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A B S T R A C T   

A vehicle detection algorithm is of great significance for automatic driving technology. Current vehicle detection 
algorithms suffer from the complex structure, high configuration of hardware requirements, and the difficulty to 
apply to mobile terminal equipment. In order to solve these issues, this paper proposes an improved YOLOv5 
algorithm, named YOLOv5n-L, for lightweight. First, a depthwise separable convolution and a C3Ghost module 
are used to replace several C3 modules to reduce the model parameters and improve the detection speed. Then a 
Squeeze-and-Excitation attention mechanism is integrated into backbone network to improve the accuracy of the 
algorithm and suppress the environmental interference. Finally, a bidirectional feature pyramid network is used 
for multi-scale feature fusion to enrich feature information and improve the feature extraction ability of the 
proposed algorithm. The experimental results demonstrate that compared with the original algorithm, the model 
weight is reduced by 40 % to only 2.3 M. The mean average precision (mAP@0.5) is increased by 1.7 %. The 
detection speed reaches 80 FPS, which could accurately detect vehicle targets in real-time.   

1. Introduction 

Vehicles have become an indispensable part of our life. While vehi-
cles bring convenience to our life, they also cause traffic congestion, 
traffic accidents and other problems. Autonomous driving technology 
can solve the above problems well, so it has been paid more and more 
attention by researchers. The most important part of autonomous 
driving technology (Sonata et al., 2021; Tao et al., 2021; Woźniak et al., 
2022) is the vehicle detection algorithm. Vehicle detection algorithm 
combined with millimeter wave radar technology or visual ranging al-
gorithm can accurately identify and range vehicle targets and prevent 
the occurrence of traffic accidents. Therefore, vehicle detection algo-
rithm has great market potential. 

Machine learning is an important foundation of automatic driving 
technology and is vital to the field of computer vision (Zinchenko et al., 
2020), which has been widely used in different tasks (Kondratenko et al., 
2022; Sova et al., 2020). Object detection algorithm based on deep 
learning is an important branch of machine learning. In recent years, the 
development of object detection algorithm based on deep learning is 

particularly rapid, and it has been applied to various fields of our life 
(Mathew and Mahesh, 2022; Ke et al., 2022). At present, there are 
mainly-two kinds of object detection algorithms based on deep learning 
(LeCun et al., 2015). One is a two-stage detection algorithm based on 
region proposals, such as Faster R-CNN (Ren et al., 2015; Sun et al., 
2018). First, the bounding box is generated, and then the bounding box 
needs to be classified and regressed. Another is one-stage detection al-
gorithms, such as YOLO (Redmon et al., 2016) and SSD, which can 
directly predict the classes and positions of different objects by treating 
detection task as a regression problem (Benjdira et al., 2019; Maity et al., 
2021). The two-stage detection algorithm has high accuracy, but its 
detection speed is slow, which cannot meet the requirements of real- 
time detection. The detection accuracy of the one-stage detection algo-
rithm is not as high as that of the two-stage detection algorithm, but its 
detection speed is fast. This paper improves the one-stage detection al-
gorithm YOLO, so that it can be applied to mobile terminals and achieve 
appropriate accuracy. At present, different versions of the improved 
YOLO algorithm have been widely used in vehicle detection. Some au-
thors (Miao et al. 2020; Taheri Tajar et al., 2021) directly use the 
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original YOLO algorithm for vehicle target detection. Although the 
vehicle target can be detected accurately, when it is applied to the 
mobile terminal (Huang et al., 2018; Rani, 2021), it will impose a huge 
burden on the mobile terminal hardware, and the detection frame rate 
during operation cannot achieve real-time detection. However, YOLO 
tiny’s weight file is relatively small, and it is suitable for mobile devices 
with low computing power, but its detection accuracy is low, which is 
not enough to detect vehicles well, so it is not suitable for vehicle target 
detection. In addition, some algorithms (Huang et al., 2021; Li et al., 
2020) use lightweight networks such as MobileNet or EfficientNet to 
replace the whole backbone of YOLO. This method can greatly reduce 
the weight of the algorithm, and the real-time frame rate also meets the 
requirements, but compared with the original algorithm, the accuracy is 
very low. In terms of improving algorithm accuracy and real-time target 
detection, (Kondratenko et al., 2020) analyzed the advantages and dis-
advantages of neural network architectures (ResNet, U-Net, SegNet, 
YOLOv3). Different artificial neural network algorithms and architec-
tures are compared to obtain the highest recognition accuracy. (Yang 
et al., 2022) proposed a novel deep convolutional network structure TS- 
YOLO with three spatial pyramid pooling (SPP) modules in YOLOv4, 
demonstrating the excellent performance of their model in multi-scale 
object detection. (Ahmadi et al., 2021) proposed an improved algo-
rithm based on yolov3. This algorithm can successfully count several 
objects in a single image with reduced calculation time and a very light 
process. (Wieczorek et al., 2021) propose a model of face detection in 
risk situations, the designed model works with maximum simplicity to 
support mobile devices. 

