
Signal, Image and Video Processing (2022) 16:1297–1304
https://doi.org/10.1007/s11760-021-02081-3

ORIG INAL PAPER

Single-image dehazing using scene radiance constraint and color
gradient guided filter

Haonan Han1,2 · Feng Qian1 · Bao Zhang1

Received: 26 July 2020 / Revised: 14 May 2021 / Accepted: 31 October 2021 / Published online: 20 January 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Haze and other types of atmospheric particles limit visibility and reduce image contrast, which will seriously influence the
visual system. In recent years, most existing single-image dehazing algorithms have made significant progress. However,
most of the existing dehazing algorithms suffer from under- or over-enhancement, color distortion and halo artifacts. The
dark channel prior which is widely recognized also has such problems due to improper assumptions or operations. To solve
these problems, in this paper, a scene radiance constraint is proposed to remove haze and a color gradient guided filter is
proposed to refine the initial transmission map. From the experimental results, it is demonstrated that the proposed method
achieves excellent performance compared with the representative dehazing methods in terms of image’s visibility and color
restoration.

Keywords Dark channel prior · Scene radiance constraint · Color gradient guided filter

1 Introduction

Haze is universal weather in outdoor imaging. Images
acquired with haze often have low contrast and poor visi-
bility. In a hazy weather, due to the absorption and scattering
of atmospheric particles, reflected light from an object will
be directly attenuated, and the atmospheric light will also be
scattered into the imaging system. Thus, the colors of the
scene get faded and become more similar to the haze. The
existence of haze dramatically affects the visual system and
brings certain difficulties to target tracking and recognition.

Although single-image dehazing is a challenging ill-posed
problem,many assumptions and priors havemade significant
progress [1–10]. Color attenuation prior (CAP) [1] states
that the difference between the brightness and the satura-
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tion is highly related to the concentration of haze in the hazy
image. The difference between the brightness and the satu-
ration can be utilized to dehaze. Multi-scale convolutional
neural networks dehazing (MSCNN) [4] and DehazeNet [5]
are learning-based methods which use the dataset to learn
effective features and the trained model can be utilized to
dehaze. Non-local dehazing (NLD) [3,11] state that colors
of the haze-free image are clustered in RGB space. The pix-
els become haze-lines passing through the atmospheric light
under the influence of haze. The distance between pixel and
atmospheric light in a hazy-line is highly correlated with the
concentration of haze. Dark channel prior (DCP) [2] is the
most popular dehazing algorithm and various dehazing algo-
rithms have been proposed to improve it.

Dark channel prior is a fast and reliable single-image
dehazing algorithm. The prior can achieve a quite com-
pelling dehazing results. However, the prior is not always
accurate, when some objects in the scene are brighter than
atmospheric light, dark channel prior will fail and cannot
correctly estimate initial transmission map. Besides, the esti-
mation of initial transmission map always suffers from block
artifacts and noise. The transmission map should be refined.
However edge-preserving smoothing techniques such as the
guided image filter (GIF) [12] and weighted guided image
filter (WGIF) [13] always over smooth images and produce
halo artifacts. In this paper, scene radiance constraint and
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color gradient guided filter are introduced to address these
problems.

Other sections of the paper are arranged as follows: The
dark channel prior is briefly reviewed in Sect. 2. Section 3
presents the proposed method in detail. Experimental results
are presented in Sect. 4 to verify the dehazing effect. The
paper is finally summarized in Sect. 5.

2 Previous work

The atmospheric scattering model [15–17] with hazy images
is widely denoted by:

I (x) = J (x)t(x) − A(1 − t(x)) (1)

where x denotes the pixel coordinates, I (x) is the observed
image with haze, and J (x) is the corresponding image with-
out haze, t(x) is the transmission, A is the atmospheric light.

