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Ship Detection Based on Compressive Sensing
Measurements of Optical Remote Sensing Scenes

Shuming Xiao , Ye Zhang, and Xuling Chang

Abstract—The compressive sensing (CS)-based optical remote
sensing (ORS) imaging system has been verified for the feasibility
through numerical simulation experiments. The CS-based ORS
imaging system can reduce the demand for sampling equipment,
reduce sampling data, save storage space, and reduce transmission
costs. However, it needs to reconstruct the original scene when
facing the task of ship detection. The scene reconstruction process
of CS is computationally expensive, high memory demanding, and
time-consuming. In response to this problem, this article proposes
an innovation pipeline to perform ship detection tasks, i.e., directly
performing ship detection on CS measurements obtained by the
imaging system, which avoids the process of scene reconstruction.
To achieve the ship detection of CS measurements in the pipeline,
we design a convolutional neural network-based algorithm, CS-
CenterNet, which jointly optimizes the scene compression sampling
phase and the measurements’ ship detection phase. CS-CenterNet
is divided into convolution measurement layer (CML), optimized
hourglass network (OHgN), and optimized three-branch head net-
work (OTBHN). First, CML without bias or activation function
simulates the block compression sampling process in CS-based
ORS imaging system, which performs convolutional coding on the
scene to obtain the measurements. Second, OHgN extracts high-
resolution feature information of measurements. Finally, OTBHN
performs heat-map prediction, center-point offset prediction, and
width–height prediction. We test the performance of CS-CenterNet
using the HRSC2016 and LEVIR datasets. The experimental re-
sults show that the algorithm can achieve high-accuracy ship de-
tection based on CS measurements of ORS scenes.

Index Terms—Compressive sensing (CS), convolutional neural
network (CNN), joint training optimization, ship detection based
on compressive sensing measurements.

I. INTRODUCTION

SHIP detection is the focus of research in the field of optical
remote sensing (ORS). It has a wide range of civilian and

military values, such as search and rescue, port management,
marine environment monitoring, territorial security, and military
reconnaissance [1], [2], [3]. With the significant improvement of
the imaging resolution of the ORS imaging system, the amount
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of scene data acquired also increases dramatically. Therefore,
to relieve the huge pressure of data storage and real-time trans-
mission, the traditional ORS imaging system does not directly
store and transmit the original scene information collected by
the detector but compresses the data before transmitting to
save time and space resources. However, the theoretical basis
for data acquisition in this method is the Nyquist sampling
theorem, which states that the underlying analog signal must
be uniformly sampled at a sampling rate not less than twice the
signal bandwidth to preserve signal information [4]. As a result,
redundant information can only be discarded in the compression
stage, which wastes the sampling resources acquired by the
front-end using high-cost detectors.

Compressive sensing (CS) technology states that if the signal
is sparse in a certain transform domain, the high-dimensional
signal can be projected to a low-dimensional space through a
measurement matrix irrelevant to the transform basis and can
be accurately recovered with a sampling rate much lower than
that required by the Nyquist sampling theorem [5]. Therefore,
CS technology breaks through the bottleneck of the Nyquist
sampling theorem and can collect scene data at a low sampling
rate (much lower than the Nyquist sampling rate). And it can
complete data compression at the same time as data collec-
tion. In addition, the CS reconstruction algorithm can ideally
reconstruct the original data according to the collected sampling
data under the premise that the original data is sparse [6],
which relieves enormous pressure on data storage and real-time
transmission.

The research works on imaging system [7], [8] have verified
the feasibility of CS-based ORS imaging system through nu-
merical simulation experiments. The imaging system simulta-
neously performs sampling and compression by hardware at the
sensing stage via CS technology. Therefore, it can reduce the
demand for sampling equipment, effectively reduce sampling
data, save storage space, and reduce transmission costs. When
CS-based ORS imaging system faces the task of ship detection,
the information we are interested in is the location attribute
of the ship. Fig. 1(a) shows the routine pipeline of CS-based
ORS imaging system to perform ship detection tasks. First, the
optical system compresses and samples the ORS scene to obtain
CS measurements. Then, the original scene is reconstructed
using an image reconstruction algorithm [9], [10]. Finally, the
image-based ship detection algorithm [11], [12], [13], [14] is
used on the reconstructed scene to get the ship detection result.
However, the process of reconstructing the measurements to the
original scene is computationally costly, memory demanding,
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Fig. 1. Illustration of the pipeline of CS-based ORS imaging system to perform ship detection tasks, where digital mirror device (DMD) denotes a measurement
matrix in the CS-based imaging system. (a) Routine pipeline method. (b) Our innovation pipeline method. (a) Routine pipeline of CS-based ORS imaging system
to perform ship detection tasks. (b) Our innovation pipeline of CS-based ORS imaging system to perform ship detection tasks.

and time-consuming. Therefore, avoiding the process of scene
CS reconstruction, i.e., directly performing ship detection on the
measurements, can effectively solve the above problems.

In this article, when the CS-based ORS imaging system per-
forms ship detection tasks, we innovatively propose a pipeline,
as shown in Fig. 1(b). First, the same as step one in Fig. 1(a),
the optical system compresses and samples the ORS scene to
obtain the measurements. Then, the measurements-based ship
detection algorithm is directly used for the measurements to
obtain the ship detection result. This avoids the process of scene
CS reconstruction.

Recently, there have been a lot of researches [15], [16], [17]
on convolutional neural network (CNN)-based image CS. They
use a convolutional measurement layer (CML) to obtain CS
measurements of the scene. And the weight value of the CML
convolution kernel after training is the learned measurement
matrix (LMM). Thanks to the powerful self-learning ability of
CNN, LMM can better retain the feature information of the
image, thereby improving the quality of image reconstruction.
Inspired by these researches, we use LMM in CS-based ORS
imaging system to obtain measurements of the scene instead
of the predefined measurement matrix (PMM). As shown in
Fig. 1(b), LMM compresses and samples the scene, and then
the measurements-based ship detection algorithm performs ship
detection on the measurements. In this way, the joint training
optimization of the scene compression sampling phase and the
measurements’ ship detection phase can be realized through
the end-to-end training method. LMM can retain better scene

features for subsequent measurements’ ship detection, thereby
realizing ship detection on CS measurements.