In order to meet the requirements of real-time detection and detec-
tion accuracy in complex environments, we proposed a YOLOv5n-L al-
gorithm. The proposed algorithm uses efficient and simplified network 
structure to replace inefficient and complex network structure. Our al-
gorithm can highlight the feature information of vehicles by improving 
the feature extraction network and add attention mechanism to obtain 
the details of vehicles that need to be concerned. The main goal of the 
proposed algorithm is to ensure the real-time detection frame rate of the 
algorithm, simplify the algorithm structure while improving the detec-
tion accuracy of the algorithm, achieve accurate and real-time detection 
of vehicle targets. 

2. The principle of YOLO algorithm 

2.1. Introduction to YOLO algorithm 

Joseph Redmon et al. proposed a YOLO (You-Only-Look-Once) al-
gorithm, which uses single network to directly predict bounding boxes 
and classes from images. The detection speed of the YOLOv1 is relatively 
fast, but the YOLOv1 is not effective for objects that are close to each 
other and small targets. The YOLOv2 algorithm adopts Darknet19 as the 
feature extraction network, which can adapt to different sizes of images 
and improve the low detection accuracy for small targets. The YOLOv3 
(Redmon & Farhadi, 2018; Liu et al., 2021) constructs a new feature 
extraction network Darknet53, which introduces the idea of residual 
networks to enable the algorithm to extract deeper features. The 
YOLOv3 further improves the detection accuracy of small targets, while 
maintaining the advantage of the detection speed. The YOLOv4 (Boch-
kovskiy et al., 2004) takes CSPDarknet53 as the backbone network, it 
reduces the amount of network computing, the memory consumption 
and achieves the surpassing of the YOLOv3 algorithm in speed and ac-
curacy (Sozzi et al., 2022; Nepal and Eslamiat, 2022). 

There are five versions of the YOLOv5, namely YOLOv5n, YOLOv5s, 
YOLOv5m, YOLOv5l, and YOLOv5x. YOLOv5n network has the smallest 
depth and width in the YOLOv5 series, while others are deepened and 
widened on their basis. With the deepening and widening of the struc-
ture, the detection accuracy of the algorithm is constantly improved, but 
the training consumes more time and requires higher hardware config-
uration during the operation. When an object detection algorithm is 

applied to mobile terminal equipment, the detection time and the 
hardware performance need to be considered. 

Fig. 1 shows the network structure of the YOLOv5 algorithm. The 
YOLOv5 network consists of four parts: Input, Backbone, Neck, and 
Output. 

At the input, the YOLOv5 uses mosaic data enhancement, adaptive 
image scaling, and adaptive anchor calculation. The mosaic data 
enhancement method is to randomly scale, splice and stack four random 
images, enriching the background of the detection objects. The adaptive 
image scaling step is to adaptively add the smallest edge to images, 
which can improve the detection speed. The adaptive anchor calculation 
step is to output the bounding boxes according to the preset anchor 
boxes, then compare them with the actual anchor boxes, constantly 
iterate the parameters, and adaptively calculate the best anchor boxes 
value. 

