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Abstract: Hyperspectral images are characterized by hundreds of spectral bands and rich information.
However, there exists a large amount of information redundancy among adjacent bands. In this study,
a spatial–spectral combination method for hyperspectral band selection (SSCBS) is proposed to reduce
information redundancy. First, the hyperspectral image is automatically divided into subspaces.
Seven algorithms classified as four types are executed and compared. The means algorithm is the
most suitable for subspace division of the input hyperspectral image, with the calculation being the
fastest. Then, for each subspace, the spatial–spectral combination method is adopted to select the
best band. The band with the maximum information and more prominent characteristics between
the adjacent bands is selected. The parameters of Euclidean distance and spectral angle parameters
are used to measure the intraclass correlation and interclass spectral specificity, respectively. Weight
coefficient quantifying the intrinsic spatial–spectral relationship of pixels are constructed, and then
the optimal bands are selected by a combination of the weight coefficients and the information
entropy. Moreover, an automatic method is proposed in this paper to provide an appropriate number
of band sets, which is out of consideration for existing research. The experimental results show,
as compared to other competing methods, that the SSCBS approach has the highest classification
accuracy on the three benchmark datasets and takes less computation time. These demonstrate that
the proposed SSCBS achieves satisfactory performance against state-of-the-art algorithms.

Keywords: band selection; hyperspectral image; inter-spectral specificity; spatial–spectral combination;
spatial correlation

1. Introduction

Hyperspectral images are high-dimensional data containing rich spatial, spectral
and radiation information, and have been widely used in fine agriculture, geological
exploration, environmental monitoring, urban remote sensing, military reconnaissance
and other fields [1]. These applications often require classifying each pixel in the scene.
Because there are a huge number of features (or spectral bands) with only limited training
samples available, HSI classification becomes a challenging task. Many spectral bands
provide rich information for classifying various materials in the scene. However, with
limited training samples, the performance of classifiers deteriorates as the dimensionality
increases [2] (Hughes phenomenon [3]). High-dimensionality data processing also requires
huge computational resources and storage capacity [4]. Meanwhile, the spectral bands are
often correlated, and not all of them are useful for the specific classification task. Therefore,
to achieve an excellent classification performance, a dimension reduction (DR) procedure
is necessary.
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Hyperspectral image dimensionality reduction methods are primarily divided into
two categories: the feature extraction and the band selection [5]. Feature extraction trans-
forms the feature attributes of all bands from high-dimensional space to low-dimensional
space to generate a new feature space. In this way, the highest possible classification accu-
racy is retained. However, the original pixel values will be changed after the transformation,
which changes the physical characteristics, and is not conducive to the automatic recog-
nition and ground object inversion of hyperspectral remote sensing images [6,7]. Classic
feature extraction methods include principal component analysis (PCA) [8], orthogonal sub-
space projection (OSP) [9], linear discriminant analysis (LDA) [10,11], locality preserving
projection (LPP) [12], neighborhood preserving embedding (NPE) [13], local discriminant
embedding (LDE) [14], non-parametric weighted feature extraction (NWFE) [15], local
Fisher discriminant analysis (LFDA) [16] and marginal Fisher analysis [17]. Band selection
involves directly selecting a representative band subset from all the bands of hyperspectral
image data according to certain criteria or search strategy to express the features of the
whole hyperspectral data to achieve dimension reduction [18–21]. Band selection methods
can be categorized as supervised, semi-supervised and unsupervised methods. Supervised
learning methods use labeled data to determine the importance of bands. For instance,
Yang et al. [22] proposed a sequential forward selection (SFS) searching strategy for band
selection. In [23], Archibald and Fann introduced an embedded feature selection algorithm
that was tailored to operate with support vector machines (SVMs). Semi-supervised band
selection methods combine the advantages of both supervised and unsupervised methods.
Bai et al. [24] proposed a semi-supervised learning method that estimates the vectors of the
mean values and covariance matrices for each class under the assumption of a Gaussian
mixture model. Chen et al. [25] combined Fisher’s criteria and a graph Laplacian to explore
labeled and unlabeled samples simultaneously. Unsupervised methods do not need to learn
a predictive model from training data. Classic unsupervised methods often use a priori
knowledge of the scene to measure the statistical dependence between bands and evaluate
the contribution of each band in the classification. Most methods are clustering-based and
sorting-based. Clustering-based methods first separate all the bands into clusters firstly,
and then select the most representative bands in each cluster to constitute the band subset.
Sorting-based methods assign each band a rank value and simply select the top-rank bands
with the desired number. Reza et al. [26] proposed a method for selecting distinct and
informative bands in a prototype space, which was constructed by clustering raw image
data. Bands are selected based on either their orthogonal distance to the diagonal of the
prototype space or their angular distance related to the correlation between neighboring
bands. Adaptive Band Selection algorithm (ABS) [27] obtains the ABS index by calculating
the standard deviation of each band and the correlation coefficients of its adjacent bands.
Then the ABS index is sorted from largest to smallest, and the bands that are larger than a
certain threshold or the first m predetermined bands are selected. A. Rodriguez proposed a
fast density-peak-based clustering (FDPC) algorithm. FDPC is a sorting-based clustering
algorithm, which identifies cluster centers through investigating the local density and
the intra-cluster distance of each band. Later, Sen Jia proposed an enhanced FDPC (E-
FDPC) [28] that was more suitable for hyperspectral band selection. The fast neighborhood
grouping method (FNGBS) [29] uses a coarse-fine strategy to segment a hyperspectral im-
age cube in space, and then the best bands as a subset is obtained according to local density
and information entropy. Both TRC_OC_FDPC and NC_OC_MVPCA algorithms [30] are
implemented based on a clustering framework. The TRC_OC_FDPC algorithm uses TRC
(top-rank cut) as the objective function and E-FDPC as the sorting method to realize the
algorithm, and the NC_OC_MVPCA algorithm uses NC (normalized cut) as the objective
function and MVPCA as the sorting method. TRC chooses the bands with the highest rank
values in each cluster. NC is an effective graph-theoretic criterion. MVPCA evaluates the
bands according to their variances.