To directly carry out ship detection on CS measurements, we
adopt the method shown in Fig. 1(b) and design a CNN-based
algorithm, CS-CenterNet, which achieves high-precision ship
detection on CS measurements by jointly training the scene
compression sampling phase and the measurements’ ship detec-
tion phase. The overall framework of CS-CenterNet is shown as
in Fig. 2. To simulate the scene compression sampling phase,
we use CML without bias or activation function to measure
the scene. CML not only adaptively generates the LMM from
training scenes but also can be jointly trained with the mea-
surements’ ship detection network. Besides, since the physical
features of ships are extremely compressed in measurements,
an optimized hourglass network (OHgN) is introduced to ex-
tract high-resolution feature information of the measurements.
Compared with the previous hourglass network (HgN) [18],
the squeeze-and-excitation network (SENet) is added to OHgN,
which enables OHgN to aim to focus on the salient areas that
contain ships. Moreover, since the prediction of ship features is
extremely difficult in measurements, an optimized three-branch
head network (OTBHN) is introduced to perform heat-map
prediction, center-point offset prediction, and width-height pre-
diction. Compared with the previous three-branch head network
(TBHN) [19], the feature refinement network (FRNet) is added
to OTBHN, which enables OTBHN to improve ship detection
accuracy.

Our main contributions are as follows.
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Fig. 2. Illustration of the overall framework of CS-CenterNet, including three key components: CML, OHgN, and OTBHN.

1) When CS-based ORS imaging system faces the task of
ship detection, we innovatively propose the pipeline as
shown in Fig. 1(b), which avoids the scene CS recon-
struction process. And we design the CS-CenterNet to
complete the pipeline, which implements ship detection
on CS measurements of ORS scenes.

2) We convolutionally encode the scene using CML without
bias or activation function to obtain CS measurements,
which simulates the compression sampling process in CS-
based ORS imaging systems.

3) Considering that the physical features of ships and back-
grounds are extremely compressed in CS measurements,
a novel OHgN is designed, which extracts the high-
resolution feature information from CS measurements.

4) For feature prediction of high-resolution feature infor-
mation, a novel OTBHN is designed, which refines ship
features and improves detection accuracy.

The experimental results on the HRSC2016 dataset [20] and
LEVIR dataset [21] demonstrate that CS-CenterNet implements
excellent ship detection performance on CS measurements of
ORS scenes, proving the feasibility of our model.

The rest of this article is summarized as follows. In Sec-
tion II, we review the related works of CNN-based compression
sampling in CS, CNN-based ORS image ship detection, and
compressed learning: image processing in the measurement
domain. Section III introduces the structure of CS-CenterNet
in detail. Section IV shows the experimental results and results
discussion. Finally, Section V concludes this article.

II. RELATED WORKS

A. CNN-Based Compression Sampling in CS

The compression sampling network can be connected to the
reconstruction network for end-to-end training. And the kernel
weight value of the trained CML is LMM. The CS measurements
collected by LMM can obtain more image information, which
is more beneficial for image reconstruction. Xiao et al. [17]
proposed fused features and perceptual loss encoder-decoder
residual network (FFPL-EDRNet), which connects CML and
reconstruction network for end-to-end training. LMM in this

model can improve the image reconstruction quality in CS-
based ORS imaging system. Zhao et al. [22] proposed a region
of interest (ROI)-aware compressive sensing network (ROI-
CSNet), which achieves higher reconstruction quality in ROI
while preserving scientific quality in the rest of the image.
The measurement matrix in this model is also LMM. Shi et al.
[15] proposed an image CS model using CNN (CSNet), which
contains a sampling network and a reconstruction network. The
measurement matrix in this network is also LMM. Shi et al. [16]
proposed a multiscale model for image CS (SCSNet), which uses
a sampling network to learn sampling operators and implement
the compression sampling process. Shi et al. [23] proposed a
novel video CS model based on CNN (VCSNet) for the CS of
video to explore both intraframe and interframe correlations.
The model still uses the sampling network to learn the sampling
operator and implement the compression sampling process. All
these CNN-based methods are used to implement the CS process
of images or videos, i.e., signal compression sampling and
measurements’ reconstruction, rather than for ship detection on
CS measurements.

B. CNN-Based Ship Detection on Images

The CNN-based ship detection on images can effectively learn
complex features and achieve high-accuracy ship detection. Guo
et al. [11] proposed a rotational Libra R-CNN, which adds
the balanced feature pyramid module and the intersection over
union-balanced sampling module to overcome the limitation of
dense distribution and different scales. Wang et al. [12] proposed
SDGH-Net, which avoids the overfitting problem through Gaus-
sian heatmap regression. Wang et al. [13] proposed fused fea-
tures and rebuilt (FFR) YOLOv3, which improves the speed and
accuracy of ship detection in ORS images. Fu et al. [14] proposed
a feature balancing and refinement network (FBR-Net), which
achieves an excellent ship detection effect in the case of the wide
diversity of scales and the strong interference of the nearshore
background. Shan et al. [24] proposed the SiamFPN, which can
realize visual object tracking in various maritime applications.
All these CNN-based methods are used to improve the accuracy
of image ship detection, rather than for ship detection on CS
measurements.
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C. Compressed Learning: Image Processing in the
Measurement Domain

Compressed learning (CL) is a joint signal processing and
machine learning framework, which can infer signals from a
small number of CS measurements. Calderbank et al. [25]
provide a theoretical basis for reasoning directly in the com-
pressed domain. Moreover, the CL method proposed by them
uses the support vector machine (SVM) classifier to realize
image classification in the measurements, which has a high
probability, and its real accuracy is close to the accuracy of
the best linear threshold classifier in the data domain. Lohit
et al. [26] proved that CNN can extract nonlinear features from
CS measurements for image recognition based on the theory
of Zisselman et al. [27] proposed an end-to-end method to
solve CL, which is composed of fully connected layers and
convolutional layers. In the training stage, the sensing matrix
of the fully connected layers and the nonlinear inference of the
convolutional layers are jointly optimized. Although these CL
methods are actually image processing of CS measurements,
their back-end processing only uses machine learning method
for image classification, not complex target detection.

III. METHODOLOGY

CS-CenterNet is designed to construct a high-accuracy ship
detection framework on CS measurements. The overall frame-
work of CS-CenterNet is shown in Fig. 2, including three key
components: 1) Scene compression sampling part: CML. 2)
CS measurements feature extraction part: OHgN. 3) CS mea-
surements feature prediction part: OTBHN. SectionⅢ-A–Ⅲ-E
starts with an overview, then the detailed implementations of
the three key components in the model, and finally the detailed
introduction of the joint training optimization of CS-CenterNet.

