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ABSTRACT
The rapid development of infrared technology makes it widely 
applicable in such fields as military, medical, testing and commu-
nications.This paper proposes an algorithm based on local contrast 
and gradient (LCG). Specifically, the algorithm uses the difference of 
gaussian and threshold segmentation to preprocess to obtain the 
position of possible target points. Then, local contrast processing is 
conducted for the possible target points. Finally, the global is 
processed using an improved directional gradient. According to 
the experimental results, the proposed algorithm outperforms the 
existing algorithms in terms of detection probability and false 
detection probability.
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1. Introduction

With the constant advancement of infrared imaging technology, infrared imaging sys-
tems have been extensively adopted in both military and civilian fields, such as precision 
guidance, target detection, video surveillance and tracking. However, it is quite difficult to 
detect the infrared dim and small targets due to low ratios, fewer pixels, and the lack of 
texture features.

According to the different characteristics of small targets used by the algorithm, the 
existing detection algorithms can be divided into spatial filtering methods and frequency 
domain filtering methods based on filtering methods. As for the former, it includes spatial 
high-pass filtering (Yang et al. 2004), median filtering (Deshpande et al. 1999) and 
morphological filtering (Bai and Zhou 2010). Concerning the latter, it includes wavelet 
transform (Deng et al. 2016) and phase spectrum (Guo and Zhang 2009). The above 
methods are applicable to make simple predictions of the image background. After the 
high-frequency components are smoothed by using the filtering method, the detection of 
dim and small target is performed through the differences between the infrared image 
and the smoothed image. Featuring a fast running speed and simple operation, the above 
method is applicable for small target detection under simple backgrounds. For those 
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images in complex scenes, small targets are often blurred and frequency characteristics 
are not obvious. Consequently, the finally-obtained differential image contains more 
background clutter, which increases the likelihood of false detection. Ultimately, there is 
a high false alarm rate, which poses challenge to ensuring the validity of detection in 
complex scenes.

Based on the human visual attention mechanism, it mainly refers to the processing 
mechanism of the field of view information that is simulated by the human eyes and scans 
the image to find the region of interest (ROI) (Wang et al. 2012). In recent years, many 
algorithms have been proposed based on the human eye attention mechanism, mainly 
including Local Contrast Measure (LCM) (Chen et al. 2014), Relative Local Contrast 
Measure (RLCM) (Han et al. 2018), Multiscale Patch-Based Contrast Measure (MPCM) 
(Wei et al. 2016) and Weighted Strengthened Local Contrast Measure (WSLCM) (Han 
et al. 2020), etc. These methods can simulate the attention mechanism and contrast 
mechanism of the human visual system, quickly locate and extract the region of interest, 
and suppress the background while increasing the saliency of the target. Still, the algo-
rithm is not robust and has a high false alarm rate.

Based on the method of low-rank sparse matrix recovery, sparse representation was 
mainly used in classification tasks, and target detection can be realised by using 
frequency feature differences. At present, the algorithms based on low-rank sparse 
recovery mainly include Infrared Patch-Image Model (IPI) (Gao et al. 2013), Weighted 
Infrared Patch Image (WIPI) (Dai et al. 2016), Reweighted Infrared Patch-Tensor Model 
(RIPI) (Dai and Wu 2017), Non-Convex Rank Approximation Minimisation Joint l2,1 Norm 
(NARM) (Zhang et al. 2018), Non-Convex Optimisation with Lp-Norm Constraint (NLOC) 
(Zhang et al. 2019) and Self-Regularised Weighted Sparse Model (SRWS) (Tz et al. 2021), 
etc. These algorithms comprehensively consider the characteristics of the target and 
the background, can adapt to various scenes, and greatly improve the detection 
probability of infrared dim and small targets. However, the algorithm based on low- 
rank sparse recovery is prone to false detection of strong edges and high computa-
tional complexity.

