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Abstract—In this article, an ultralong period fiber grating
(ULPFG) based on periodically embedding multimode fiber
into single mode fiber (PEM-ULPFG) is proposed to simul-
taneously measure the liquid refractive index (RI) and tem-
perature with high sensitivity. Five resonant dips belong to
different cladding modes, and diffraction mode orders appear
in the transmission spectrum. The responses of the dips to
Rl and temperature are different. Therefore, high sensitiv-
ity and dual-parameter measurement are realized. Numerical
simulation based on the beam propagation method (BPM) is
also carried out to design and optimize the parameters of
the device. Experimental results show that the maximum RI
sensitivity of —1230 nm/RIU in the range of 1.4021-1.4383 RIU is achieved by tracing the target dip (dip 4). The temperature
response of dip 4 is also characterized to be as low as 52.6 pm/°C. Another dip (dip 5) is used for measuring temperature
with the temperature sensitivity of 92.3 pm/°C. Different responses to the external changes of the dips obtained by the

PEM-ULPFG make the proposed sensor competitive in the field of high sensitivity and dual-parameter sensing.

Index Terms— Refractometer, simultaneous measurement,

ultralong-period fiber grating (ULPFG).

I. INTRODUCTION

N THE fields of biochemistry, industrial product testing,
and environmental monitoring [1], [2], [3], it is important
to measure physical parameters like temperature, refractive
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index (RI), and humidity [4], [5], [6]. In recent years, fiber
sensors based on Mach—Zehnder interferometer (MZI) [7],
Fabry—Perot interferometer (FPI) [8], fiber Bragg grating
(FBG) [9], long period fiber grating (LPFG), and ultralong
period fiber grating (ULPFG) [10] have been widely studied
and deployed in practical applications. Although optical fiber
grating sensors for detecting changes in RI in the external
environment have been widely studied, there are still some
problems such as the sensitivity of the fiber gratings being
influenced by the temperature [11], [12]. ULPFGs are consid-
ered potential candidates for two-parameter measurement due
to the different responses of the resonant dips [13], [14].
There are various methods for manufacturing ULPFGs,
including the laser writing method with UV exposure [15],
CO, laser etching, and femtosecond laser embossing [16],
[17], and nonlaser writing method with arc bulging [18],
resistive filament heating [19], mechanical microbending [20],
and staggered core splicing [21]. The laser writing method has
the advantages of good repeatability, fast etching time, and
accurate control of RI modulation, but it requires expensive
instruments. The nonlaser writing method does not depend
on expensive equipment, but the production accuracy and
repeatability are hard to be guaranteed, and the process is
time-consuming and complicated. In addition, ULPFGs fab-
ricated by the nonlaser writing method always have rela-
tively low sensitivity. Various functional materials have been
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Fig. 1. (a) Schematic of the experimental setup. (b) Schematic of
PEM-ULPFG structure. (c) PEM-ULPFG production process.

deposited on the sensor to enhance the sensing performance.
For example, Song et al. [22] used HGFI to modify the
hydrophobic characteristics of conical ULPFG surface and
improved the performance of immune biosensing. But its
manufacture is complicated and its stability is poor. Therefore,
it is important to design fiber sensors for simultaneously
measuring dual parameters such as RI and temperature with
high sensitivity and dynamic range.