A. Overview of CS-CenterNet

To begin with, we describe the problem as follows. Given
the ORS scene X to obtain the CS measurements Y , CML is
used to compress sampling the scene X . The process simulates
the compression sampling process of CS-based ORS imaging
system. This process can be expressed as

Y = CML(X) (1)

where CML(·)denotes the compression sampling process. Then,
given the CS measurements Y , the backbone network is used to
extract high-resolution convolutional features, and the feature
prediction network is used to predict the category and loca-
tion information of the ship. Therefore, we design a backbone
network, OHgN, to extract high-resolution feature information
FOHgN of CS measurements. This process can be expressed as

FOHgN = OHgN(Y ) (2)

where OHgN(·) denotes the feature extraction process. We also
design a feature prediction network, OTBHN, to refine the
feature informationFOHgN and predict the ship information. This
process can be expressed as

FOTBHN = OTBHN(FOHgN) (3)

Algorithm 1: CS-CenterNet.
Require: An initialized network SN

CS−CenterNet
, a labeled

ship detection dataset Traindata and test data Testdata.
1: Step 1: Train the network
2: repeat
3: Randomly select a batch {XTraindata

i }NTrain
i=1 from Traindata;

4: Optimize SN
CS−CenterNet

and update the network
parameters Θ following (4).

5: until convergence
6: Step 2: Process the detection results
7: Obtain the CS measurements Y from the scene X

utilizing CML with (1).
8: Obtain the high-resolution feature information FOHgN

from Y utilizing OHgN with (2).
9: Obtain the feature prediction results FOTBHN from FOHgN

utilizing OTBHN with (3) and generate corresponding
ship detection results.

Ensure: Optimized CML simulates the compression
sampling process of CS-based ORS imaging system. What
is more, OHgN and OTBHN constitute the ship detection
model on CS measurements of ORS scenes.

where OTBHN(·) denotes the feature prediction process. Fi-
nally, we jointly train the CML(·), OHgN(·), and OTBHN(·)
by learning all parameters in CS-CenterNet. Specifically, the
overall network is trained using the loss function Ldet and all
parameters Θ are updated with (4).

SNΘ
CS−CenterNet

= argmin
SNCS−CenterNet∈SN

max
Θ

Ldet(SNCS−CenterNet,Θ)

(4)
where SNΘ

CS−CenterNet
contains multiple model subsets with dif-

ferent structures.
Moreover, after the overall framework is jointly trained, the

weight value in CML is the measurement matrix in CS-based
ORS imaging system. The OHgN and OTBHN constitute the
ship detection model on CS measurements of ORS scenes. In
Algorithm 1, we present more details of CS-CenterNet.

B. Scene Compression Sampling Part

In the traditional compression sampling problem in CS the-
ory, first, the scene needs to meet the sparse condition, and
then the sampling matrix needs to meet the restricted isom-
etry property (RIP). The existing sampling matrices are all
signal-independent, and do not consider the characteristics of
the sampled signal so that more information cannot be retained
in measurements. The CNN-based method can solve the com-
pression sampling problem in CS more effectively.

The prerequisite for ship detection on CS measurements is
the acquisition of measurements. The CS-based ORS imaging
system compresses and samples the scene with the measurement
matrix to obtain CS measurements. Therefore, the key point
is the design of the measurement matrix when simulating the
compression sampling process of the imaging system. In the
design of measurement matrix in this article, we refer to the
compression sampling process in the related work [15] on CS
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reconstruction, i.e., LMM is adopted. It is worth noting that, the
weight value of CML convolution kernel after training is LMM.
Therefore, we adopt a CML without bias or activation function to
measure the scene to simulate the compression sampling process
of the imaging system. MRs is the measurement rates in CS, i.e.,
the ratio of the compression measurement data obtained by the
ORS imaging system based on CS to the original scene data.

The compression sampling process is shown in Fig. 3. As
shown in Fig. 3(b), first, an ORS scene is divided into nonover-
lapping wm × hm (wm × hm = W

B × H
B ) blocks of size B ×

B ×Dp, where W , H , and Dp are the width, height, and
number of channels of the scene (Dp = 3) , respectively. B
is the block size of the scene. Each image block can be de-
noted as xB2Dp×1

i
in Fig. 3(a), where i is the label of the

image block (i = 1, 2, . . . , wmhm). Then, the CS measurements
yMRsB2Dp×1
i of the image block xB2Dp×1

i
are acquired using a

measurement matrix ΦCML of size MRsB2Dp×B2Dp. This
process can be expressed as

yMRsB2Dp×1
i = ΦMRsB2Dp×B2Dp

CML
xB2Dp×1

i
. (5)

Since the number of columns in the measurement matrix
ΦCML is B ×B ×Dp, the size of each convolution ker-
nel in CML is also B ×B ×Dp, so that each convolution
kernel outputs one measurement. Since the number of rows
in the measurement matrix ΦCML is B ×B ×Dp, we need
MRs×B ×B ×Dp convolution kernels in CML to obtain
MRs×B ×B ×Dp measurements. It should be noted that
the stride of CML is B ×B for nonoverlapping sampling.
Furthermore, there is no bias or activation function in CML.
As shown in Fig. 3(b), the output of each image block from
CML is composed of MRs×B ×B ×Dp feature maps.

Y = CML(X,WCML) = WCML ∗X (6)

where ∗ denotes the elementwise convolution. X denotes the
scene. WCML denotes the weight value of CML, i.e., LMM in
the CS. Y denotes the CS measurements of the scene.

Since the number of convolution kernels needs to satisfy the
inequalitiesMRs×B ×B ×Dp ≥ 1, the MRs can be any fre-
quency larger than 1

12 ( 1
12 ≈ 8.33%). To avoid the contingency

of scene compression sampling at a single MR, MRs will be
directly taken as 25%, 10%, 4%, and 1% in the research works
[10], [28] of CS. Therefore, the corresponding relationship
between B ×B strides and MRs is shown in Table I in this
article.

Fig. 4 provides the frequency domain visualization results of
PMM (Gaussian random matrix) and LMM on the HRSC2016
dataset at MRs = 25%. Since the data dimension of the image
block is 12 (2× 2× 3) and the MRs is 25%, the scale of the
PMM is 3× 12. The expression of the PMM is shown in (7) at

TABLE I
RELATIONSHIP BETWEEN B ×B STRIDES AND MRS

the bottom of this page. Similarly, since the data dimension of the
image block is 12 and the MRs is 25%, the scale of the LMM is
3× 3× 2× 2 (the first 3 is obtained by 12× 25%, the second
3 is the depth of the convolution kernel, and 2× 2 is the size
of the convolution kernel). We select all three rows from each
of LMM and PMM for visualization. To obtain a better visual
effect, the frequency visualization is the result of the Fourier
transform of each row of measurement matrix. It can be seen
from Fig. 4 that the frequency of each PMM row (PMM[0],
PMM[1], and PMM[2]) is randomly distributed, i.e., PMM will
randomly sample scene information, while the frequency of
each LMM row (Conv Kernel 0[nc], Conv Kernel 1[nc], and
Conv Kernel 2[nc] with nc = 0, 1, 2) is a regular distribution,
i.e., LMM will sample the specific frequency information of the
scene. As we all know, the specific frequency sampling of the
scene can better maintain the scene feature information than the
random frequency sampling of the scene. Therefore, by training
the compression sampling phase of the scene together with the
ship detection phase of the CS measurements, LMM captures
scene features information more efficiently than the PMM.