In recent years, deep learning methods have been widely applied in various fields. 
Among them, convolutional neural network has improved significantly in terms of target 
detection, tracking and segmentation. In respect of infrared dim and small target detec-
tion, for example, (Li et al. 2022) proposed to achieve progressive feature interaction and 
adaptive feature enhancement through a tri-directional dense nested interactive module 
(DNIM) with a cascaded channel and spatial attention module (CSAM). (Chen et al. 2022b) 
proposed a novel end-to-end framework intended for infrared small target detection and 
segmentation. (Chen et al. 2022a) developed a hierarchical overlapped small patch 
transformer (HOSPT) to encode multi-scale features from the single-frame image, rather 
than relying on the CNN. However, due to the lack of obvious texture and shape 
information in infrared dim and small target, it is difficult to learn practical feature 
information for the algorithm based on depth learning. In addition, it is limited in the 
training model due to the lack of training datasets.

In summary, although many infrared small target detection methods have been 
proposed, these methods still have problems such as poor robustness, insufficient stabi-
lity, high algorithm complexity, long computing time and insufficient real-time perfor-
mance. Therefore, the precise detection of dim and small targets in infrared images is still 
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a problem to be solved urgently. This paper has thoroughly studied the extreme value, 
contrast, gradient and other characteristics of dim and small targets in infrared images 
and proposed a detection model of dim and small targets in infrared images based on 
local contrast and gradient, which successfully improved the saliency of the target from 
multiple aspects. The validity of the model is verified on different sets of actual infrared 
image data. This model has better background suppression and target detection perfor-
mance than existing methods.

The remainder of this paper is organised as follows. Section 2 describes the relevant 
principles, including the Gaussian difference calculation, extreme point detection, local 
contrast calculation and gradient calculation of dim and small targets in infrared images. 
Section 3 describes the flow chart of the detection algorithm and the effect diagram of 
each step is given. Section 4 analyzes the overall performance of the method and the 
comparison of results with other weak and small infrared target detection methods. 
Conclusions are given in section 5.

2. Related principles

2.1 Multi-scale spatial structure

The multi-scale space construction is generated by convolving the input image with 
Gaussian kernels of different scales. The multi-scale space adopts a multi-layer 
Gaussian pyramid image structure (Lowe 2004). The scale-space of the image is 
expressed as a function Mðx; y; sÞ, which is filtered by Gaussian kernels of different 
variances: 

Mðx; y; sÞ ¼ Gðx; y; sÞ�Iðx; yÞ (1) 

Where Gðx; y; sÞ is the Gaussian function Gðx; y; sÞ ¼ 1
2πs2 e�

x2þy2

2s2 with different variances, 
Iðx; yÞ represents the infrared dim and small image, s represents the variance. The 
smoothed images of different scale Gaussian filters corresponding to the original image 
are obtained by selecting different variances.

2.1.1 Difference of Gaussian
To detect interest points in multi-scale space, this paper uses the difference of gaussian 
(DoG) to subtract the Gaussian filtering results of two images with different parameters k 
to obtain a DoG image. The specific formula is as follows: 

Dðx; y; sÞ ¼ ðGðx; y; ksÞ � Gðx; y; sÞÞ�Iðx; yÞ
¼ Fðx; y; ksÞ � Fðx; y; sÞ

(2) 

2.1.2 Eliminate edge response
The difference of gaussian has a solid response to the edge, and the edge of the image 
after the difference of gaussian may interfere with the extreme value detection. This paper 
uses adaptive threshold segmentation to remove unstable edge response points, enhan-
cing matching stability and improving anti-noise ability.

