and minimum values of the KP
operator. The discrete input levels of each axis are
written as

n = nmin +
nmax � nmin

L
(i� 1), ð5Þ

where i= 1, 2, � � � , L+ 1. The smooth hysteresis curve
is generated via the KP operator overlap cell by cell.
The discrete KP model with the output y is expressed
as

y=
XL

i= 1

Xi

j= 1

G
i, j

kp-i, j, ð6Þ

where G
i, j
kp is the KP operator value of each cell on the

Preisach plane, -i, j denotes the density function of each
KP operator after the discretization of the KP model.
In this paper, we rewrite (6) as the normal discrete form
of the linear systems for the convenience of obtaining
the suitable density function and implementing the KP
model, which is given as

y=
XN

k = 1

Gk
kp-k =GT

kpw, ð7Þ

Figure 1. KP model: (a) KP operator and (b) Preisach plane
with L= 4.
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where Gkp = ½G11 G21 G22 G31 G32 � � � Gij � � � GLL�T ,
w= ½-11 -21-22 -31 � � � -ij � � � -LL�T .

3. Rate-dependent Krasnosel’skii-
Pokrovskii model

3.1. Neural network identification method

In this section, the primary objective is to obtain
an appropriate w to capture the hysteresis of the
piezo-nanopositioning stage. As mentioned above,
the hysteresis of the piezo-nanopositioning stage has
the rate-dependent characteristic, but the KP operator
can only describe the rate-independent hysteresis, not
the rate-dependent hysteresis. There are two solutions
to this problem. One is that we can design a RKP oper-
ator with the frequency information of the input signal
to make the KP model have rate-dependent character-
istic. However, designing a RKP operator requires
complex mathematical calculations and it is different to
be achieved in practice. The other is that we can build a
RKP model with the dynamic density function of the
KP model in real-time way. Because the output of
the KP operator can be computed directly according to
the input of the piezo-nanopositioning stage, we can
use KP model with different density function (which is
obtained based on the input frequency information) to

describe the hysteresis loop at different frequency. The
density function of the KP model at different input fre-
quencies is shown in Figure 2. In this paper, we adopt
the second method to build a RKP model.

As shown in Figure 3, the relationship between the
input frequency and the density function of the KP
model is complex nonlinear. It is difficult to describe
the functional relationship between the input frequency
and the density function. In this paper, we consider this
relationship as the nonlinear mapping <q ! <y

Y =F(q); Y 2 <y, q 2 <,
q ð8Þ

where q is the input of the nonlinear mapping, Y is the
output vector. Neural networks have the ability to
approximate the nonlinear mappings based on the
Lemma 1. Then Lemma 1 is given as follow.

Lemma 1. Wang et al. (2017) The neural networks can
approximate any nonlinear mappings F( � ): <q ! < with
any compact set <q � <q (q is the input dimension),
which is given as

Ŷ = F̂(q)+ e= ŶT F(q)+ e, ð9Þ

where Ŷ 2 <p is the weight vector of the neural net-
works, k e k ł �e is the approximation error,
F(q) 2 ½f1(q),f2(q), � � � ,fm(q)�T is the basis function

Figure 2. Density function of the KP model with different input frequencies: (a) 1 Hz and (b) 50 Hz.

Figure 3. Relationship between the input frequency and density function value of the KP model.
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vector, �e is the upper bound of e. Assume that
8q 2 <q � <q, the optimal YH is existing with
k e k =�e. YH is described as

YH = arg min Ŷ2<pfsupq2<q jŶT F(q)� F(q)jg: ð10Þ

In this paper, the structure diagram of the RKP model
identification process is shown in Figure 4. _u(t) repre-
sents the input frequency information and it is the
input of the neural network, ŵ is the output of the neural
network, which is used to replace and update the density
function w of the RKP model. The function vector F(�)
constitutes the hidden layer, fi is the i th hidden layer
node. The actual weight vector Y of the output layer is
given as