Fig. 5 shows an ORS scene and the CS measurements of the
scene at MRs = 25%. Fig. 5(b) is the measurements of PMM
compression sampling of the scene at MRs = 25%. Fig. 5(c)
is the measurements of LMM compression sampling of the
scene at MRs = 25%. It can be seen from Fig. 5 that the CS
measurements obtained by CML still retain the target position,
target size, and shape information, while the CS measurements
obtained by PMM destroy the target position, target size, and
shape information.

C. CS Measurements Feature Extraction Part

Since the data volume of CS measurements is much lower
than their corresponding original scenes, the feature extraction
network of CS measurements needs to aggregate global infor-
mation and multi-scale local information to obtain high-quality
high-resolution feature information. We are inspired by the con-
text refinement module (CRM) in [29] and adopt another existing
unified framework structure HgN which captures and integrates
information across all scales of measurements. Therefore, to
extract the high-resolution feature information of measurements,
we design the backbone network, OHgN, based on the HgN.

⎡
⎣

0.0505 0.6554 0.4602 −0.0601 −0.0558 −0.4984 −0.8778 0.2321 0.4523 1.1642 −0.3311 −0.3638
0.0008 −0.6213 −0.2778 −0.1211 −0.2414 −0.2510 −0.1389 −0.4900 0.2897 −0.7125 −0.1756 −0.3116
0.8378 0.3088 −0.6469 −0.0353 −0.9805 −0.3985 1.5064 −0.2152 0.4826 0.0819 −0.3617 −1.3199

⎤
⎦
3×12

(7)
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Fig. 3. Illustration of the compression sampling process. (a) The traditional compression sampling process in CS theory. (b) The compression sampling process
in CS-CenterNet.

1) HgN: The structure of the HgN in this article is as shown in
Fig. 6, where ResB1 denotes the residual block with 1

2 downsam-
pling, ResB2 denotes the residual block without downsampling,
and Conv denotes the convolutional layer.

The CS measurement Y from CML is denoted as Y ∈
Rwm×hm×MRsB2Dp, where wm × hm is the size of measure-
ments. First, a ResB1 is adopted for feature extraction to obtain
a 128× 128× 256 feature map C1, and then ResB1 is adopted
to perform five consecutive feature extractions. The results of
five feature extractions are feature maps C2, C3, C4, C5, C6,
respectively. The feature map sizes of C2, C3, C4, C5, C6 are
reduced to 1

2 ,
1
4 ,

1
8 ,

1
16 ,

1
32 , and the feature map dimensions

are increased to 256, 384, 384, 384, 512. Afterward, features
from C1, C2, C3, C4, C5 are extracted through Bottleneck-
Layer (containing four ResB2 modules) and ResB1 to obtain
features C1a,C2a,C3a,C4a,C5a. BottleneckLayer is used to
extract feature C6 to obtain feature C6a.

To aggregate the feature information of two adjacent sizes, up-
sampling and cross-scale feature combination methods are used.
C6a andC5awith the same size are added elementwise and then
the nearest neighbor upsampling is performed to obtain C5b.
C5b and C4a are added elementwise and the nearest-neighbor
upsampling is also performed to obtain C4b, and so on to get
the respective upsampling results (C5b, C4b, C3b, C2b, C1b).
The feature map sizes ofC5b, C4b, C3b, C2b, C1b are increased
to 1

16 ,
1
8 ,

1
4 ,

1
2 , 1 and the feature map dimensions are reduced

to 512, 384, 384, 384, 256 in turn. After reaching the output
resolution of 128× 128, a 3× 3 Conv is applied to generate
the final high-resolution feature map.

In HgN, low-level, weak semantic features have rich location
information, which is very useful for object positioning. High-
level, strong semantic features have rich semantic information,
which is very useful for object classification. Therefore, the two
characteristics are fused in HgN. The advantage of HgN is that it
can capture global and local features in a single unified structure.
Therefore, the final feature information can contain almost all
the critical points of the detected object.

Although HgN can extract high-resolution feature informa-
tion from CS measurements, it cannot select the information that

Fig. 4. Illustration of measurement matrix on the HRSC2016 dataset at MRs=
25%. (a) The frequency domain visualization results of PMM (Gaussian random
matrix).
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Fig. 4. (Continued.) Illustration of measurement matrix on the HRSC2016 dataset at MRs = 25%. (b) The frequency domain visualization results of LMM.

is more critical to ships from measurements. However, SENet
can devote more attention to the ships’ area to obtain more
detailed information about the ships, thereby suppressing other
useless information. Therefore, we add SENet to HgN to refine
the features and focus on the salient areas that contain ships.

2) SENet: The position where SENet is added to HgN is
shown in Fig. 2. Specifically, SENet is added to the Bottleneck-
Layer part of HgN. The feature processing process of SENet
is shown in Fig. 7. The input feature of it is denoted as Fint ∈
R(W

sse )×( H
sse )×Cse , where Cse is the channel dimension of feature

Fint, and sse is the corresponding downsampling ratio to the
input scene (sse = 32). Maxpool denotes the max-pool layer,
Avgpool denotes the avg-pool layer, and Sig denotes the sigmoid
function. First, it uses the Maxpool and Avgpool along the

channel axis to generate features Fmax, Favg ∈ R(W
sse )×( H

sse )×1.
Then, it applies a 3× 3 Conv and a Sig to get the feature

ASENet ∈ R(W
sse )×( H

sse )×1. The calculation of the above process
is shown in (8). Finally, the feature ASENet is multiplied by the
initial feature Fint as shown in (9).

ASENet = Sig (Conv3×3 ([MPool (Fint) ;APool (Fint)])) (8)

where MPool( · ) and APool( · ) denote the maximum pool-
ing operation and average pooling operation, respectively.
Conv3×3(·) denotes the 3× 3 convolution operation. Sig(·)
denotes the sigmoid nonlinear operation.