Adaptive threshold segmentation obtains a binary image that calculates the threshold 
T on the input image and distinguishes the target from the background. For the dim and 
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small targets in infrared image Iðx; yÞ, the image size is L × H. Assume that the threshold 
value is T, and the number of pixels in the image whose pixel greyscale is less than the 
threshold value T is denoted as N0, whose greyscale value is set to 0. The number of pixels 
in the image whose greyscale is greater than the threshold T is denoted as N1, and its 
greyscale value is set to 255. Thus,N0 þ N1 ¼ L� H. The ratio of the number of pixels 
belonging to the target to the entire image is denoted as ω0 ¼ N0=L� H, and its average 
grey level is denoted as μ0. The ratio of background pixels in the entire image is denoted 
as ω1 ¼ N1=L� H, and its average grey level is denoted as μ1. The total average grey level 
of the image is denoted as μ ¼ ω0 � μ0 þ ω1 � μ1, and the variance between classes is 
denoted as g. Thus, 

ω0 þ ω1 ¼ 1 (3) 

μ ¼ ω0 � μ0 þ ω1 � μ1 (4) 

Establish the objective function gðTÞ: 

gðTÞ ¼ ω0ðu0 � μÞ2 þ ω1ðμ1 � μÞ2 (5) 

The threshold value that maximises the variance c between classes is obtained by 
traversing 0 to 255, which is the required value.

2.2 Detection and location of extreme point

To find the extreme point of scale-spaces, the extreme value of scale space is detected for 
each layer of the DoG pyramid. Take each extreme point as a candidate point, determine 
the position and scale of the extreme point through a fit function at each candidate 
position, and remove low-contrast candidate points simultaneously. The specific formula 
is as follows:

Taylor expansion of spatial scale function: 

DðXÞ ¼ Dþ
@DT

@X
x þ

1
2

XT @
2D
@X2 X (6) 

Where X ¼ ðx; y; sÞT , By deriving the above formula and making the equation equal to 
zero, the offset of the extreme point can be obtained as follows: 

X ¼ �
@2D� 1

@x2

@D
@x

(7) 

Formula (7) removes low-contrast points. Then take the first two items of formula (6) 
to get: 

DðXÞ ¼ Dþ
1
2
@DT

@X
X (8) 

Where bX ¼ ðx; y; sÞT represents the offset relative to the interpolation centre. Experiments 
show that the precise position of the extreme point can be obtained when D � 0:03.
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2.3 Local contrast

Due to the complex background of small infrared targets, background noise and edge 
response may interfere with extreme value detection. Therefore, this paper uses the 
difference between the area where the small target is located and the neighbouring 
area, and proposes an effective local comparison measure. It can suppress background 
clutter while enhancing the target and significantly improve the signal-to-noise ratio of 
the image. Use a 3� 3 image patch slider to slide the input image (Table 1), where 0 
represents the area where the target may appear, and calculate the grey average value in 
0–8 cells: 

Mi ¼
1

Na

XNa

j¼i

Ci
j (9) 

Where Na represents the number of pixels in the i th cell, and Ci
j represents the grey value 

of the j th pixel in the i th cell. The ratio of the centre cell to the surrounding cells is 
hn

i ¼
Ln
Mi

, and Ln represents the maximum grey value of the centre cell of the n th image 
patch.

The grey value of a small target is generally the minimum value of its field, so the local 
contrast is defined as: 

Hn ¼ min
i

Ln � hn
i ¼ min

i
Ln �

Ln

mi
¼ min

i

L2
n

mi
(10) 

The larger Hn is, the more likely it is to be the target.

2.4 Direction gradient

An Infrared image can be divided into three parts: background, target and noises. There 
are two types of backgrounds in the direction gradient: the gradient direction distribution 
of the flat background is irregular, and the gradient direction of the background with the 
strong edge is usually consistent. The target is a salient area with local intensity char-
acteristics, and the target pixels have gradient characteristics in each direction. Noises also 
have multi-directional gradient characteristics but have been suppressed after difference 
of gaussian. The gradient direction of the background with strong edges is usually the 
same. The three-part gradient directions are shown in Figure 1(b–d). Figure 1(b) is the red 
box in Figure 1(a,c) is the yellow box in Figure 1(a,d) is the blue box in Figure 1(a). 
Therefore, gradient information is an important feature of infrared dim and small targets 
(Hong et al. 2017).