The backbone network consists of a Conv module, a CBS module, a 
C3 module and a SPPF module. In YOLOv5 version 6.0, a new Conv 
module is used to replace the Focus for slicing operations. The CBS 
module consists of a standard convolution layer, a batch normalization 
layer, and an activation function Silu. The C3 module consists of several 
ResUnit modules and three standard convolutional layers. The C3 
module can strengthen the feature fusion ability of the convolutional 
neural network and improve the inference speed. The SPPF module is 
proposed on the basis of the SPP module. It is a spatial pyramid pooling 
layer (Huang et al., 2020), which can expand the receptive field, achieve 
local and global feature fusion, and enrich feature information. 

At the neck, the YOLOv5 combines a Feature Pyramid Network 
(FPN) and a Path Aggregation Network (PAN) (Liu et al., 2018) to 
enhance the capacity of the feature fusion. The Feature Pyramid 
Network (FPN) conveys features from the top of the network to the 
bottom, while the Path Aggregation Network (PAN) conveys features 
from the bottom of the network to the top. 

At the output, the YOLOv5 uses a Generalized Intersection over 
Union (GIOU) loss function (Rezatofighi et al., 2019) and a Non- 
Maximum Suppression (NMS). The loss function of the YOLOv5 con-
sists of a bounding box loss (Lbox), a classification loss (Lcls) and a con-
fidence loss (Lobj). The bounding box Loss (Lbox) adopts a GIoU Loss 
function. The classification loss (Lcls) and the confidence loss (Lobj) adopt 
a Binary Cross Entropy (BCE) loss function. The YOLOv5 uses a multi- 
scale detection way to predict classes and positions of objects with 
different sizes on three scales. 

2.2. Issues of YOLO algorithm 

When applying the YOLO algorithm to a vehicle detection task, it is 
necessary to take into account the limited hardware performance of 
mobile devices. The YOLOv5x algorithm cannot be simply chosen. It has 
the best detection effect, but a vehicle detection task requires high real- 
time performance. Consequently, this paper selects the smallest weight 
model of the YOLOv5n algorithm, but in the actual detection process, 
the YOLOv5n algorithm has several problems. Firstly, the YOLOv5n 
algorithm uses a large number of the standard convolutions and C3 
modules, which improves the accuracy of the algorithm, but reduces the 
running speed and increases the parameters of the model. Secondly, the 
scene will be changed rapidly in the city, and enough detection accuracy 
is required. However, the YOLOv5n algorithm is not ideal for detection 
processing under complex conditions, resulting in issues with the wrong 
detection and missing detection. Finally, the feature extraction ability of 
the algorithm is insufficient, and the detection effect of the algorithm is 
not good in darkness, occlusion, and other conditions. 

3. Algorithm improvement 

3.1. Depthwise separate convolution 

A standard convolution calculation is that all feature channels 
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convolve the corresponding convolution kernel, and then add all the 
results and output features. So, the convolution process requires plenty 
of parameters and calculations. The essential idea of depthwise sepa-
rable convolution (Howard et al., 2017) is to decompose a complete 

convolution operation into two parts: a depthwise convolution and a 
pointwise convolution. The calculation principal of the depthwise 
convolution is that one feature channel convolves with one corre-
sponding convolution kernel, and then fuses the output of the depthwise 

Fig. 1. YOLOv5 network structure.  

Fig. 2. Depthwise separate convolution structure.  
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convolution with the pointwise convolution. This decomposition 
method can greatly reduce the calculated amount while maintaining an 
accuracy comparable to the standard convolution. 

As can be seen from Fig. 2, the calculated amount of a standard 
convolution is C⋅C⋅X⋅Y⋅D⋅D, the calculated amount of the depthwise 
separable convolution is C⋅C⋅X⋅D⋅D + X⋅Y⋅D⋅D. Therefore, it is concluded 
that the calculation amount of the depthwise separable convolution is 
compared with the calculation amount of the standard convolution: 

C⋅C⋅X⋅D⋅D + X⋅Y⋅D⋅D
C⋅C⋅X⋅Y⋅D⋅D

=
1
Y
+

1
C2 (1)  

where X represent the number of input channels, Y represent the number 
of output channels, the kernel size is C⋅C and the feature map is D⋅D. 