FSENet = ASENet × Fint (9)

where× denotes the elementwise multiplication. Especially, the

tensor dimension ofFSENet ∈ R(W
sse )×( H

sse )×Cse is the same as the
tensor dimension of Fint ∈ R(W

sse )×( H
sse )×Cse .
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Fig. 5. Illustration of an ORS scene and the CS measurements of the scene at
MRs= 25%. (a) An ORS scene. Its size is 512× 512× 3. (b) The measurements
of PMM compression sampling of the scene. Its size is 256 × 256 × 3. (c) The
measurements of LMM compression sampling of the scene, and the size of each
is 256 × 256. (a) A scene. Its size is 512 × 512 × 3. (b) The measurements
of PMM compression of the original image. Its size is 256 × 256 × 3. (c)
The measurements of LMM compression of the original image It has three
measurements, and the size of each is 256 × 256.

We select eight channels for visualization from the 128×
128× 256 high-resolution feature map predicted by HgN and
OHgN on two ORS scenes at MRs = 25%. The eight channels
are the 1th channel, the 32nd channel, the 64th channel, the
96th channel, the 128th channel, the 160th channel, the 192th
channel, the 224th channel, and the 256th channel, whose visu-
alization results are shown in Fig. 8. It can be seen from Fig. 8
that the high-resolution feature map predicted by OHgN contains
more ship target area information than HgN. This is because the
SENet in OHgN can refine the features and focus more on the
target area of the ship.

D. CS Measurements Feature Prediction Part

The traditional feature prediction network adopts the anchor
box method to predict the category and location information
of the target. However, using anchor boxes introduces many
hyperparameters and design choices. These hyperparameters
make network-tuning difficult and also increase network com-
plexity and computational complexity. Recently, the research
work on anchor-free [30] showed that the anchor-free method
can eliminate the anchor problem and ensure detection accuracy.
Therefore, we also predict the category and location information
of ships based on an anchor-free method.

To adopt an anchor-free method for heat-map prediction,
center-point offset prediction, and width–height prediction of
high-resolution feature information, we design the feature pre-
diction network, OTBHN, based on the TBHN.

1) TBHN: The structure of the TBHN in this article is as
shown in Fig. 9. The feature FOHgN from the OHgN is denoted

as FOHgN ∈ R

(
W
stb

)
×
(

H
stb

)
×Ctb , where Ctb is the channel

dimension of feature FOHgN (Ctb = 256), and stb is the corre-
sponding downsampling ratio to the input scene (stb = 4) [19].
All branches in the TBHN have a 3× 3× 256 Conv and a
1× 1× 256× Ta Conv with a = 1, 2, 3 (T1 = Cls, T2 = 2,
T3 = 2, where Cls is the number of categories). Especially, a
3× 3 Maxpool is used to perform the equivalent nonmaximum
suppression execution in the extraction branch of peak key
points.

The illustration of the detection based on the center-point
for TBHN is shown in Fig. 10. First, we independently extract
the peak points on the heatmap of each category Cls. Then,
we use ĈP to denote the set of n detected center-points [ĈP =
(x̂i, ŷi)

n
i=1, where (x̂i, ŷi) denotes the predicted each key point

position]. Finally, we get the coordinates of the upper left corner
and the lower right corner of the prediction box and generate a
horizontal box at this position. We denote the coordinates of the
upper left corner and the lower right corner of the prediction box
as follows: (

x̂i + ox̂i − ŵi

2 , ŷi + oŷi − ĥi

2

)
(
x̂i + ox̂i +

ŵi

2 , ŷi + oŷi +
ĥi

2

) (10)

where (ox̂i, oŷi) denotes the predicted position offset and(
ŵi, ĥi

)
denotes the predicted size.

Because Conv in TBHN is a fixed geometric structure, it
limits its modeling of geometric deformation. To strengthen the
ability of the feature prediction network to model deformation,
we refer to the deformable convolution in [31]. By learning an
additional offset, the deformable convolution makes the feature
offset to focus on the target area of interest, which helps to
solve the structural information between similar objects, thereby
improving the accuracy of ship detection. Therefore, we design
FRNet, which mainly uses deformable convolution to refine
features. The FRNet is added to TBHN to refine the ship features
and improve detection accuracy.

2) FRNet: The position where FRNet is added to TBHN is
shown in Fig. 2. The structure of FRNet is shown in Fig. 11.

The input features of it are denoted as conf ∈ R

(
W
sfr

)
×
(

H
sfr

)
×Cls

,

off ∈ R

(
W
sfr

)
×
(

H
sfr

)
×2

, and size ∈ R

(
W
sfr

)
×
(

H
sfr

)
×2

, where sfr

is the corresponding downsampling ratio to the input scene
(sse = 4). First, the Sig is applied to conf, and the result
Sig(conf) is used to generate the adjusted feature conf1 ∈
R

(
W
sfr

)
×
(

H
sfr

)
×Cls

with the feature conf as follows:

conf1 = conf × Sig(conf). (11)

Then, we use the adjusted feature conf1 to generate the feature
off1 and size1 with features conf and size. Afterwards, a 3× 3
Conv is applied for feature off1, size1 , and conf1 to generate
the features off11, size11 , and conf11. The calculation of the
above process is as follows:

off11 = Conv3×3(conf1 + off) (12)

size11 = Conv3×3(conf1 + size) (13)

conf11 = Conv3×3(conf1). (14)
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Fig. 6. Illustration of the structure of HgN.

Fig. 7. Illustration of the structure of SENet.

Fig. 8. Illustration of the eight channels for visualization from the 128× 128× 256 high-resolution feature map predicted by HgN and OHgN at MRs = 25%.
The eight channels are the 1th channel, the 32nd channel, the 64th channel, the 96th channel, the 128th channel, the 160th channel, the 192th channel, the 224th
channel, and the 256th channel. (a) Original scenes. (b) The eight channels for visualization from the high-resolution feature map predicted by HgN. (c) The eight
channels for visualization from the high-resolution feature map predicted by OHgN.

Finally, we adopt deformable convolution [32] for FR-
Net. The kernel off set fields (offsetoff11, offsetconf11, and
offsetsize11) of the three features (off11, conf11, and size11)
were originally generated, respectively, by using a 1× 1 Conv.
Afterwards, a 3× 3 deformable Conv is applied to offsets
(offsetoff1, offsetconf1, and offsetsize1) to obtain the refined fea-

tures conf2 ∈ R

(
W
sfr

)
×
(

H
sfr

)
×Cls

, off2 ∈ R

(
W
sfr

)
×
(

H
sfr

)
×2

,

and size2 ∈ R

(
W
sfr

)
×
(

H
sfr

)
×2

for further classification, center-
point offset, and prediction box width–height.

The calculation of all process is as follows:

(conf2, off2, size2) = FRNet(conf, off, size) (15)

where FRNet(·) denotes the operation of FRNet module, and
the features conf2, off2, size2 denote the output of the features
after refining treatment of FRNet, respectively.