Dark channel prior [2] was found after extensive obser-
vation on haze-free images (except for sky areas and white
areas): inmost local blocks, there is a color channel with very
low intensity values close to zero. Minimizing all pixels in
the block to calculate the dark channel:

J dark(x) = min
c∈r ,g,b( min

y∈�(x)
J c(y)) (2)

where � represents a window of squares with x as the center
pixel, J c is a certain RGB color channel of J . Atmospheric
light A is estimated as the brightest pixel in the hazy image
corresponding to 0.1% of the highest intensity in dark chan-
nel. It is assumed that the transmission of each local block
�(x) is constant. In this paper, the block’s transmission is
presented by t̃(x). The minimization operation for the atmo-
spheric scattering model (1) in the local block is calculated:

min
y∈�(x)

(I c(y)) = t̃(x) min
y∈�(x)

(J c(y)) + (1 − t̃(x))Ac (3)

Further, by taking theminimum operation on the above equa-
tion among three color channels, the following is obtained:

min
c

(
min

y∈�(x)

(
I c(y)

Ac

))
= t̃(x)min

c

(
min

y∈�(x)

J c(y)

Ac

)

+(1 − t̃(x))

(4)

It is known that the J dark(x) of the haze-free image J
approaches 0. The transmission t̃(x) is estimated:

t̃(x) = 1 − min
c

(
min

y∈�(x)

(
I c(y)

Ac

))
. (5)

The haze concentration and dark channel are highly cor-
related in the hazy image. The prior can achieve a quite

satisfactory dehazing results.However, the prior is not always
accurate. According to Eq. 5, dark channel prior will fail if
some objects in the scene are brighter than the atmospheric
light.

min
c

(
min

y∈�(x)

(
I c(y)

Ac

))
≥ 1, and t̃(x) ≤ 0. (6)

Besides, when smoothing the initial transmission map with
the original guided filter [12], it is not ideal for halo arti-
facts suppression. For its constant regularization parameter
has excessive smoothing effect around the edges which may
produce halo artifacts.

In the next section, a transmission estimation method
using the scene radiance constraint is proposed to address
the shortcoming of dark channel prior. We also introduce
color gradient guided filter to reduce halo artifacts.

3 Proposedmethod

3.1 Scene radiance constraint

Dark channel prior [2] has the above-mentioned problems
due to its incomplete assumption. In other words, dark
channel prior needs further research and development. Equa-
tion (1) is transformed as:

J (x) = 1

t(x)
(I (x) − A) + A. (7)

In order to acquire the dehazed image J (x), transmission
t(x) and atmospheric light A need to be estimated. Atmo-
spheric light A is generally determined by picking particular
pixels of hazy images or using some specificmethods. Atmo-
spheric light A is estimated in this paper through dark channel
prior, due to its simplicity and efficiency. Next, the initial
transmission map t(x) is obtained by using inherent scene
radiance constraint.

The scene radiance has an inherent constraint which can
be written as:

0 ≤ Jc(x) ≤ 255. (8)

The constraints on t(x) are derived from Eqs. (7) and (8):

t(x) ≥ Ic(x) − Ac

−Ac
(9)

t(x) ≥ Ic(x) − Ac

255 − Ac
. (10)
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The two constraints can be combined into a lower bound
tlb(x):

tlb(x) = max

{
max

c∈r ,g,b

{
Ic(x) − Ac

−Ac

}
,

max
c∈r ,g,b

{
Ic(x) − Ac

255 − Ac

}} (11)

0 ≤ tlb(x) ≤ t(x) ≤ 1. (12)

We establish a cost function that includes smoothness term
and boundary term and estimate the initial transmission map
by minimizing this cost function.