Y=½u11, � � � , u1m; u21, � � � , u2m; � � � ; uq1, � � � , uqm�T: ð11Þ

This paper adopts the gradient method to obtain the
weight parameters of the neural network, the modeling
error is defined as

e(t)= ŷ(t)� y(t)

=GT
kp(t)Ŷ

T
F( _u(t))� GT

kp(t)Y
T F( _u(t))� e

=GT
kp(t)(Ŷ

T �YT )F( _u(t))� e,

ð12Þ

where ŷ(t) is the output of the RKP model. We define
that the ~Y= Ŷ�Y is the weight error of the neural
network. The weight parameters updated using the gra-
dient method is given as

_̂Y(t)= � gGT
kp(t)F( _u(t))e(t), ð13Þ

where g is a constant, which influences the convergence
rate of Ŷ! Y.

3.2. Convergence analysis of neural network with
persistent excitation

In this section, we analyze the condition of the conver-
gence of the whole identification system (i.e. Ŷ! Y).
The differential equation of the whole identification
system is given as

_~Y(t)+ gGT
kp(t)F( _u)FT ( _u)Gkp(t) ~Y

T
(t)= gGT

kp(t)F( _u)e

e(t)=GT
kp(t)

~Y
T

F( _u(t))� e,

(

ð14Þ

The stability condition of the identification system (14)
is obtained via Lemma 2.

Lemma 2. For making the solution of the homogeneous
equation (14) converges to zero in the form of exponen-
tially fast, the GT

kp(t)F( _u) satisfies the persistent excita-
tion condition.

_~Y(t)+ gGT
kp(t)F( _u(t))FT ( _u(t))Gkp(t) ~YT (t)= 0: ð15Þ

The persistent excitation condition is explained in
Definition 1.

Definition 1. Gorinevsky (1994) If a piecewise contin-
uous vector X(t) 2 <N is persistent excitation with a level
of excitation c1 . 0, there exists c2 . 0,D . 0, such
that

c2I ø

ðt0 +D

t0

XT (t)X(t)dt ø c1I , 8t ø 0, ð16Þ

where c2 is a constant, I 2 <N 3 N is the identity matrix.
Let us consider the solution of the homogeneous

equation (14) as

~Y(t)= exp �g

ðt

0

GT
kpF( _u(t))FT ( _u(t))Gkpdt

� �
~Y(0),

ð17Þ

where ~Y(0)= Ŷ(0)�YH. When GT
kp(t)F( _u(t))= 0, ~Y(t)

cannot approach to zero, a necessary and sufficient
condition for ~Y(t) approaches to zero exponentially fast
is that GT

kp(t)F( _u(t)) satisfies

ðt +D

t

GT
kpF( _u(t))FT ( _u(t))Gkpdt ø c2I , ð18Þ

for 8 t 2 ½0,‘�, 9 c2.0,D.0 i.e. GT
kpF( _u(t)) is persistent

excitation.
Next, we verify that GT

kpF( _u(t)) satisfies the persistent
excitation condition. In this study, we assume that u(t)
and _u(t) are persistent excitation. The excitation func-
tion fi of the hidden layer is selected as the Gaussian
function. It is easy to obtain that F( _u(t)) is persistent
excitation in accordance with Theorem 2 in Gorinevsky
(1995). Hence, one of our major work in this section is
to prove that GT

kp is also persistent excitation with the
input signal u(t).