We visualize the heat maps predicted by the TBHN and
OTBHN on two ORS scenes at MRs = 25%. The visualized
result is shown in Fig. 12. It can be seen from Fig. 12 that
OTBHN can locate the ship position more accurately than
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Fig. 9. Illustration of the structure of TBHN.

Fig. 10. Illustration of the detection based on the center-point.

TBHN. This is because FRNet is added to OTBHN, and the
deformed convolution in FRNet refines the features.

E. CS-CenterNet Joint Training Optimization

1) Loss Function: Our training loss function consists of three
parts.

Ldet = Lk + λsizeLsize + λoffLoff. (16)

where Lk, Lsize, and Loff denote the heat-map loss, center-point
offset loss, and width-height loss, respectively. λsize and λoff are
hyperparameters. Inspired by Zhou et al. [19], we set their values
to 0.1 and 1, respectively.

Considering the imbalance between negative and positive
samples, the focal loss [33] is adopted for Lk. The calculation
method for Lk is as follows:

Lk = − 1

N

TABLE II
DATASET DIVISION

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
xyz

(
1− Ŷxyc

)α

log
(
Ŷxyc

)
if

∑
xyz (1− Yxyc)

β
(
Ŷxyc

)α

log
(
1− Ŷxyc

)
otherwise

Yxyc=1

(17)

where Yxyz denotes the key point heatmap of the target; Ŷxyz

denotes the key point heatmap of the network output (Ŷxyz ∈
[0, 1]); N denotes the number of key points in the scene; and α
and β are hyperparameters. Inspired by Zhou et al. [19], we set
their values to 2 and 4, respectively.
Lsize and Loff adopt the L1 loss, and they can be formulated

as

Lsize =
1

N

N∑
k=1

|Ŝpk − sk| (18)

where sk denotes the true length and width of the target and Ŝpk

denotes the predicted length and width of the target.

Loff =
1

N

∑
p

∣∣∣Ô∼
p
−
( p

R
− ∼

p
)∣∣∣ (19)

where p denotes the center-point of the target box, p̃ denotes the
center-point of the predicted box, Ôp̃ denotes the output offset of
the network, and R denotes the downsampling multiple (R = 4
[19]).

2) Joint Training Optimization: Since joint training opti-
mization plays a vital role in the detection performance of
ships, we train the CML and the measurements’ ship detec-
tion network by learning all parameters in the model. The
set of all parameters in the model can be expressed as Θ =
{WCML,WOHgN,WOTBHN}, where WOHgN denotes the network
parameters of OHgN and WOTBHN denotes the network param-
eters of OTBHN. And the process of joint training is to obtain
the optimal network parameters Θ. During training, the input
and output of CS-CenterNet are the scene information and the
ships’ location information (box_xmin, box_xmax, box_ymin,
box_ymax), respectively, i.e., the training samples are repre-
sented as {scene, ship location information}. After the training
optimization, optimized CML simulates the compression sam-
pling process of CS-based ORS imaging system. What’s more,
OHgN and OTBHN constitute the ship detection model on CS
measurements of ORS scenes.

As shown in Fig. 13, the black arrow denotes the joint
training process of the scene compression sampling part and
the measurements’ ship detection part. The red arrow denotes
the test process of the measurements’ ship detection. First,
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Fig. 11. Illustration of the structure of FRNet.

Fig. 12. Illustration of heat maps predicted by TBHN and OTBHN on two ORS scenes at MRs = 25%. (a) Original scenes. (b) The heatmap predicted by the
TBHN. (c) The heatmap predicted by the OTBHN.

Fig. 13. Illustration of the joint optimization process of CS-CenterNet.

the trained CML compresses and samples the ORS scene, and
then the measurements’ ship detection network detects the ship
information on CS measurements.

IV. EXPERIMENT

A. Dataset

We evaluate our model on two public ORS scene datasets:
The HRSC2016 dataset [20] and LEVIR dataset [21]. There are
1680 images in the HRSC2016 dataset. In the experiment, the

number of samples of the training set, validation set, and test
set is divided as shown in Table Ⅱ. The training set, validation
set, and test set contain 1176, 168, and 336 images, respectively.
Some ORS scenes in the dataset are shown in Fig. 14(a). There
are 1482 images in the LEVIR dataset for ship object. In the
experiment, the number of samples of the training set, validation
set, and test set is divided as shown in Table Ⅱ. The training
set, validation set, and test set contain 1037, 149, and 296
images, respectively. Some ORS scenes in the dataset are shown
in Fig. 14(b).
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Fig. 14. Some ORS scenes of the HRSC2016 and LEVIR datasets. (a) Some
ORS scenes of the HRSC2016 dataset. (b) Some ORS scenes of the LEVIR
dataset.

TABLE III
EXPERIMENTAL ENVIRONMENT

TABLE IV
TRAINING PARAMETERS

B. Implementation Details and Parameters

The training and testing of CS-CenterNet require a relatively
high hardware environment, so we use the experimental environ-
ment in Table Ⅲ to train the model. Since the size of the image
data in the experiment is different, it is uniformly adjusted to
512 × 512 before inputting the model.

Table IV shows the parameter settings during the CS-
CenterNet training process. In particular, considering the 8G
limitation of GPU memory, we set the batch size to 2. The initial
learning rate of 0.001 is reduced by half every 10 epochs.

C. Evaluation Metrics

Different from the target detection models based on Inter-
section over Union (IoU) [35], [36], [37] to define positive
samples and negative samples, CS-CenterNet defines positive
and negative samples as follows. The position where the center of
the ground truth box falls is a positive sample, and the remaining
positions are negative samples. If the prediction result of a
positive sample is also a positive sample, it is defined as a true
positive (TP). If the prediction result of a negative sample is
a positive sample, it is defined as a false positive (FP). If the

TABLE V
SHIP DETECTION RESULTS IN THE HRSC2016 DATASET

TABLE VI
SHIP DETECTION RESULTS IN THE LEVIR DATASET

prediction result of a positive sample is a negative sample, it is
defined as false negative (FN).

Precision and recall rate are usually used as the evaluation
criteria for target detection, and their calculation methods are
shown in (20) and (21).

Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
. (21)

However, because the precision rate and recall rate are nu-
merically contradictory, we add F1 and AP value as evaluation
indicators. F1 is a comprehensive indicator of the imbalance
between precision and recall. The AP reflects the overall quality
of the network, which defines the average precision under a set
of equidistant recall rates S= {0, 0.01, . . . , 1}. In this article,
we calculate AP when the IoU threshold is 0.5. The calculation
methods of F1 and AP are as follows:

F1 = 2× Precision × Recall
Precision + Recall

(22)

AP =
1

101

∑
r∈S

Precision|Recall=r. (23)

D. Comparison With Ship Detection Based on ORS Images

To test the effect of CS-CenterNet on the ship detection of
CS measurements, we need to compare it with the ship detec-
tion model based on ORS images. Since CS-CenterNet refers
to CenterNet [19], whose backbone network is ResNet50, we
compare the ship detection performance of CS-CertenNet with
CenterNet. In particular, CS-CenterNet is a ship detection model
based on the CS measurements of ORS scenes while CenterNet
is a ship detection model based on ORS images.

Tables Ⅴ and Ⅵ show the ship detection results in the
HRSC2016 and LEVIR datasets, respectively. Figs. 15 and 16
show the ship detection effect of some images of the models
in the HRSC2016 and LEVIR test sets, respectively. The blue
box denotes the ground truth, the green box denotes TP, the red
denotes FP, and the pink denotes FN.
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Fig. 15. Comparison of ship detection results under different methods in the HRSC2016 test sets. The blue box denotes the ground truth, the green box denotes TP,
the red denotes FP, and the pink denotes FN. (a) Original scenes. (b) Ship detection results of CenterNet based on images. (c) Ship detection results of CS-CenterNet
at MRs = 25% based on CS measurements.
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Fig. 16. Comparison of ship detection results under different methods in the LEVIR test sets. The blue box denotes the ground truth, the green box denotes TP, the
red denotes FP, and the pink denotes FN. (a) Original scenes. (b) Ship detection results of CenterNet based on images. (c) Ship detection results of CS-CenterNet
at MRs = 25% based on CS measurements.
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TABLE VII
PARAMETER SIZE OF THE CS-CENTERNET AND CENTERNET

According to TableⅤ, the CS-CenterNet at MRs= 25% score
is 84.35% in terms of detection precision, and the CS-CenterNet
score is 92.19% in terms of recall. The precision and recall of
the CS-CenterNet can get its F1, which is 0.8810. In terms of
AP, the CS-CenterNet score is 90.76%. The P, R, F1, and AP of
CS-CenterNet at MRs = 25% is higher than that of CenterNet.
According to Fig. 15, we can find that CS-CenterNet has better
ship detection performance in terms of visual quality.

According to TableⅥ, the CS-CenterNet at MRs=25% score
is 70.60% in terms of detection precision, and the CS-CenterNet
score is 78.20% in terms of recall. The precision and recall of
the CS-CenterNet can get its F1, which is 0.7421. In terms of
AP, the CS-CenterNet score is 75.44%. The R, F1, and AP of
CS-CenterNet at MRs = 25% is higher than that of CenterNet
and the P of CS-CenterNet at MRs = 25% is basically the same
as that of CenterNet. According to Fig. 16, we can find that
CS-CenterNet has better ship detection performance in terms of
visual quality.

It is worth noting that the quantitative indicators of the ship
detection results in the LEVIR are lower than that of HRSC2016,
because the ship targets in the LEVIR are smaller and denser.

Although the data volume of the CS measurements is only
25% of the original scenes, CS-CenterNet has detection P, R,
F1, and AP that will not decrease but slightly increase compared
with the CenterNet. This is because the backbone network HgN
can fully extract the feature information in the CS measurements
and the SENet added to it can improve the accuracy of ship
detection. In addition, FRNet in THBN can refine ship features,
which again improves the accuracy of ship detection. According
to Figs. 15 and 16, we can find that CS-CenterNet has better ship
detection performance in terms of quantitative indicators visual
quality.

In short, for the innovation pipeline to complete the ship
detection task in CS-based ORS imaging system, CS-CenterNet
can directly detect ships on CS measurements while ensuring
the quality of the detection.

In addition, we also tested the parameter size of the CS-
CenterNet and CenterNet. Table Ⅶ shows the parameter size
of them.

The parameter quantity of CS-CenterNet is much higher than
that of CenterNet because CS-CenterNet detects CS measure-
ments while CenterNet detects scenes. Therefore, the complex-
ity of the former feature detection network OHgN and feature
prediction network OTBHN is higher than that of the latter fea-
ture detection network ResNet50 and feature prediction network
TBHN.

Fig. 17. Ship detection results with HgN compared to ResNet50. The blue box
denotes the ground truth, the green box denotes TP, the red denotes FP, and the
pink denotes FN. With HgN, the correct ship position can be detected effectively.
(a) ResNet50+TBHN. (b) HgN+TBHN. (a) Ship detection results on CS
measurements of OHgN+TBHN. (b) Ship detection results on CS measurements
of HgN+TBHN.

In addition, the parameter quantity of CS-CenterNet at MRs=
25% is lower than that of CS-CenterNet at MRs = 10%, which
is caused by different data dimensions of CS measurements.
The input of CS-CenterNet at MRs = 25% is the measure-
ments with dimension 256× 256× 3, and the input of CS-
CenterNet at MRs = 10% is the measurements with dimension
256× 256× 1.

E. Ablation Studies

To verify the effect of the HgN, SENet, and FRNet modules in
CS-Center, we conduct ablation studies on these three modules.
The MRs of the experiment in this subsection are set to 25%.

1) Effect of HgN: To evaluate the performance of HgN, we
conduct ablation experiments on HgN, and the corresponding
experimental results are shown in the first and second rows of
TableⅧ and Fig. 17. In the first and second rows of TableⅧ,
“ResNet50 [38]+TBHN” and “HgN [18]+TBHN” can analyze
the HgN performance. It can be seen that P increased by 4.47%,
R increased by 9.66%, F1 increased by 0.0671, and AP increased
by 11.16%. According to Fig. 17, we can find that using HgN as
the backbone has better ship detection performance in terms of
visual quality, especially the correct ship position can be detected
effectively.

Therefore, using HgN as the backbone can achieve better
detection accuracy. This is because HgN can capture global and
local features from CS measurements.

2) Effect of SENet: To evaluate the performance of SENet,
we conduct ablation experiments on SENet, and the correspond-
ing experimental results are shown in the second and third
rows of Table Ⅷ and Fig. 18. In the second and third rows
of Table Ⅷ, “HgN+TBHN” and “OHgN+TBHN” denote
that the backbone network is different to analyze the SENet
performance. The detected comprehensive indicators F1 and AP
are improved. According to Fig. 18, we can find that using OHgN
as the backbone has better ship detection performance in terms
of visual quality, especially the false detection of ships can be
effectively reduced.