E(t) =
∑
x

∑
y∈N (x)

|t(x) − t(y)|
||I (x) − I (y)||22

+
∑
x

B(x) (13)

where y ∈ N (x) indicates y is a neighboring pixel of x .
The smoothness term is constructed by assuming that

neighboring pixels with similar colors share similar trans-
missions. The boundary term is constructed based on lower
bound constraint and dark channel prior [2]. For dark channel
prior, pixels of a local block�(x) have at least one dark pixel.
But it is impossible to verify which pixels in hazy image are
dark pixels, because pixels that do not satisfyminc I c(x) = 0
can always be explained as dark pixels affected by haze. For
this problem, we consider every pixel that satisfies the lower
bound constraint as a potentially dark pixel to preserve all
possibilities [18]. Therefore, it is further assumed that the
lower bound of all pixels in the local block �(x) are can-
didates of t(x). The label set L(x) is defined by the lower
bound constraint and the dark channel prior as:

L(x) = {tlb(y)|tlb(y) > tlb(x), y ∈ �(x)} . (14)

The boundary term is obtained from the label set

B(x) =
{
0 t(x) ∈ L(x)

∞ t(x) /∈ L(x)
. (15)

It is worthy to point out that if we replace the preserving all
possibilities with the local constant assumption, the label set
becomes L(x) = maxy∈�(x) tlb(y), where the first constraint
is the same as that of the dark channel prior. In addition, when
some objects in the scene are brighter than atmospheric light,
dark channel prior cannot correctly estimate the transmis-
sion. Therefore, the proposed algorithm uses an additional
constraint that is used to prevent the overflow of recovered
pixel values.

The typical multi-label problem of minimizing the cost
function is solved by α-expansion [19–21]. α-expansion
makes the cost function decrease by adjusting one label per
expansion, traversing all labels until the cost function fails to

decrease in all expansions of the adjusted labels, and the algo-
rithm stops and reaches a local optimum, which results in an
optimal solution for the initial transmission map. The initial
transmission map that introduces redundant edges and noise
should be corrected. However, edge-preserving smoothing
techniques will always over smooth images and thus produce
halo artifacts. Fortunately, these artifacts can be attenuated
by the proposed color gradient guided filter.

3.2 Color gradient guided filter

For the original guided filter [12], the fixed regularization
parameter λ has the same smoothness. When consider-
ing image smoothing and edge-preserving together, edge
smoothing may be unavoidable due to the constant regu-
larization parameter λ. In other words, halo artifacts are
unavoidable for the original guided filter in some cases. To
attenuate the halo artifacts, we design the color gradient
guided filter by introducing the weight ϕ to guided filter.
The critical precondition for guided filter is the local linear
model which ensures that the filtered image qi has edges
only when the guidance image I has edges. It needs to be
solved by maintaining the local linear model while minimiz-
ing the difference between the initial transmission map t(x)
and refined transmission map t̃(x):

E =
∑
x∈ωk

(
(ak I (x) + bk − t(x))2 + λ

ϕ(x)
a2k

)
(16)

whereωk represents a square windowwith a pixel k centered,
ak and bk are two constants, ϕ is the adaptive edge aware
weight. Compared with original guided filter, we introduce
an adaptive weight [13,14] so that the constant regulariza-
tion parameter can adjust adaptively according to different
cases. The ideal weightmodel requires that pixels have a high
weight at the edge and a low weight at the non-edge. There-
fore, the gradient information of pixels can be amplified or
suppressed by designing a weight based on the exponential
function. ϕ is defined as follows:

ϕ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε +
(
CG(x)

k

)CG(x)
k

CG(x) ≥ k

ε + 1(
k

CG(x)

) k
CG(x)

CG(x) < k (17)

where CG(x) [22] is the color gradient map of the guidance
image I , k is the threshold used to determine edges, and its
value is chosen as mean(CG(x)), ε is a constant chosen to
be (0.001 × DR)2, DR is the dynamic scope of image to be
filtered.
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(a) (b) (c) (d)

Fig. 1 Dehazing result. a Hazy image; b Initial transmission map; c Refined transmission map by the proposed CG-GIF; d Dehazed image