In the case of the same input and output, using a 3 × 3 depthwise 
separate convolution, the calculated amount is much less computation 
than the standard convolution. Therefore, the depthwise separable 
convolution can effectively reduce the calculation cost of the algorithm. 
Replacing the C3 module with the depthwise separable convolution can 
greatly reduce the model parameters and improve the detection speed of 
the algorithm. 

3.2. Build C3Ghost module 

The feature maps of many feature channels in the standard convo-
lution are very similar. That is to say, the features extracted from the 
standard convolution are repeated to a certain extent. So, there is no 
need to carry out complete convolution operations to obtain the 
required feature maps. The Ghost module (See Fig. 3) uses the standard 
convolution to obtain part of the feature maps and then generates more 
feature maps through a linear operation (Han et al., 2020). Finally, two 
sets of feature maps are spliced in the specified dimension to obtain 
more feature maps with fewer parameters and calculations. 

The operation of producing n feature maps in any convolution layer 
can be formulated as: 

Y = X⋅f + b (2)  

where X  ∈ Rc×h×w represents the input of convolution, c represents the 
number of input channels, h and w respectively represent the height and 
width of the input feature map, Y ∈ Rh’×w’×n is the output feature map 
with n channels, h’ and w’ are the height and width of the output feature 
map, f ∈ Rc×k×k×n is the convolution filter of this layer, and its kernel size 
is g × g, b is the bias term. In this convolution process, the calculation is: 

n⋅h′ ⋅w′ ⋅c⋅g⋅g (3) 

Let the size of the linear operation kernel be r × r, and each basic 
feature corresponds to s redundant features, s ≪ c. Suppose that m 
characteristic graphs are obtained by the original method (n = m⋅s), and 
there is an identity in the transformation process of Ghost Module, so the 

actual effective transformation quantity is: 

m⋅(s − 1) =
n
s
⋅(s − 1) (4) 

The calculation amount using the Ghost module is: 

n
S

⋅h′ ⋅w′ ⋅c⋅g⋅g+(s − 1)⋅
n
s
⋅h′ ⋅w′ ⋅r⋅r (5) 

The calculation amount of the standard convolution improved by 
Ghost module is: 

n⋅h′ ⋅w′ ⋅c⋅g⋅g
n
s
⋅h′ ⋅w′ ⋅c⋅g⋅g + (s − 1)⋅

n
s
⋅h′ ⋅w′ ⋅r⋅r

=
c⋅g⋅g

1
s
⋅c⋅g⋅g +

s − 1
s

⋅r⋅r
≈

s⋅c
s + c − 1

≈ s
(6) 

Therefore, the calculation amount of the Ghost module is about 1/s 
of the standard convolution. Combining the GhostBottleneck with the 
C3 module, a C3Ghost module is formed, which is shown in Fig. 4. Using 
the C3Ghost module to replace the C3 module in the network can reduce 
the model parameters and ensure the detection accuracy of the network 
while the realized network is lightweight. 

3.3. Squeeze-and-Excitation (SE) attention mechanism 

In a vehicle detection task, due to the complex scenes of urban roads, 
sometimes the number of vehicles will increase sharply, so it is necessary 
to improve the detection accuracy of the algorithm. The interference of 
environmental factors can be solved by adding an attention mechanism 
to improve the algorithm’s detection accuracy. 

Attention mechanism can make up for the problem of strong local 
and insufficient global of CNN (Convolutional neural network), so as to 
obtain the global context information and improve the accuracy of the 
algorithm. In order to obtain more important features in the channel 
dimension, we introduce the Squeeze-and-Excitation attention mecha-
nism. The Squeeze-and-Excitation attention mechanism represents the 
importance of each feature channel by learning a set of weight values, 
rearranging the feature channels according to the size of the weight 
value, paying more attention to the feature channels with more infor-
mation, and suppressing unimportant features channels (Hu et al., 
2018). The Squeeze-and-Excitation (SE) Block is divided into two parts: 
Squeeze and Excitation, which is shown in Fig. 5. The squeeze operation 
compresses the corresponding feature maps in one dimension through 
global pooling, converting the feature map of W × H × C into 1 × 1 × C. 
After getting global features, the relationship between each channel is 
extracted through an excitation operation and the weights of each 
channel are generated. The excitation operation adopts the gating 
mechanism in the sigmoid function. By introducing full connection 
(FC1) layer, the number of channels is changed by using parameter W1. 