This paper uses an image slider of size n� n to traverse the image. A coordinate system 
is established with the centre of the image block as the origin, and four-square areas 

Table 1. 3� 3 image patch 
slider.

1 2 3
4 0 5
6 7 8
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R1,R2,R3 and R4 are formed respectively. The range of each area block is 90°. The i th square 
area can be expressed as Ri: 

Ri ¼ ðγ; θÞj
πði � 1Þ

2
< θ �

π
2

� �

(11) 

Where ðγ; θÞ is the coordinate of the image block. The gradient direction does not strictly 
point to the central area because of the complexity of the infrared weak and small target 
images. The constraints on the gradient vector of infrared weak and small targets in this 
paper are: 

ψRi
¼ gViðα; β; γ; θiÞj

πði � 1Þ
2

þ π<
πi
2
þ π; ðγ; θiÞ 2 Ri

� �

(12) 

Where ψRi 
represents the set of gradients roughly pointing to the centre in the Ri area; 

gViðα; β; γ; θiÞ is the gradient at point ðγ; θÞ in the Ri region, where α and β represent the 
magnitude and direction of the gradient gVi 

respectively. In the i th region, calculate the 
mean square of the magnitude of the gradient gVi 

that roughly points to the centre: 

Figure 1. Gradient direction information. (a) Infrared image, (b) Target area image gradient, (c) 
Uniform background area gradient, (d) Strong background edge area gradient.
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Gi ¼
1
Ni

XNi

j¼1

jjg jRijj
2 (13) 

Where Ni is the number of gVi in the set ψRi
. After obtaining all Gi, the maximum value 

Gmax ¼ max
1�i�4

Gi and minimum value Gmin ¼ min
1�i�4

Gi can be obtained. Therefore, all Gi in an 

image block can be accumulated as: 

G ¼
P4

i¼1
Gi;

Gmin
Gmax

> k

0; Gmin
Gmax
� k

8
><

>:
(14) 

Where G represents the local gradient distribution value in an image block; The threshold 
k obtained through experiments can determine whether the local gradient distribution is 
uniform. Therefore, the ratio of Gmin to Gmax can well suppress background clutter with 
local directivity.

3. Proposed method

Aiming at the characteristics of infrared dim and small targets, this paper proposes an 
infrared dim and small target detection model based on local contrast and gradient. The 
LCG model makes up for the inability to detect or high false alarm rate in complex scenes 
of small and weak targets. At the same time, the LCG is robust in various backgrounds and 
achieves better detection results. Figure 2 shows the whole flow chart of the method 
proposed in this paper. The specific steps are as follows: (1) Construct Gaussian difference 
pyramid; (2) Eliminate edge response; (3) Extremum point detection; (4) Local contrast 
calculation; (5) Gradient direction calculation.

3.1 Constructing difference of gaussian pyramid and eliminating edge response

The first step of constructing the Difference of Gaussian pyramid to extract the points of 
interest of the image is to filter the image using Gaussian filters with different variances s. 
The second step is to establish four octaves images of different scales, each group 
contains five intervals of different Gaussian blur scale images (Figure 3). The first octave 
of scales is the size of the original image, and each subsequent octave is the result of the 
previous octave of subsampled. The ratio of the scale factor of the Gaussian blur between 
each layer in a group of images is b, and the Gaussian blur scale of the adjacent group is 
two times the relationship. Then the optimal threshold T is calculated through the 
adaptive threshold, which distinguishes the background of the infrared picture from 
possible targets. Figure 4(a) is a threshold segmentation image, Figure 4(b) is a three- 
dimensional image segmented by adaptive threshold. After threshold segmentation, the 
edge response is suppressed and the target is enhanced.