Therefore, using OHgN as the backbone can achieve better
detection accuracy. This is because SENet in OHgN can focus
on the salient areas that contain ships in the compressive mea-
surements.



XIAO et al.: SHIP DETECTION BASED ON COMPRESSIVE SENSING MEASUREMENTS OF OPTICAL REMOTE SENSING SCENES 8647

TABLE VIII
SHIP DETECTION RESULTS ON CS MEASUREMENTS OF ORS SCENES IN THE HRSC2016 DATASET AT MRS = 25%

Fig. 18. Ship detection results with OHgN compared to HgN. The blue box
denotes the ground truth, the green box denotes TP, the red denotes FP, and the
pink denotes FN. With SENet, the false detection of ships can be effectively
reduced. (a) HgN+TBHN. (b) OHgN+TBHN. (a) Ship detection results on CS
measurements of HgN+TBHN. (b) Ship detection results on CS measurements
of OHgN+TBHN.

Fig. 19. Ship detection results with OTBHN compared to TBHN. The blue box
denotes the ground truth, the green box denotes TP, the red denotes FP, and the
pink denotes FN. With FRNet, more small ships can be detected effectively.
(a) OHgN+TBHN. (b) OHgN+OTBHN. (a) Ship detection results on CS
measurements of OHgN+TBHN. (b) Ship detection results on CS measurements
of OHgN+OTBHN.

3) Effect of FRNet: To evaluate the performance of FRNet,
we conducted ablation experiments on FRNet, and the corre-
sponding experimental results are shown in the third and fourth
rows of Table Ⅷ and Fig. 19. In the third and fourth rows
of Table Ⅷ, “OHgN+TBHN” and “OHgN+OTBHN” can
analyze the FRNet performance. It can be seen that the P and
F1 of the network are greatly improved. According to Fig. 19,
we can find that using OTHBN as the prediction has better ship
detection performance in terms of visual quality, especially more
small ships can be detected effectively.

Therefore, using OTHBN as the prediction can achieve better
detection accuracy. This is because FRNet can refine the ship
features.

F. Discussion

1) Ship Detection Performance of CS-CenterNet Under Dif-
ferent MRs: When CS-based ORS imaging system obtains scene
compression sampling data, MRs denote the ratio of the amount

TABLE IX
EXPERIMENT RESULTS OF CS-CENTERNET UNDER DIFFERENT MRS IN

HRSC2016 DATASET

TABLE X
EXPERIMENT RESULTS OF CS-CENTERNET UNDER DIFFERENT B ×B AT MRS

= 25% IN HRSC2016 DATASET

of compressive measurement data obtained by the imaging sys-
tem to the amount of original scene data. As explained in Section
Ⅲ-B, the sizewm × hm ×MRsB2Dpof the CS measurements
is related to the MRs in the block compression sampling. Here,
we test the effect of ship detection performance of CS-CenterNet
under different MRs. The result is shown in Table Ⅸ. From
Table Ⅸ, we can find that the ship detection performance of
CS-CenterNet at MRs = 10% is worse than the ship detection
performance of CS-CenterNet at MRs = 25%.

This is because as the amount of acquired scene data de-
creases, the features of ships in the CS measurements decrease,
which leads to a decrease in the detection performance of ships.

2) Ship Detection Performance of CS-CenterNet Under Dif-
ferent B ×B: In CS-CenterNet, we adopt CML to perform
block compression sampling processing on the ORS scene. As
explained in SectionⅢ-B, the resolution size W

B × H
B of the CS

measurements is related to the block size B ×B in the block
compression sampling. Here, we test the effect of ship detection
performance of CS-CenterNet under different B ×B. It can be
seen from Table Ⅹ that the block size of 2× 2 will obtain the
best ship detection results.

This is because the resolution of the CS measurements ob-
tained by the block size of 2× 2 is W

2 × H
2 , which is higher than

the resolution W
4 × H

4 of the CS measurements obtained by the
block size of 4× 4. The high-resolution CS measurements are
more conducive to the backbone network to extract ship feature
information, and improving the accuracy of ship detection.

3) Failure Cases of Our CS-CenterNet: Fig. 20(a)–(d) shows
some failure cases of our CS-CenterNet at MRs = 25%. CS-
CenterNet is not sensitive to small ships. For example, the
two failure cases (a) and (b) reflect that the prediction box
of CS-CenterNet cannot detect some small ships. Moreover,
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Fig. 20. Some failure cases of CS-CenterNet at MRs = 25%. The blue box denotes the ground truth, the green box denotes TP, the red denotes FP, and the
pink denotes FN. (a) Failure case reflects that the prediction box cannot detect some small ships. (b) Failure case reflects that the prediction box cannot detect
some small ships. (c) Failure case reflects that the prediction box incorrectly detects long objects as ship objects. (d) Failure case reflects that the prediction box
incorrectly detects small bases on the shore as ship objects. (a) Prediction box cannot detect some small ships. (b) Prediction box cannot detect some small ships.
(c) Prediction box incorrectly detects long objects as ship objects. (d) Prediction box incorrectly detects small bases on the shore as ship objects.

CS-CenterNet is sensitive to ship-like objects. For example, the
two failure cases (c) and (d) reflect that the prediction box of
CS-CenterNet incorrectly detects long objects and small bases
on the shore as ship objects.

In future work, it is of great significance to set appropriate
hyperparameters according to the ship object and improve the
distinguishing ability of the model.

4) Limitations: To simulate the compression sampling pro-
cess of CS-based ORS imaging system, we use CML to com-
press the scene to obtain CS measurements. However, this
method of acquisition is ideal. In future work, we will obtain
the CS measurements on the physical platform of a CS-based
ORS imaging system.

V. CONCLUSION

This article proposes an efficient model, CS-CenterNet, for
ship detection on CS measurements of ORS scenes. Specifically,
our model uses CML to perform convolutional coding on the
scene to obtain the CS measurements, which simulates the
block compression sampling process in CS-based ORS imaging
system. A OHgN is designed, which can effectively extract
the high-resolution feature information of measurements. A
OTBHN is designed, which can refines the ship features and
perform feature prediction with high accuracy. Experiments
based on the HRSC2016 dataset show that the detection pre-
cision of our model for the detection of ships with measure-
ments in ORS scenes is 84.35%, the recall is 92.19%, the F1
value is 0.8810, and the AP value is 90.76%. Therefore, it can
achieve high-accuracy ship detection on CS measurements of
ORS scenes. In the future, we will try to perform experiments
of measurements’ ship detection on the physical platform of
CS-based ORS imaging system (such as the CS-based ORS
camera). What is more, we will continue to study the basic
theories of deep learning (DL) to better design the network
structure and the detection accuracy of small ships.
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