Fig. 3. Ghost module structure.  
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After being activated by the ReLU function, the channel is restored to the 
original number of channels with the parameter W2 through the full 
connection (FC2) layer, and finally the weight of each channel is 
generated by the sigmoid function. Finally, the generated weight is 
applied to the corresponding feature channel through a scale operation 
to obtain the final output. 

A mobile inverted bottleneck convolution shown in Fig. 6 includes a 
pointwise convolution, a depthwise convolution and a Squeeze-and- 
Excitation Block. In the first place, the input is convoluted by the 
pointwise convolution, and changing the output channel dimension 
according to the expansion ratio, then using the depthwise convolution. 
After that, the Squeeze-and-Excitation Block for squeeze and excitation 
operation is introduced, and then the original channel dimension with 
the pointwise convolution is restored. Finally, it is added with the input 
to form a residual jump connection structure and get the output feature 
maps. The mobile inverted bottleneck convolution uses the pointwise 
convolution and the depthwise convolution to extract features, which 
reduce the number of parameters. Meanwhile, the introduction of the 
Squeeze-and-Excitation attention mechanism can improve the algo-
rithm’s detection accuracy. 

3.4. Bidirectional feature pyramid network (BiFPN) 

The YOLOv5 adopts the combination of a Feature Pyramid Network 
(FPN) and a Path Aggregation Network (PAN) for the feature extraction. 
However, this method is transformed from all the feature maps into the 

same resolution, unable to take full advantage of the features of different 
resolutions because the contribution of input features to output features 
is unequal at different resolutions. 

The main idea of a bidirectional feature pyramid network is efficient 
bidirectional cross-scale connections and weighted feature fusion (Tan 
et al., 2020). The bidirectional feature pyramid network has three major 
improvements: deleting nodes with only one input edge; adding an 
additional edge between the original input nodes and output nodes at 
the same level; each bidirectional path is regarded as one feature 
network layer and repeated several times. 

In Fig. 7, the orange nodes are located in the middle of the first and 
last layer, which have only one input edge with no feature fusion, and 
deleting them has little impact on fusing different feature information, 
but simplifies the bidirectional network. Then, a jump connection be-
tween the yellow node and the purple node in the second layer is added 
to fuse more features without increasing too much cost. Finally, con-
nections between the yellow node in the first layer, the orange node in 
the second layer and the purple node in the last layer are added, which 
can obtain higher-level feature fusion (Fig. 8). 

The bidirectional feature (Fig. 9) pyramid network structure can 
aggregate features of different resolutions. Since deeper networks can 
extract more complex features, they can be used to optimize feature 
fusion of different scales, which can enrich feature information and 
improve the feature extraction ability of the algorithm. 

Fig. 4. C3Ghost structure.  

Fig. 5. Squeeze-and-Excitation Block structure.  

Fig. 6. Mobile inverted bottleneck convolution.  
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4. Results 

4.1. Data set 

At present, the largest and most diverse driving data set is the 
BDD100K data set, which contains images from different times like day 
and night; different scenes such as expressways, urban roads, and 
parking lots; different weather such as sunny, snowy and rainy. The 
BDD100K data set is widely used in automatic driving research. There 
are 70,000 photos in the BDD100K data set, in which 3000 photos are 
randomly selected as data set (Yu et al., 2018). We selected 2400 photos 
for training, 300 photos for testing and 300 photos for verification. The 
ratio between training set, testing set, verification set are 8:1:1. 

4.2. Experimental equipment and evaluating indicator 

This experiment uses the Ubuntu 18.04 operating system; CPU is 
Intel Core i7-8700, 16G memory; GPU is Nvidia GeForce GTX 1070 Ti, 
8G display memories; Deep learning framework is Pytorch 1.9.0, CUDA 
10.2, and CUDNN 7.5.0. 