Figure 4. Structure diagram of the RKP model identification
process.
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The amount of the frequency components of the
input signal u(t) must be more than that of unknown
parameters. We structure the following input sequence:
for any time in sampling time interval, there is the time
Tn ł t�1 \t+1 � � �\t�i \t+i \ � � � ł Tn+ 1 or Tn ł � � �\
t+1 \t�1 \t+i \t�i \ � � � ł Tn+ 1, such that ui(t

�) is the
local minimum and ui(t

+) is the local maximum for
each i 2 ½1, 2, � � � , L�. In addition, ui(t

�) and ui(t
+) can

include all input values on Preisach plane. If the input
signal u(t) satisfies u(t)\u(t + 1), Gij must exist a local
maximum, which is compared with ridge function
r(u(t); n1, n2) at this moment; if the input signal u(t)
satisfies u(t + 1)\u(t), Gij must exist a local minimum,
which is compared with ridge function r(u(t); n1, n2) at
this moment. For each situation, z(n1, n2) will clear and
reset the value of each operator at the next moment,
which will not lost the excitation information.
Therefore, GT

kp is persistent excitation with the above
input sequence. Because F( _u(t)) and GT

kp both satisfy
the persistent excitation condition, they are both line-
arly independent on the interval ½t0, t0 +D� from the
Theorem 2.

Theorem 2. For t 2 ½t0, t0 +D�, Xi(t), (i= 1, 2, � � � ,N )
is linearly independent, which is equivalent to that X(t)

satisfies
Ð t0 +D

t0
XT (t)X(t)dt ø c2I , for t 2 ½t0, t0 +D� and

9 c2.0,D.0.

Proof. We use a contradiction to prove Theorem 2.
First, we assume that

Ð t0 +D

t0
XT (t)X(t)dt ø c2I , for

t 2 ½t0, t0 +D� and 9 c2.0,D.0 is true; for
t 2 ½t0, t0 +D�, Xi(t), (i= 1, 2, � � � ,N ) is not linearly
independent. Therefore, existing L is non-vanishing
vector, which satisfies that X(t)T L= 0, and then,

LT

ðt0 +D

t0

XT (t)X(t)dt

� �
L=

ðt0 +D

t0

½XT (t)L�2dt= 0: ð19Þ

Because
Ð t0 +D

t0
XT (t)X(t)dt ø c2I (t 2 ½t0, t0 +D� and

9 c2.0,D.0) is true,
Ð t0 +D

t0
XT (t)X(t)dt must be a posi-

tive definite matrix, which is inconsistent with the
assumption. Next, assume that Xi(t), (i= 1, 2, � � � ,N ),
(t 2 ½t0, t0 +D�) is linearly independent; and the matrixÐ t0 +D

t0
XT (t)X(t)dt is not a positive definite matrix, then

existing elements of L are not complete zeroes, which

make formula (19) true. We can derive that X(t)T L= 0,
which contradicts the assumption.

Because F( _u(t)) and GT
kp are both linearly indepen-

dent on the interval ½t0, t0 +D�, we can obtain that
GT
kpF( _u(t)) is linearly independent according to the basic

mathematics principle. GT
kpF( _u(t)) is persistent excita-

tion from the Theorem 2. And then, ~Y(t) approaches to
zero exponentially fast.

4. Direct compensation control

In this section, we design a DCC method for the hyster-
esis of the piezo-nanopositioning stage. The objective
of the DCC method is to obtain a desired control vol-
tage signal to drive the piezo-nanopositioning stage, so
that the output displacement of the stage can accurately
track the desired given signal. The relationship between
the compensation KP operator and the KP operator is
given as

cn1, n2
½u; z(n1, n2)�(t)+c�1

n1, n2
½u; j; zo(n1, n2)�(t)=u(t),

ð20Þ

where c�1
n1, n2
½u; j; zo(n1, n2)�(t) represents the compensa-

tion KP operator. For convenience, c�1
n1, n2
½u; j; zo

(n1, n2)�(t) is expressed as Ykp(t), which is given as

Ykp(t)=

min u� j+ zo(n1, n2), ro u� n2ð Þ+ n2½ � _u(t).0

max u� j + zo(n1, n2), ro u� n1ð Þ+ n1½ � _u(t)ł 0,

�
ð21Þ

where ro(u; n1, n2)(t) is the boundary function, which is
defined as

ro(u; n1, n2)(t)=
u tð Þ u tð Þ 2 ½�‘, 0�
(1� nmax=s) � u tð Þ u tð Þ 2 ½0,s�
u tð Þ � nmax u tð Þ 2 ½s, +‘�,