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2 Comparison of the GIF, the WGIF and Ours. a, e Hazy images; b, f Dehazed results by the GIF; c, g Dehazed results by the WGIF; d, h
Dehazed results by ours. Both GIF and WGIF suffer from halo artifacts while our proposed CG-GIF effectively suppresses halo artifacts

The optimal solutions of ak and bk are calculated as:

ak =
1

|ω|
∑

x∈ωk
I (x)t(x) − μk t(x)

σ 2
k + λ

ϕ(x)

(18)

bk = t(x) − akμk (19)

where μk is the mean of I , and σ 2
k is the variance of I , |ω|

is the number of pixels, and t(x) = 1
|ω|

∑
x∈ωk

t(x) is the
mean of t(x). After obtaining the linear coefficients (ak, bk),
the refined transmission map t̃ is calculated by the following
equation:

t̃(x) = a(x)I (x) + b(x) (20)

where a(x) and b(x) are the averages of ak and bk for all
windows, calculated as:

a(x) = 1

|ωx |
∑
k∈ωx

ak (21)

b(x) = 1

|ωx |
∑
k∈ωx

bk, (22)

where |ωx | is the cardinality of ωx .
Figure 1c is the result of refined transmission map. Due to

the regularization step, noise in the initial transmission map
is suppressed, edges and outlines of objects can be found.
The dehazed image J (x) is derived by:

J (x) = I (x) − A

max(t̃(x), t0)
+ A (23)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 3 Comparison of the proposed dehazing algorithm and the dehazing algorithms in CAP, DCP, NLD via hazy images. a, f, k Hazy images; b,
g, l Dehazed results by CAP; c, h, m Dehazed results by DCP; d, i, n Dehazed results by NLD; e, j, o Dehazed results by proposed method

where the value of t0 is set to 0.1. To avoid noise amplifi-
cation, a lower limit t0 is restricted on the transmission map
t̃(x).

4 Experiment

4.1 Qualitative results

The proposed CG-GIF is used to compare with GIF [12] and
WGIF [13] for single-image haze removal. To be fair, we
use the same haze removal method for both GIF and WGIF.
As shown in Fig. 2, both GIF and WGIF can over smooth
images and produce halo artifacts, especially in the fine struc-
ture regions. Clearly, the proposed CG-GIF can effectively
suppress halo artifacts and preserve the edges of objects.

The proposed dehazing method is in comparison with
three other representative dehazing methods [1–3] by six
hazy images. All parameters are set according to the param-
eters picked by the algorithms in [1–3]. In Figs. 3 and 4, the
algorithm in [1] works well for haze removal in the thin haze,
but it does not work well when the haze is thick. The rea-
son for this is that the scattering coefficient and the learned
linear model coefficients are fixed. These coefficients need
to be adaptively adjusted according to the concentration of

haze in hazy image. It is demonstrated in Figs. 3 and 4 that
the algorithm in [2] dehazes well but the transmission map of
[2] has redundant details which are not related to the amount
of haze. As a result, the contrast of the dehazed images is
underestimated. Moreover, the dehazed images produce halo
artifacts in edge areas. It is confirmed in Figs. 3 and 4 that the
algorithm in [3] can perform better haze removal than other
dehazing algorithms but it may appear wrong clustering the
pixels into haze-lines and lead to color shifts. Experimen-
tal comparison reveals that the proposed algorithm generates
quite better dehazing results with faithful color and few halo
artifacts.

4.2 Quantitative results

Good dehazing methods need to enhance image visibility
and preserve image color and structure. To quantitatively
evaluate these dehazingmethods, we calculate the image vis-
ibility metric visual contrast measure (VCM) [23], the color
restoration metric blind assessment indicator σ [24] and the
structural similarity (SSIM) [25].