During testing the accuracy of the algorithm, this paper uses the 
mean average precision (mAP@0.5) and FPS (frames per second) as the 
main evaluation indicators. 

The formula for calculating the mean accuracy of n categories is as 
follows: 

Fig. 7. Bidirectional feature pyramid network structure.  

Fig. 8. Partial images in BDD100k dataset.  
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mAP =
1
n
∑n

i=1

∫ 1

0
P(R)dR (7) 

In the above formula, P and R represent accuracy rate and recall rate 
respectively: 

P =
TP

TP + FP

R =
TP

TP + FN

(8)  

where the TP represents the number of correct targets in the detection 
results, the FP represents the number of wrong targets in the detection 
results, the FN represents the number of missing targets in the correct 
targets. 

The FPS refers to the number of detected frames per second, and its 
size is not only related to the weight of the algorithm, but also to the 
hardware configuration of the experimental equipment. 

4.3. Experimental comparison 

In order to verify the accuracy of the improved algorithm in this 
paper, experiments need to be carried out by building several models 
named YOLOv5n-MB, YOLOv5n-DW, YOLOv5n-Gh, YOLOv5n-Bi, and 
YOLOv5n-L. Among them, the YOLOv5n-MB is to replace part of stan-
dard convolutions with the mobile inverted bottleneck convolutions 
(MBConv) in the backbone and head network of YOLOv5n. The 
YOLOv5n-DW is achieved by changing some C3 modules into the 
depthwise separable convolutions (DWConv) in the backbone network 
of YOLOv5n. The YOLOv5n-Ghost replaces part of the C3 modules with 
the C3Ghost modules in the head of YOLOv5n. The YOLOv5n-Bi is to 
improve the combination of the Feature Pyramid Network (FPN) and the 
Path Aggregation Network (PAN) structure of YOLOv5n to the bidirec-
tional feature pyramid network (BiFPN) structure. The YOLOv5n-L is the 
algorithm proposed in this paper. 

As shown in Table 1 that the improved algorithm uses more efficient 
network structures to improve the network structures of YOLOv5n, and 
the accuracy has been promoted, and the weight value of the model is 
reduced. It is also proved that the depthwise separable convolution and 
the C3Ghost module do not reduce the accuracy of the algorithm, but 

reduce the parameters of the model. The bidirectional feature pyramid 
network structure does not increase the weight value of the algorithm. 
The mobile inverted bottleneck convolution not only effectively im-
proves the detection accuracy but also reduces the model parameters. 
The combination of all the above improvements with the YOLOv5n al-
gorithm can minimize the model parameters and greatly improve the 
accuracy of the algorithm. Compare YOLOv5n algorithm with 
YOLOv5n-L algorithm in TensorBoard, the result is in Fig. 10. It is 
concluded that, compared with YOLOv5n, the mean average precision of 
the YOLOv5n-L is significantly improved. 

In order to verify the detection accuracy of our algorithm. We 
compared our algorithm with SSD and Faster-RCNN under the same data 
set. SSD use VGG16 as the backbone network, Faster-RCNN use 
ResNet50 as the backbone network. It is known from Table 2that the 
weight of the YOLOv5n-L model is 1.2 % of SSD, and its accuracy is 4 % 
higher than SDD. The accuracy of Faster-RCNN is 1.2 % higher than 
YOLOv5n-L, but its weight is more than 140 times larger than YOLOv5n- 
L. Therefore, by comparing with the one-stage detection algorithm SSD 
and two-stage detection algorithm Faster-RCNN, it can be concluded 
that our algorithm can accurately detect vehicle targets. 