8<
:

ð22Þ

The (j; zo) is the memory turning point of the compen-
sation KP operator, which are defined as follows,
respectively

j(t)=
u(T0) t= T0

u(Ta) t= Ta ø Ta�1, _u(t)sgn( _u(t))\0

u(Ta�1) t 2 ½Ta�1,Ta�, _u(t)sgn( _u(t))ø 0,

8<
: ð23Þ

zo(t)=

zo(n1, n2)(Ta�1) t 2 ½Ta�1, Ta�, _u(t)sgn( _u(t))ø 0

Ykp(Ta) t= Ta ø Ta�1, _u(t)sgn( _u(t))\0 ;

u(T0) t= T0,

8><
>:

ð24Þ

It is worth noting that the calculation method of the
compensation KP operator is similar with that of KP
operator. The only difference is that the maximum and
minimum values of the KP operator are counter to that
of compensation KP operator when the sign symbol of
_u(t) changes. According to (7) and (20), the following
formula is obtained as
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y(t) = u(t)�
PL

i= 1

Pi

j= 1

Y
i, j

kp(t)-i, j

= u(t)� YT
kp(t)w,

ð25Þ

where Ykp = ½Y11 Y21 Y22 Y31 � � � Yij � � �YLL�T , -i, j is
the density function, note that the density function of
the inverse RKP model is same with that of RKP
model, which is obtained using neural network. Based
on (25), we get the control law as follow

u(t)= yd(t)+YT
kp(t)w, ð26Þ

where yd(t) is the desired trajectory signal; u(t) repre-
sents the control voltage signal. In this paper, the com-
putational error is defined as

em(t)= ym(t)� y(t), ð27Þ

where ym(t) is the output of the RKP model. According
to (12), we rewrite (27) as

em(t)=GT
kp(t)Y

T
mF( _u(t))� y(t): ð28Þ

Based on the gradient method, the minimizing trajec-
tory Ym(t) is obtained by

_Ym(t)= � gGT
kp(t)F( _u(t))em(t): ð29Þ

So, the density function of the DCC method is calcu-
lated as w=YT

mF( _u(t)).
Figure 5 is the schematic of the DCC method for

hysteresis of the piezo-nanopositioning stage. As shown
in Figure 5, u(t) is the obtained control voltage signal.
According to (26), u(t) is the sum of yd(t) and YT

kp(t)w.
Because the input of YT

kp(t) is u(t), we use u(t � 1) as its
input for avoiding the algebraic loop problem in the
control process.

5. Experimental results and discussion

In this section, we give a series of experiments to certify
the effectiveness of the created RKP model and DCC
method. This section contains three parts: the first part
is the introduction of experimental setup; the second

part is to test the property of RKP model with different
drive signals; the last one is the validation of the pro-
posed DCC method.

5.1. Experimental setup

This paper utilizes a experimental setup to verify the
performance of the proposed hysteresis modeling and
control method. The experimental setup is composed
of the host computer, the precision positioning control-
ler (it includes a resistance strain gauge sensor with a
resolution of 5 nm and piezoelectricity ceramic
power supply, which is provided by Suzhou Boshi
Roboties Technology, China), the piezo-
nanopositioning stage (MPT-2MRL102A, Suzhou
Boshi Robotics Technology, China), the vibration iso-
lation platform (Sunnylink Precise Machine and
Electronics, Wuhan, China) and the data acquisition
card (PCI-1716, Advantech, Beijing, China). In the
experimental process, the host computer with Matlab
software is used to implement the modeling and control
method programs. The digital-analog (D/A) and
analog-digital (A/D) conversion module is carried out
using PCI-1716. The vibration isolation platform
avoids the influence of external vibration and noise on
the experimental results. The sampling time of the
whole systems is set as 0.1 ms. The picture of experi-
mental setup is shown in Figure 6.