The visual contrast measure (VCM) is an objective eval-
uation method that can evaluate image visibility. VCM
calculates the variance of each sub-area after dividing the
image into several sub-areas and counts the proportion of the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 4 Comparison of the proposed dehazing algorithm and the dehazing algorithms in CAP, DCP, NLD via hazy images. a, f, k Hazy images; b,
g, l Dehazed results by CAP; c, h, m Dehazed results by DCP; d, i, n Dehazed results by NLD; e, j, o Dehazed results by proposed method

number of sub-areas with variance higher than the threshold
to the number of all areas, which is defined as:

VCM = 100 ∗ Av/At , (24)

where Av denotes the number of sub-areas whose is exceeds
the threshold, At denotes the number of all sub-areas in a
single image. In our experiments, the OTSU threshold image
segmentation algorithm is chosen to calculate the threshold
adaptively. The better the visibility of the dehazed image, the
higher the VCM.

The blind assessment indicator σ [24] is an objective eval-
uation method that can evaluate color restoration of dehazed
images. Hazy images are affected by haze and color satura-
tion is decreased, so σ is calculated as the ratio of saturated
pixels after image dehazing:

σ = ns
M ∗ N

, (25)

where M and N indicate the image width and height and ns
indicates the number of saturated pixels of dehazed image.
The better the color restoration, the smaller the σ .

Structural similarity (SSIM) [25] is an objective evalua-
tion method that can evaluate the structural similarity ability
between hazy image I (x) and dehazed image J (x), and it is
calculated as:

SSIM(I , J ) = [l(I , J )]α · [c(I , J )]β · [s(I , J )]γ , (26)

where l, c, s are luminance, contrast and structure comparison
function, respectively. α, β and γ are weights to adjust the
three comparison function. l, c and s are calculated as

l(I , J ) = 2μIμJ + C1

μ2
I + μ2

J + C1
(27)

c(I , J ) = 2σIσJ + C2

σ 2
I + σ 2

J + C2
(28)

s(I , J ) = σI J + C3

σIσJ + C3
(29)
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Table 1 Quantitative comparison

Algorithms VCM σ SSIM t

CAP 68.2692 0.0004 0.8666 0.9089

DCP 73.4615 0.0006 0.8661 1.0259

NLD 77.1154 0.0054 0.6834 9.5947

Ours 78.1538 0.0001 0.8706 1.2337

Bold values indicate the best performance

Table 2 Quantitative comparison

Algorithms VCM σ SSIM t

CAP 24.5000 0.0081 0.8107 0.6519

DCP 40.1667 0.0019 0.5994 0.7921

NLD 27.1667 0.0037 0.5419 7.6626

Ours 41.6667 0.0005 0.8359 0.9449

Bold values indicate the best performance

where μI is the mean of I , μJ is the mean of J , σ 2
I is the

variance of I , σ 2
J is the variance of J , σI J is the covariance

of I and J . The constant C1, C2 and C3 are included to
avoid instability. A higher SSIM indicates that the hazy and
dehazed images are more similar in terms of structure.

The results listed in Tables 1 and 2 demonstrate that the
proposed method performs best on all metrics. The compar-
isons show that the proposed method can recover haze-free
images with faithful color and high image visibility. How-
ever, the computation cost of the proposed algorithm is
slightly higher than original dark channel prior.

5 Conclusion

In this paper, a haze removal algorithm based on the dark
channel prior and the inherent scene radiance constraint is
proposed. When some objects in the scene are brighter than
the atmospheric light, the inherent scene radiance constraint
is still valid. For each pixel, we build a label set that preserves
all possibilities in place of the local constant assumption.
The label set fully exploits dark channel prior. Therefore, the
proposed method can estimate the transmission map more
reliably. Besides, we propose a color gradient guided filter
by introducing a weight ϕ to GIF. Processing images with the
proposed filter is able to preserve better details than existing
guided filters in regions of the structure and effectively sup-
presses the generation of halo artifacts. Our method can be
visually quite satisfying results in a cost of moderate com-
putational cost increasement.
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