In this article, alternately cleaving and splicing SMF
and MMF technique is used first to fabricate ULPFGs for
high-sensitivity RI and temperature measurements. Periodical-
embedded MMF (PEM) is able to induce the coupling between
the fundamental mode and the copropagating cladding modes
within relatively fewer period numbers. Periodically embed-
ding multimode fiber-induced ULPFGs (PEM-ULPFGs) with
four periods are designed and fabricated. Five resonant dips
appear in the wavelength range of 1000-1700 nm. Numer-
ical simulation not only describes the light propagation in
the device, but also shows that the five dips belong to
different cladding mode orders. Experimental results show
that an ordinary RI sensitivity of —294.2 nm/RIU in the
range of 1.3333-1.4021 RIU and a maximum sensitivity
of —1230 nm/RIU in the range of 1.4021-1.4383 RIU is
achieved by tracing the target dip (dip 4). Another dip (dip 5)
is traced for measuring temperature whose temperature sensi-
tivity is 92.3 pm/°C. The maximum RI sensitivity of dip 5 is
only —675.5 nm/RIU (1.4021-1.4383 RIU) which is only
about half of dip 4. Using a matrix equation, simultaneous
measurement of RI and temperature with high sensitivity is
achieved. Compared with conventional LPFGs and fiber-optic
interferometers, the proposed PEM-ULPFG has the advantages
of simple preparation, high sensitivity, large dynamic range,
and high mechanical strength. In addition, all the parameters
are able to be optimized through numerical simulation, which
endows the device with flexible designability.

II. DEVICE PREPARATION
For fabricating the PEM-ULPFG, SMF with core/cladding
diameter of 8.3/125 um (SMF-28e+, Corning) and MMF
with core/cladding diameter of 105/125 pm (105/125-22/250,
YOFC) are used. The precision cutting system for fabricating
the device is shown in Fig. 1(a). The fiber is held by a pair
of fixtures. A commercial optical fiber cleaver is placed on

a 3-D translation platform. The schematic and micrograph
of the PEM-ULPFG are shown in Fig. 1(b). The preparation
steps are shown in Fig. 1(c). First, the SMF and MMF with
flat cut ends were discharge welded with a commercial fiber
fusion splicer FSM-62C (Fujikura Company Ltd.) to ensure
that each welding loss is less than 0.3 dB. The key parameters
of the splicer are set as, discharge time: 3000 ms, standard
heating power, and overlap 6 um, respectively. Second, the
semi-finished device is placed on the precision cutting system.
The displacement stage is able to precisely move the fiber
cleaver. And with the help of the microscope with CCD, the
fiber can be cut at a certain length with a cutting error of
less than 1 um [14]. Finally, the fiber is spliced to the SMF
again, and the process of splicing—cutting—splicing is repeated
to obtain a four-period PEM-ULPFG. In the experiment, the
length of the SMF and the MMF in a period are 185 and
1325 um, respectively. It means that the period length is
1510 um. The overall length of the sensor is 6040 ym.

I1l. PRINCIPLE AND SIMULATION

The period of the PEM-ULPFG is 1510 um, which is
larger than that of a normal LPFG. The PEM-ULPFG is
also a transmission grating. While, unlike the LPFG, the core
fundamental mode also couples with the forward transmitted
higher-order diffraction mode [23]. According to the coupling
mode theory, the relative phase-matching condition of the
PEM-LPFG is expressed as

iy = (ng = nG ) AN (1)

where A is the grating period and N is the diffraction mode
order. For an ordinary LPFG, N = 1. /IN ™ is the designed
resonant wavelength, ndffN and ngg denote the effective RI
of the Nth-order diffraction mode of the mth-order cladding
mode and the fundamental mode, respectively. According
to (1), the shorter-wavelength resonance dip corresponds to
a higher diffraction level. Disregarding the effect of fiber
dispersion, the actual resonant wavelength of PEM-ULPFG
is

PREGE (neff - niﬁfN m) A/N

res

(onsg — ongi™) - d2pjan
2
(ne— ™)

where zﬁZ;’" is the actual resonant wavelength and n
and nS denote the effective RI change of the m' order
cladding mode under the Nth-order diffraction mode and the
fundamental mode, respectively Considering the influence of

x |1+

)

cl,N,m

the fusion spliced process, ny and ng; lN " are expressed as
co(cl,N,m
6neff( ) = ONresidual + 5ndensity + 5nexpansion (3)

where Onpesiqual 1S the disturbance caused by the residual
stress relaxation due to the high temperature generated by
the arc discharge, dngensity is the perturbation caused by the
material density, and Onexpansion i the perturbation caused
by the expansion of the fiber core diameter. From (2), it is
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clear that different resonance dips of the transmission spectrum
of the PEM-ULPFG have different sensitivity to the external
environmental changes since N and m of the cladding modes
are different. The sensitivity characteristics of PEM-ULPFGs
to environmental RI are derived from the following equation:

N N I,N, N,
direém _ direém . dnsz " _ _ﬁ . diresm (nc1, ne) (4)
dne dng%?”’" dne N dne
where n, and n. are the RI of the environment and the
fiber cladding, respectively. When n, < n. and diﬁggm < 0,

the resonant wavelength is blue-shifted with surrounded RI

increased. Similarly, we obtained the temperature sensitivity
of the PEM-ULPFG

A"
aT
(a2 1an) (o + eonss — caci™™)
= \NmN

2
co cl,N,m
(”ef T Meff )

(onsg — onsy™™) - dap/dn

2
(e = ™)
(dﬂ.?s/’m/d[\) (OC + fccng?f _ fcllgf:fN’N’m)

(e =)’
where a is the thermal expansion coefficient (TEC) of the
fiber, and &, and & are the thermo-optical coefficients (TOCs)
of the fiber core and cladding, respectively. From (5), AN
is inversely proportional to N. The temperature sensitivity of
MMF-LPFGs is independent of the diffraction order, which is
constant for the same cladding mode but different diffraction
order modes [15]. In addition, the temperature sensitivity of
the resonance dip is different for different wavelengths due to
different cladding modes.

Numerical simulation based on the beam propagation
method (BPM) is carried out to reveal the transmission spectra
and light propagation in the PEM-ULPFG. In the simulation,
the core/cladding diameters of MMF and SMF are 105/125
and 8.3/125 um, respectively. The RI of the core/cladding RI
of MMF and SMF are 1.4628/1.444 and 1.4501/1.444 RIU,
respectively. The mesh size is 0.2 um in the XY-direction
and 1 um in the Z-direction. As shown in Fig. 2(a), there is a
strong energy exchange between the core and cladding during
transmission due to the severe mismatch of core diameters
between MMF and SMF. Therefore, MMF can reduce the
number of cycles for shorter sensor lengths. As shown in
Fig. 2(b), the five main resonance dips obtained by simu-
lation are at 1091.7, 1185.8, 1290.5, 1451.2, and 1640.6,
respectively. The deviation between simulation results and
experimental results is caused by the welding process.

As shown in Fig. 2(c), dip 3, dip 4, and dip 5 are selected
for simulation according to actual needs, and the mode field
is obtained. Dip 3 (?LPg3) and dip 4 (*LPgi2) have lower
cladding mode order than dip 5 (*LPg;s), and dip 4 (*LPg12)
has the highest diffraction order according to the theory
mentioned in [15].

_ co cl,N,m
= (”eff_”eff )A I+

(5)
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Fig. 2. (a) Energy distribution of light wave in the PEM-ULPFG.

(b) Transmission spectra of PEM-ULPFG. (c) Simulated mode field of
the PEM-ULPFG of dip 3 and dip 5. The resonance of the cladding
mode of the mth order with diffraction order N in the figure is expressed
as NLPg .
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Fig. 3. (a) Transmission spectra with periods of 2, 3, 4, and 5.
(b) Transmission spectra of three samples with the same parameters.

IV. EXPERIMENT AND DISCUSSION

Fig. 3(a) shows the experimental transmission spec-
trum evolution of the PEM-ULPFG with periods number
from 2 to 5. For a PEM-ULPFG with two periods, the
phase matching condition is not satisfied, and no resonant
dips appear. For the device with three periods, there are five
resonance dips with a relatively low extinction ratio (ER)
of about 5 dB. For the device with five periods, too many
resonant dips appear in the spectrum, which is not suitable
for practical applications. And four periods produce the best
resonance dips.