3.2 Extremum point detection

To find the extreme point of the scale space, the middle detection point needs to be 
compared with its 8 neighbouring points of the same scale and 9 × 2 points 
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corresponding to the upper and lower neighbouring scales. This ensures that extreme 
points are detected in both the scale space and the two-dimensional image space 
(Figure 5(a)). If a point is the maximum value in the 26 domains of this layer and the 
upper and lower layers of the DoG scale space, the point is considered to be a feature 
point of the image at that scale (Figure 5(b)).

3.3 Calculation of local contrast and gradient direction

From the definition, it can be seen that local contrast can enhance the object’s saliency 
and suppress the background. After the local contrast calculation process, there is still 
some interference background, which affects the detection probability of the target 
(Figure 6(a)). Therefore, the algorithm in this paper adds gradient calculation, which can 
accurately eliminate the interference background and improve the accuracy. The proces-
sing effect is shown in Figure 6(b):

Figure 2. LCG algorithm flowchart.

Figure 3. Difference of Gaussian pyramid.
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4. Experiments evaluation

In this section, we first introduce commonly used evaluation indicators and then intro-
duce the data set SIRST (Dai et al. 2020) used in this article. The data set contains 427 
pictures selected from hundreds of infrared image sequences of different scenes. The test 
results and experimental comparison are carried out under the environment of Intel Core 
i7-6700HQ CPU@2.60 GHz, and the simulation platform is MATLAB R2020b. Finally, it 
analyzes the running results of each module of the proposed model, gives the detection 
results of the model proposed in this paper and compares it with four other small target 
detection algorithms. The model proposed in this paper reaches the optimal value under 
various evaluation indicators.

Figure 4. Elimination of edge response.(a) Threshold segmentation image;(b).Three-dimensional 
image.

Figure 5. Extreme point detection. (a) Find extreme points; (b) Locate extreme points.
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4.1 Evaluation index

4.1.1 Signal-to-clutter ratio gain and background suppression factor
To quantitatively verify the effectiveness of the algorithm and further objectively evaluate 
the experimental results, this article uses two common evaluation indexes in target 
detection: Signal-to-Clutter Ratio Gain (SCRG) and Background Suppression Factor (BSF). 
Their calculation formulas are: 

SCRG ¼ 20� lg
mT=σBð Þout

mT=σBð Þin

� �

(15) 

BSF ¼ 20� lg
σin

σout

� �

(16) 

Where mT represents the mean value of the target area; σB represents the standard 
deviation of the background; σin represents the standard deviation of the input original 
image background; σout represents the standard deviation of the image background 
processed by the algorithm; mT=σBð Þout represents the parameters of the original input 
image; mT=σBð Þin represents the parameters of the image processed by the algorithm.

The SCRG value represents the gain effect of the image background before and after 
the algorithm is processed. The BSF value represents the suppression effect of the 
algorithm on the image background. For the same image, the higher the SCRG and BSF 
values obtained by the algorithm, the better the effect of enhancing the saliency of the 
target and suppressing background clutter. At the same time, the detection result of the 
algorithm is more accurate.

4.1.2 ROC curve
ROC (Receiver Operating Characteristic) curve is currently the most commonly used visual 
saliency model evaluation index. It is a two-dimensional curve that changes with the 

Figure 6. Local contrast and gradient direction calculation processing. (a) Local contrast calculation; 
(b) Gradient direction calculation.
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change of detector decision threshold. ROC curve is composed of detection probability Pd 

and false alarm rate Fa, which is defined as follows: 

Pd ¼
Number of real targets detected

Actual target number
(17) 

Fa ¼
Number of false targets detected
Total number of targets detected

(18) 

The number of detected targets is calculated by grey-scale clustering of the detection 
result image. When the detected target pixel overlaps the real target pixel or the distance 
between the centre pixels of the two is within five pixels, it means that the detected target 
is the real target. Otherwise, it is a false target.