We select the same data set and compare our algorithm with the 
homogeneous algorithms, YOLOv3-tiny, YOLOv4-tiny, and YOLOv5n. 
The YOLOv3-tiny and YOLOv4-tiny are based on a Darknet framework. 
The YOLOv5n and our algorithm are based on a Pytorch framework. The 
experimental results are shown in Table 3. It is known from the table 
that the size of the YOLOv5n-L model is 6.6 % of YOLOv3-tiny, 9.8 % of 
YOLOv4-tiny, and 60 % of YOLOv5n. The mean average precision of the 
YOLOv5n-L is better than YOLOv3-tiny and YOLOv4-tiny is increased by 
29.7 % and 22.5 %, respectively. It also gains 1.7 % higher than 
YOLOv5n. The detection speed of the YOLOv5n-L reaches 80 FPS, which 
can meet the requirements of real-time detection. 

4.4. Comparison of detection results 

We randomly select several images and use the YOLOv3-tiny, 
YOLOv4-tiny, YOLOv5n and YOLOv5n-L algorithms to perform the 
vehicle detection experiments. The results are presented in Fig. 10. 

As shown in Fig. 10, the YOLOv3-tiny and YOLOv4-tiny have poor 
detection results, with problems of missing detection and low detection 

Fig. 9. Comparison of the detection accuracy between the YOLOv5n and YOLOv5n-L, where the YOLOv5n is the orange curve and the YOLOv5n-L is the blue curve.  

Table 1 
Comparison of detection effects of six models.  

Algorithm MBConv DWConv Ghost BiFPN mAP@0.5 Weight(M) FLOPs(G) 

YOLOv5n × × × × 0.661  3.8  4.5 
YOLOv5n-MB √ × × × 0.670  3.2  4.4 
YOLOv5n-DW × √ × × 0.664  3.4  4.3 
YOLOv5n-Gh × × √ × 0.663  3.5  4.3 
YOLOv5n-Bi × × × √  0.669  3.8  4.5 
YOLOv5n-L √ √ √ √  0.678  2.3  4.0  
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accuracy, and due to the lack of detection ability and feature extraction 
ability in complex backgrounds, the YOLOv5n algorithm suffers from 
the wrong detection and missing detection. From the first image, there is 
only one car on the left, but the YOLOv5n algorithm detects two cars, 
which is the wrong detection. There are three cars on the left side of the 
second image and part of a van is blocked by a black car in the fourth 
image, which is not detected by the YOLOv5n algorithm. These are 
missing detections. However, the algorithm in this paper can improve 
the detection accuracy of the algorithm by incorporating the Squeeze- 
and-Excitation attention mechanism. The bidirectional feature pyra-
mid network is used for multi-scale feature fusion to improve the feature 
extraction ability of the algorithm. Therefore, the proposed algorithm 
can detect vehicles more accurately, and the detection effect is better 
than the original algorithm under the conditions of distance, occlusion, 
or darkness. 

5. Conclusion 

Aiming at the complex structure of the current vehicle detection 
algorithm, the high configuration required by the hardware, and the 
difficulty of applying to mobile devices, an improved YOLOv5n-L 

algorithm is proposed. 
The experimental results demonstrate that the improved algorithm 

increases the mean average precision by 1.7 % on the BDD100K data set 
compared with the YOLOv5n algorithm. Compared with SSD，the 
mAP@0.5 is increased by 4 %. Compared with Faster-RCNN, the 
mAP@0.5 is decreased 1.2 %. Compared with homogeneous algorithms 
YOLOv3-tiny and YOLOv4-tiny, the mAP@0.5 is increased by 29.7 % 
and 22.5 %, respectively. Under different scenes, weather, and other 
conditions, the accuracy of the improved algorithm has been promoted. 
The main contribution of our algorithm is that, by improving the 
YOLOv5 algorithm with efficient and simplified network structures, our 
method enhances the detection ability and reduces the model parame-
ters. The weight value of our model is only 2.3 M, and the detection 
speed reaches 80 FPS, which is conducive to real-time vehicle detection 
at mobile terminal equipment. However, although our algorithm can 
achieve real-time detection, the accuracy has room for improvement. 
The potential limitation of our algorithm is that it needs to be applied to 
mobile terminal equipment with limited computing power. If mobile 
devices with higher computing power are used, higher precision algo-
rithms are needed to match. In the future work, we will continue to 
study how to improve the accuracy of the algorithm in vehicle detection. 
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