Recently, spatial–spectral methods have played an important role in the dimensionality
reduction. By fusing spatial and spectral information, the representation of the hyperspec-
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tral image is improved and the classification performance is enhanced. Zhou et al. [31] pro-
posed a spatial and spectral regularized local discriminant embedding (SSRLED) method.
Huang et al. [32] proposed a spatial–spectral manifold reconstruction preserving the embed-
ding (SSMRPE) method. Zhou et al. [33] proposed a spatial–spectral feature dimensionality
reduction algorithm based on manifold learning. Zhao et al. [34] proposed a spectral-
spatial feature-based classification (SSFC) framework. The aforementioned algorithms
are the feature extraction methods. Feng et al. [35] defined discriminate spectral-spatial
margins (DSSMs) to reveal the local information of hyperspectral pixels and explored the
global structures of both labeled and unlabeled data via low-rank representation (LRR).
Bai et al. [36] proposed a semi-supervised band selection method that allowed contributions
from both labeled and unlabeled hyperspectral pixels, and then a linear regression model
with group sparsity constraint was used for band selection.

In recent years, many band selection methods have been proposed; most of them
extract the band subset based on global information. Although the optimal solution
can be found, the calculation is complex and usually trapped into local optimums. The
main reason is that the solution space of the band selection problem is too large to attain
the optimal solution in a limited time. In addition, some methods are very sensitive to
hyperspectral bands containing noises, which makes the selected bands have a strong
similarity. Usually, when implementing band selection, the number of selected bands is
unknown. In most cases, many scholars only pay attention to the different number of
selected bands to explain the impact of precision measurement, ignoring how many bands
to choose is appropriate [29,30]. To tackle these issues, the SSCBS method is proposed. It
combines features based on spatial and spectral separability to provide more discernible
characteristic spectral bands for subsequent image classification, and automatic detection
and recognition of targets. The main contributions are as follows.

(1) Subspace division is proposed to partition the hyperspectral image cube into multiple
groups in space. The bands of high similarity in spectral dimension are assigned into
one group. Seven algorithms are proposed. It is shown through a comprehensive
comparison that the means algorithm is the most suitable, with the computation time
being the shortest.

(2) In each subspace, a spatial–spectral combination method is proposed. The band
with maximum information and more prominent characteristics between different
categories is selected. Compared with most existing methods about selecting repre-
sentative band, this method can better exploit the spatial and spectral characteristics.
The obtained band subset has more discriminative bands simultaneously.

(3) An automatic method to determine the number of appropriate bands is proposed,
which can better evaluate the information redundancy of band set. Experiments
show that this algorithm can offer a promising estimation of band number for various
date sets.

(4) This method is an unsupervised band selection that does not require any label data.

2. Proposed Approach

The spectral resolution of hyperspectral images is extremely high, and the data have
a strong correlation in the spectral domain. Thus, the correlation among adjacent bands
is strong, and the bands have the characteristics of aggregation. To address the above-
mentioned issues, the SSCBS method is proposed. SSCBS can be divided into two main
components. In the first step, the hyperspectral image is automatically divided into sub-
spaces. Automatic subspace division not only accelerates the selection of optimal bands,
but also improves the rationality of band selection to avoid the selected bands too close.
Then, for each subspace, a spatial–spectral combination method is proposed to select the
best band. For each subspace, the spatial and spectral features can be integrated into a
uniformed objective function by constructing weight coefficient. The Euclidean distance
and spectral angle are used to quantify the internal spatial–spectral relationship of each
point in the hyperspectral image. Combined with the information entropy algorithm, the
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representative bands with a large amount of information, low spatial correlation and strong
inter-class spectral specificity are extracted. Finally, the representative band of each sub-
space is combined to construct the optimized band set to achieve dimensionality reduction.
An overall flowchart of the algorithm is presented in Figure 1.