4.2 Introduction to dataset

To intuitively evaluate the detection performance of the detection algorithm proposed in 
this paper for dim and small targets in infrared images, this section selects four real 
infrared images under different background conditions for experimental simulation and 
comparative analysis of the algorithm. The representative images of the four experimental 
atlases are shown in Figure 8. The small target in each image has been marked with a red 
box, and a three-dimensional image of each image is given.

The experimental atlas includes four kinds of infrared images with different back-
grounds: The image in Figure 7(a) is a cloud background, and the cloud structure in the 
image is complex. Figure 7(e) is the three-dimensional image of Figure 7(a). Figure 7(b) is 
a background image of the sea and sky. There is strong interference at the junction of sea 
and sky in the image. Figure 7(f) is the three-dimensional image of Figure 7(b). The image 
in Figure 7(c) is a background image of complex buildings and clouds. The edges of strong 
buildings in the image have strong interference. Figure 7(g) is the three-dimensional 

Figure 7. Infrared images and three-dimensional images of four different backgrounds (a) Cloud 
background image, (b) Sea-sky background image, (c) Building background image, (d) Ground back-
ground image, (e) 3D drawing of cloud layer background, (f) 3D drawing of the sea-sky background, 
(g) 3D drawing of the back of the building, (h) 3D drawing of the ground background.
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image of Figure 7(c). Figure 7(d) is a ground background image in which the ground 
background has strong interference. Figure 7(h) is the three-dimensional image of 
Figure 7(d).

4.3 Analysis of test results

We use four types of images of the dataset to verify the robustness and reliability of the 
detection algorithm proposed in this paper for detecting infrared targets in different 
backgrounds. The experimental results are shown in Figure 8. Figure 8 (column a) is the 
original image. Figure 8 (column b) is the image after extreme value detection. Figure 8 
(column c) is the image after local contrast processing. Figure 8 (column d) is the image 
after gradient processing image. Figure 8 (column e) is a three-dimensional view of the 
detection.

It can be known from the simulation results that all the targets in the image have been 
detected. (1) For the a-type complex cloud background image, because the cloud is 
bright, small targets and cloud edges may be detected as local extrema. It can be 
known that after the local contrast and gradient calculation, the smooth background is 
almost all filtered out and the edge of the cloud is well suppressed. Infrared small and 
weak targets are accurately detected. (2) For c- type sea and sky background image, the 
contrast between the sea and sky is high, and the edge can easily cause false alarms. The 
target detection result is accurate after background suppression and edge response 
elimination. (3) For the b-type building background image, the grey distribution of the 
building is uneven, and the edge of the building can easily cause false alarms. After the 

Figure 8. Detection results. (a) original image; (b) feature extraction diagram; (c) local contrast 
calculation diagram; (d) gradient calculation diagram; (e) 3D image of test results.
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gradient calculation, the edge can be suppressed, and the target detection probability is 
improved. (4) For the d-type ground background image, the ground background is 
complex and the greyscale distribution is uneven, which is easy to detect errors in the 
extreme value detection. After local contrast and gradient calculation, false targets are 
eliminated and the target detection probability is improved. Through simulation experi-
ments on infrared images with different backgrounds, the detection algorithm proposed 
in this paper can well suppress the background and accurately detect the target under 
various complex backgrounds.

4.4 Comparative analysis with other algorithms

4.4.1 Comprehensive evaluation of different algorithms
To further measure the robustness and reliability of the detection algorithm proposed in 
this paper for infrared dim and small target detection under different backgrounds, Tri- 
layer Template Local Difference Measure (TTLDM) (Jing and Weihua 2022), WSLCM, 
Nonconvex Approximate Tensor Fibred Rank (TFNN) (Kong et al. 2022) and SRWS algo-
rithms and the algorithm LCG in this paper are compared and analysed in the data set. The 
experimental simulation comparison results are shown in Figure 9. The red mark indicates 
the target and the green mark indicates the target of the detection error.