In order to verify the repeatability of the device, three
more samples with the same parameters have been fabricated.
Their transmission spectra are shown in Fig. 3(b). The slight
variation of the resonant wavelength and the related ER are
caused by the length errors of the SMF section or MMF
section. Meanwhile, the electrode aging of the fusion splicer
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TABLE |
RESPONSES OF THE TARGET RESONANT DIPs TO Rl
Dip number Linear fitting function RI sensitivity(nm/RIU) R? Measurement range (RIU)
3 y = —182.1x + 1503.9 —182.1 0.98 1.3333 — 1.4021
y = —405.52 + 1817.8 —405.5 0.95 1.4021 — 1.4383
4 y = —294.2z 4 1826.4 —294.2 0.97 1.3333 — 1.4021
y = —1230x + 3139.1 —1230 0.98 1.4021 — 1.4383
5 y = —263.92 + 1980 —263.9 0.99 1.3333 — 1.4021
y = —675.5z 4+ 2556.4 —675.5 0.99 1.4021 — 1.4383
@) v — y=0.0526x-1.21 ° (b)12767=
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Fig. 4. Schematic of the Rl and temperature measurement device.
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Fig. 5. (a) Wavelength shift of PEM-ULPFGs at different RI; RI response
of different resonance dips (b) dip 3, (c) dip 4, and (d) dip 5.

also influences the dnresidual » OMdensity » and OMexpansion in (3).
But the subtle difference is acceptable.

Fig. 4 shows the schematic of the RI and temperature
measurement device. The supercontinuum light source (SCL)
SC-5 (YSL Photonics Company Ltd.) produces continuous
light in the wavelength range of 1000-1700 nm. An optical
spectrum analyzer (OSA) AQ6370D (YOKOGAWA Company
Ltd.) with a resolution of 0.02 nm records the transmission
spectra. The sensor is held by a pair of fixtures. The RI
sensitivity is measured at room temperature (25 °C). Calibrate
index-matching solutions with RI from 1.3333 to 1.4383 RIU
is prepared by the aqueous solution of glycerol with different
concentrations. The power of the thermostat is disconnected.
Different index-matching solutions are dripped to the sensor.
The transmission spectra recorded by the OSA are shown in
Fig. 5(a).
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Fig. 6. (a) Wavelength drift of PEM-ULPFGs at different temperatures;
temperature response of different resonance dips (b) dip 3, (c) dip 4, and
(d) dip 5.

As is analyzed in Section III, the resonance dip is
blue-shifted with the RI increased. Fig. 5(b)—(d) shows the
RI responses of dip 3—dip 5, respectively. The RI sensitivity
at different dips of the sensor is obtained by linear fitting. The
results are listed in Table I.

The RI sensitivities of the target dips are different due to
the different diffraction orders and cladding mode orders they
belong. A segmented linear function is used to fit the rela-
tionship between the RI changes and the resonant wavelength
shift. In the range of 1.3333-1.4383 RIU, dip 4 exhibits the
highest RI sensitivity (—1230 nm/RIU) among the three target
dips. As a result, dip 4 is selected to measure the surrounded
RIL

The temperature response of the sensor is also characterized
using a constant temperature furnace in the temperature range
from 30 °C to 130 °C. We recorded the transmission spectra
every 10 °C. The resonant dips shift to a longer wavelength
with the increased temperature. The temperature sensitivity is
obtained using linear fitting. The spectrum evolution of the
three target dips and the linear fitting results are depicted
from Fig. 6(a)—(d). The temperature response function and
the goodness of fitting are listed in Table II. The different
temperature sensitivity of the three dips is caused by their
different cladding mode orders, but the difference in diffraction
order does not affect the temperature sensitivity.