5.2. Validation of the RKP model

In this section, to confirm the performance of the pro-
posed RKP model, we use the sinusoid signal with
decreasing amplitudes as the driving signal. The fre-
quencies of driving signal are set as 1, 20, and 50 Hz,
respectively. To weigh the modeling accuracy associ-
ated with the increased the operator number compared
with the cost of calculation, we set the operator number
as 10; numbers of hidden neurons and output layer
neurons are both 13. The property index of modeling
results is evaluated via the relative error (RE) and root-
mean-square error (RMSE) in a steady state.

Figure 5. Structure diagram of the DCC method.
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Figures 7 and 8 are the hysteresis modeling results
of the piezo-nanopositioning stage for the combination
of sinusoid signal with different frequencies. It is obvi-
ous that the proposed RKP model can capture the hys-
teresis nonlinearity of the piezo-nanopositioning stage.
As shown in Figures 7(a) and 8(a), the frequency of

driving input is 1 Hz, the RKP model output is consis-
tent with the experimental output, and it has a short
time to adjust and obtain suitable RKP model output.
The RE and RMSE of the RKP model output at 1 Hz
are 0.11% and 0.0150 m m, respectively. Compared
with the method in reference (Li et al., 2013), the
RMSE of the RKP model is improved by 94.57%.
When the frequency of the input driving signal is
20 Hz, the RMSE of the proposed RKP model is
decreased by 80.01% compared with the RMSE of the
modeling approach proposed by Li et al. (2013). As
shown in Figures 7(c) and 8(c), hysteresis modeling
error at 50 Hz begins to stabilize after 0.002 s with the
RE of 1.85% and RMSE of 0.3502 m m. Some com-
parison experimental results are summarized in Table
1. It is noteworthy that proposed RKP model is com-
pletely superior to the modeling method proposed by
Li et al. (2020). In addition, the modeling errors are
increased with the increase of input frequency. The
neural network needs enough information to obtain the
accurate dynamic density function. However, the infor-
mation data will decrease with the increase of input fre-
quency. So, the modeling capability is related to the
experiment hardware. Note that the modeling error of

Figure 6. Picture of the experimental setup.

(a) (b)

(c) (d)

Figure 7. Hysteresis loops modeling results under different sinusoid input voltages: (a) 1 Hz, (b) 20 Hz, (c) 50 Hz, and (d) complex
frequency.
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the RKP model is recorded as 60.3502 m m for less
than 50 Hz input signal. Finally, we use the complex
sine signal (i.e. u= 22:5 sin (10pt � 0:5p)+ 15 sin
(2pt � 0:5p)+ 37:5) as the driving signal to identify
the density function of the proposed RKP model.
Figures 7(d) and 8(d) illustrate that the proposed RKP
model can precisely describe the hysteresis loop with
multi-minor loops of the piezo-nanopositioning stage;
the RE and RMSE are 0.23% and 0.0196 m m, respec-
tively. It proves the superior performance of the pro-
posed RKP model.

6. Controller performance evaluation

To certify the performance of the DCC method, we use
the triangular signal as the desired trajectory signal to
carry out the trajectory tracking experiments. In these
tracking experiments, the number of the inverse KP
operator is also 10; the structure of the neural network
in the DCC method is similar to the RKP model.
Figure 9 illustrates the tracking performance of the
piezo-nanopositioning stage under the ramp desired
signal with different g. The solid blue line Ref. is the
desired signal; it is obvious that when g = 0.8, the sys-
tem has the minimum settling time and overshoot. In

the follow-up tracking experiment, g is set as 0.8 to
obtain the appropriate w using the neural network.

The experiments for the desired trajectory signal that
is associated with the triangular trajectory signal (1, 10,
and 50 Hz) are carried out. Figures 10 to 12 show that
the actual displacement of the piezo-nanopositioning

Figure 8. Hysteresis modeling results under different sinusoid input voltages: (a) 1 Hz, (b) 20 Hz, (c) 50 Hz, and (d) complex
frequency.