The algorithm comparison analysis is as follows:
(1) The TTLDM and WSLCM algorithms are based on grey-scale local contrast. Because 

the LCM algorithm relies too much on the difference of grey levels, when the background 
is too complex, they easily cause serious false alarms. TTLDM uses the difference of grey 
distribution between three-layer templates to detect targets. Although it is better than 
LCM, the false alarm rate is higher in complex scenes. WSLCM is an improved local 

Figure 9. Comparison results with other eight algorithms. (a) Original image, (b) Ours detection 
images, (c)TTLDM detection images, (d) WSLCM detection images, (e) TFNN detection images, (f) 
SRWS detection images.
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comparison method of LCM, and the performance is improved significantly after the 
algorithm is improved. Under different background conditions, the background suppres-
sion effect is significantly enhanced.

(3) The TFNN and SRWS algorithms are based on low-rank sparse matrix restora-
tion algorithms, and the detection of weak and small infrared targets often presents 
sparse features. They are suitable for images with simple backgrounds and small 
targets in isolation, but not suitable for images with complex backgrounds, which 
tend to cause high false alarm rates and complex calculations. TFNN usually leaves 
background residuals in the target images, and a high false alarm rate. SRWS is an 
improved Multi-Subspace algorithm based on IPI. It uses self-regularisation terms to 
mine potential information in the background and extract clutter from multiple 
subspaces. The accuracy of the target is improved, but false detection will occur 
for strong edges.

(4) The detection algorithm LCG proposed in this paper is an infrared small 
target detection algorithm based on local contrast and gradient. It can detect the 
target well under different background pieces. The detection result image has high 
contrast and the target shape is kept intact. LCG has the highest detection prob-
ability and the best background suppression effect compared with the other eight 
algorithms.

4.4.2 Comparison of different algorithms SCRG and BSF
This paper conducts SCRG and BSF analysis on the experimental data set to verify the 
effectiveness of the algorithm quantitatively, and further objectively evaluate the experi-
mental results. LCG is compared with the above four detection algorithms (Table 2).

It can be known from Table 2: (1) The SCRG value and BSF value of the three methods of 
TTLDM and TFNN are relatively low, and the effect of background suppression and 
enhancement of the target is poor. (2) After WSLCM is improved based on LCM, the 
SCRG and BSF values are significantly improved, and some reach Inf. (3) SRWS and the 
algorithm proposed in this paper have the highest SCRG and BSF values, reaching Inf. 
They are more effective in background suppression and target enhancement. However, 
the method based on low-rank sparse matrix restoration has insufficient processing 
results. The shape information of the detected small targets is lost, and there are too 
many false targets. Therefore, the small target detected by the model proposed in this 
paper contains the shape information of the small target and achieves excellent results 
under various indicators.

Table 2. Evaluation table of the detection results of the proposed method and other 4 detection 
algorithms.

Cloud background 
images

Sky-Sea background 
images

Building background 
images

Ground background 
images

Method SCRG BSF SCRG BSF SCRG BSF SCRG BSF

TTLDM 9.44 6.85 25.79 13.30 20.73 7.42 12.60 6.43
WSLCM 26.32 77.02 643.09 511.43 Inf Inf Inf Inf
TFNN 6.89 1.66 6.95 2.15 3.77 1.01 4.95 1.22
SRWS Inf Inf Inf Inf Inf Inf Inf Inf
Ours Inf Inf Inf Inf Inf Inf Inf Inf
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4.4.3 ROC curve analysis of different algorithms
This paper selects TTLDM, WSLCM, RLCM, NOLC and SRWS algorithms and the algorithm 
LCG of this paper to objectively measure the performance of the algorithm through the 
ROC curve. To measure the anti-noise ability of the algorithms, this paper adds Gaussian 
noise with a variance of 0.001 and 0.01 to the dim and small targets in infrared images. 
Figure 10 compares ROC curves of different algorithms under four types of data sets. The 
Area Under Curve (AUC) needs to be calculated for quantitative purposes. AUC can be 
used as a criterion for judging the pros and cons of an algorithm. The larger the AUC, the 
more accurate the algorithm detection. Table 3 shows the AUC value of the original 
images in Figure 10. Table 4 shows the AUC value of add 0.001 noise images in Figure 10. 
Table 5 shows the AUC value of add 0.01 noise images in Figure 10. 