We note that although the temperature sensitivity is similar,
the RI sensitivity of the five dips a different. Considering
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TABLE Il
RESPONSE RESULTS OF THREE RESONANT DIPS TO TEMPERATURE

Dip number Linear fitting function Temperature sensitivity (nm/°C) R2 Measurement range (°C)
3 y = 0.0642z + 1287.1 0.0642 0.99 30-130
4 y = 0.0526x + 1447.5 0.0526 0.99 30-130
5 y = 0.0923z + 1653.8 0.0923 0.99 30-130
TABLE Il
CHARACTERISTICS OF FIBER SENSORS FOR DUAL-PARAMETER MEASUREMENT
Structure RI sensitivity (nm/RIU) Temper(a;;r]/eosg)n sitivity Number of periods Dynamic range (RIU)
Slde—[hrO\[ﬂ; ]mduced MZI 730.5 15 } 1.33-1.42
SFT-MZI [Cz"ff]caded LPFG 311.48 45.87 60 1.333-1372
CO3 laser induced
ULPFG [13] 741 78 16 1.43-1.45
Femtosecond laser
induced ULPEG [17] 626.4 110 25 1.412-1.454
Present work -294.2& -1230 92.3 4 1.333-1.4021&

1.4021-1.4383

the practical applications and the costs, we choose dip 4 (at
1444.6 nm) to measure the RI and dip 5 (at 1649.2 nm) to
monitor the temperature changes.

To realize the dual-parameter measurement, dip 4 and dip
5 are selected with wavelength drift of Adgipa and AAgip B,
temperature sensitivity of K7, and Kr,, and RI sensitivity
of K,, and K, ,, respectively. The amount of variation of n
and T in the environment is An and AT. By bringing in the

matrix
Addipa ) _ ( Kny K1y An ©
Aj~dipB KnB KTB AT ]~
The equation for the change in RI after temperature com-
pensation is obtained as
—1
An — Kn, K, A}LdipA %)
AT K., Kry Aidipg ’

Dip 4 and dip 5 were selected to demodulate the parameters.
The minimum resolution of the spectrometer is 0.02 nm, which
is substituted into (7) to obtain the resolution of the sensor.
Within the range of 1.3333-1.4021 RIU

An\ _ {2942 0.0526\ " (Aldipa ®
AT )]\ -263.9 0.0923 AdgipB ]~
The maximum resolution of RI and temperature is 6 X

107> RIU and 0.046 °C, respectively, by solving the matrix
equation. Meanwhile, within the range of 1.4021-1.4383 RIU

( An) 3 (—1230 0.0526)1 (MdipA) ©
AT )~ \ —-675.5 0.0923 AdgipB ]~

At this time, the environmental RI and temperature reso-
lution are 1 x 10> RIU and 0.14 °C, respectively. Hence,
simultaneous measurement of RI and temperature with high
sensitivity is realized.

Table III shows a comparison of the sensing performances
between the PEM-ULPFG and the fiber sensors for dual-
parameter sensing. The highest RI sensitivities of conventional

MZI, LPFG, and ULPFG are usually lower than 1000 nm/RIU.
The measurement range of these sensors is also limited. The
maximum RI sensitivity of the proposed PEM-ULPFG is
higher than the other sensors. In addition, the period number
and the total length of the PEM-ULPFG are also shorter than
the others.

V. CONCLUSION

In summary, we designed and fabricated an ULPFG based
on periodically embedding MMF into SMF for high-sensitivity
measurement of RI and temperature. The PEM-ULPFG shows
five resonant dips in the wavelength range of 1000—1700 nm.
The RI sensitivity is greatly enhanced by using the core
diameter mismatch. Numerical simulation based on BPM is
carried out to design, optimize, and verify the parameters
and mode fields of the sensor. Experimental results show
that the sensitivities of the different resonant dips vary
from each other due to the different orders of the diffrac-
tion mode and cladding modes, the highest sensitivity of
—294.2 nm/RIU (1.3333-1.4021 RIU) and —1230 nm/RIU
(1.4021-1.4383 RIU) is achieved by tracing dip 4. The temper-
ature response of dip 4 is also characterized to be 52.6 pm/°C.
Dip 5 is used for measuring temperature with the temperature
sensitivity of 92.3 pm/°C, which is about twice as much as that
of dip 4. The different responses to the external changes of the
dips obtained by the PEM-ULPFG make the proposed sensor
competitive in the field of high sensitivity and dual-parameter
sensing.
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