Table 1. Modeling performance comparison between model in Li et al. (2020) and proposed RKP model.

Input type (frequency) RKP model (RMSE/RE, m m/%) Model in Li et al. (2020) (RMSE/RE, m m/%)

f = 1 Hz 0.0150/0.11 0.2761/0.80
f = 20 Hz 0.1443/0.93 0.7219/2.08
f = 50 Hz 0.3502/1.85 1.0543/3.04
f = 1*5 Hz 0.0196/0.23 0.7065/3.83

Figure 9. Tracking performance of the piezo-nanopositioning
stage with different g.
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(a) (b)

Figure 10. Tracking results for the 1 Hz triangular signal: (a) comparison between the desired and actual outputs and (b) tracking
error.

(a) (b)

Figure 11. Tracking results for the 10 Hz triangular signal: (a) comparison between the desired and actual outputs and (b) tracking
error.

(a) (b)

Figure 12. Tracking results for the 50 Hz triangular signal: (a) comparison between the desired and actual outputs and (b) tracking
error.
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stage tracks the desired trajectory signal well. When the
frequency is less than 50 Hz, the tracking error at
steady state based on the DCC method is reduced
into less than 1.4282 m m. In Figure 13, the complex
harmonic signal (i.e. yd(t)= 12 sin 2pt � 0:5pð Þ+ 6 sin
10ptð Þ+ 18) is used as the desired trajectory signal, the
experimental result shows the proposed DCC method
can still achieve good control effect for a given signal
with frequency variation.

In order to further illustrate the superior perfor-
mance of the DCC method, the results of the compara-
tive experiments (compared with the sliding
mode control with perturbation estimation (SMCPE)
method proposed by Xu et al. (2018) are summarized
in Table 2. For the 10 Hz trajectory signal, the absolute
mean error (AME) and RMSE of the DCC method are
reduced by 25.13% and 14.24% in compared with that
of SMCPE method. For the complex harmonic signal,
the DCC method generates 65.96% lower AME track-
ing error and 62.15% lower RMSE tracking error than
SMCPE method.

In addition, compared with the existing literature
(Li et al., 2018; Pan et al., 2019), the experimental
results show that the proposed DCC method can not
only effectively reduce the computational burden, but
also improve the control precision of the piezo-

nanopositioning stages. This mainly comes from the
fact that the dynamic density function of the DCC
method can be obtained in real time way using neural
network.

7. Conclusion

This paper mainly focuses on the modeling and the
DCC of the hysteresis in piezo-nanopositioning stages.
A RKP model is used to capture the rate-dependent
hysteresis of the piezo-nanopositioning stage. The con-
vergence of the neural network with the KP operators is
demonstrated under the persistent exciting conditions.
From experimental results, it is clear that the neural net-
work is convergent and the RKP model has better
results than the rate-dependent Bouc-Wen model in the
aspect of describing the rate-dependent hysteresis in
piezo-nanopositioning stages. A DCC method is pre-
sented to mitigate the hysteresis in piezo-
nanopositioning stages. For the complex harmonic sig-
nal, the AME and RMSE of the proposed DCC
method are reduced by more than 60% compared with
that of the SMCPE method. In the future, the proposed
DCC method will be further improved to extend for the
application in high-precision positioning control fields.
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(a) (b)

Figure 13. Tracking results for the complex harmonic signal: (a) comparison between the desired and actual outputs and
(b) tracking error.

Table 2. Comparison of performance between controller in
Xu et al. (2018) and proposed DCC method.

Input type
(frequency)

Proposed DCC
method
(AME/RMSE, m m)

Existing controller
(AME/RMSE, m m)

f = 1 Hz 0.0273/0.0464 0.0549/0.0695
f = 10 Hz 0.0891/0.1138 0.1190/0.1327
f = 50 Hz 0.1489/0.2518 ———/———
f = 1*5 Hz 0.0370/0.0478 0.1087/0.1263
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