Figure 10. ROC curves of different algorithms under four types of data sets. (a) Cloud background 
images, (b) Sky-Sea background images, (c) Building background images, (d) Ground-sky background 
images.

Table 3. The AUC value of the original images in Figure 10.
Cloud background 

images
Sky-Sea background 

images
Building background 

images
Ground background 

images
Method AUC AUC AUC AUC

Ours 0.9983 1.0000 1.0000 0.9752
TTLDM 0.9014 0.9434 0.8994 0.7521
WSLCM 0.9931 0.9805 0.9497 0.9483
SRWS 0.9498 0.9980 0.9726 0.9236
NOLC 
RLCM

0.9896 
0.9343

0.9746 
0.9883

0.9127 
0.9467

0.9298 
0.8998
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It can be known from Figure 10, Tables 3–5: (1) Compared with the other five 
algorithms, the algorithm in this paper obtains the highest detection probability in 
all cases, and the ROC curves in the four types of scenes are all located in the upper 
left corner. (2) The algorithm proposed in this paper achieves the maximum AUC 
value in the four types of scenarios. The closer the AUC is to 1.0, the higher the 
authenticity of the detection method. (3) The comparison by adding different noises 
shows that the effect of the six algorithms is not obvious when adding 0.001 noise, 
but when adding 0.01, TTLDM, SRWS, NOLC and RLCM show a significant decline and 
detect other noises. The algorithm in this paper and the WSLCM algorithm have 
better anti-noise ability.

5. Conclusion

Faced with the difficulty of detecting dim and small infrared targets in complex back-
grounds, this paper proposes a detection algorithm for dim and small infrared targets 
based on local contrast and gradient. We improved both local contrast and directional 
gradient methods and combined the two methods. After pre-processing, local contrast is 
applied to possible target points to enhance the contrast of the target, and finally 
directional gradient is applied to the global. Compared with the traditional local contrast 
method or directional gradient method, the detection probability of the LCG is greatly 
improved. According to the simulation experiment results and comparative analysis of 
dim and small targets in infrared images, it proves that the algorithm in this paper has 
good robustness, background suppression effect, and detection effect for complex 
scenes. In the quantitative evaluation, the algorithm in this paper is superior to the 
compared algorithms in terms of SCRG, BSF, ROC and anti-noise.

Table 4. The AUC value of the add 0.001 noise images in Figure 10.
Cloud background 

images
Sky-Sea background 

images
Building background 

images
Ground background 

images
Method AUC AUC AUC AUC

Ours 0.9983 1.0000 1.0000 0.9742
TTLDM 0.8547 0.9199 0.8942 0.7593
WSLCM 0.9896 0.9727 0.9423 0.9390
SRWS 0.9291 0.9902 0.9689 0.9236
NOLC 
RLCM

0.9723 
0.8979

0.9336 
0.9570

0.9024 
0.9327

0.9122 
0.8595

Table 5. The AUC value of the add 0.01 noise images in Figure 10.
Cloud background 

images
Sky-Sea background 

images
Building background 

images
Ground background 

images
Method AUC AUC AUC AUC

Ours 0.9637 1.0000 0.9956 0.9669
TTLDM 0.7785 0.8359 0.8539 0.6798
WSLCM 0.9256 0.9707 0.9371 0.9236
SRWS 0.9187 0.8477 0.8047 0.8667
NOLC 
RLCM

0.8651 
0.8120

0.9180 
0.8223

0.8817 
0.7300

0.8853 
0.7903
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