Figure 1. Flowchart of algorithm.

2.1. Subspace Partition

The subspace partition divides the hyperspectral image dataset into multiple sub-
spaces according to the correlation between different bands in the spectral dimension, so
that the band correlation in each subspace is strong, and the correlation between different
subspaces is weak. To select the best subspace partition method, this paper proposes several
subspace partition algorithms, compares them, and finally chooses the best method.

2.1.1. Means Method

The means method is the simplest division. We define X = {x1, x2, . . . , xL} ∈ RN×L as
a hyperspectral image, where N is the number of pixels in each band, L is the total number
of bands, and xi represents the data vector of the ith band. Suppose that M subspaces are
divided, where M > 1, and the number of selected bands should also be set as M. All bands
must be equally divided into M groups of {X′m}m=M

m=1 with M + 1 nodes, and the partition
node G is defined as

G(g) =


1, g = 1⌊

L
M

⌋
× (g− 1), 2 ≤ g ≤ M

L, g = M + 1
(1)

where, b cmeans casting the value to an integer. After partition node G is determined, the
division of M group can be expressed as follows:

X′m = {xi}
i=G(m+1)
i=G(m)

, m = 1, 2, . . . , M (2)

2.1.2. Correlation-Based Method

A more precise spectral division is the characteristic of a hyperspectral image cube,
which results in a strong correlation in the spectral domain. Spectral correlation means that
images of adjacent bands of ground objects at the same position are similar in space. The
main reason for the spectral correlation is that the light reflectivities of the same ground
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object in adjacent bands are very similar [37]. Such a correlation is often described by the
correlation coefficient matrix and the Euclidean distance. The subspace division method
based on the correlation coefficient is referred to as the correlation, and the subspace
division method based on Euclidean distance is referred to as the Euclidean distance. The
correlation coefficient rxy between bands x and y is defined [33,38] as:

rxy =
Cov(x, y)√
D(x)

√
D(y)

(3)

where, Cov is the covariance and D is the variance. The Euclidean distance between bands
x and y is defined as:

dxy = ||x− y||2 =
N

∑
i=1

(xi − yi)
2 (4)

where N denotes the total number of pixels in the image. Using the Indian Pines dataset as
an example, a visualization of the calculated correlation coefficient and Euclidean distance
is shown in Figure 2.

Figure 2. Visualization of the correlation between adjacent bands on the Indian Pines data set
(a) Correlation coefficient (b) Euclidean distance.

The steps for automatic subspace partitioning based on correlation are as follows:

(1) Convert a two-dimensional band image into one-dimensional band vector;
(2) Calculate the correlation coefficient matrix R of adjacent bands, which is defined as

R = [r1,2, r2,3, r3,4 . . . ri,i+1 . . . rL−1,L]; or calculate the Euclidean distance matrix D of
adjacent bands which is defined as D = [d1,2, d2,3, d3,4 . . . di,i+1 . . . dL−1,L].

(3) The local minimum of correlation coefficient matrix R or the local maximum of the
Euclidean distance matrix D is obtained by smoothing the correlation vectors. Suppose
the local minimum or maximum is S. If S > M, take the previous M − 1 values as
nodes, and divide the hyperspectral data cube into M data subspaces. Otherwise, it
can only be divided into S + 1 data subspaces.

2.1.3. Coarse-Fine Partition Method

In hyperspectral images, the correlation of neighborhood bands is greater than that of
non-neighborhood bands. Based on this idea, a coarse-fine strategy for subspace division is
used. Compared with the correlation-based method [39,40], the influence of noise can be
effectively suppressed by using the coarse division method. Only the correlation between
the central band and neighboring bands needs to be calculated, which reduces the running
time of the algorithm and fully mines the association information of adjacent bands.
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The method in Sections 2.1.1 and 2.1.2 can be adopted for the coarse division. Be-
cause the correlation-based method only considers the correlation between adjacent bands
without considering the correlation with the neighborhood, it is easily affected by noise
bands and the division result is not desired. Therefore, fine division strategy is adopted to
subdivide the bands further in order to obtain a more accurate subspace. For each subspace,
xCm is defined as the center of the subspace. For coarse partitioning, the subspace center is
defined as:

Cm = m×
⌊

L
M

⌋
−
⌊

L
2M

⌋
, m = 1, 2, . . . , M (5)

where m denotes the mth subspace. To accelerate the execution efficiency of the algorithm
and fully mine the correlation between adjacent bands, for the center xCm of each subspace,
we only consider its neighborhood band

{
xj
}j=b

j=a and define the values of a and b using the
following formula:

(a, b) =


[1, Cm+1), m = 1

(Cm−1, Cm+1), 2 ≤ m ≤ M− 1
(Cm−1, L], m = M

(6)

By updating the partition node G of the subspace, the bands with high correlation
are divided into the same subspace by using the correlation among the bands in the
neighborhood, so that the band redundancy of different subspaces is lower.

The fine partitioning strategy algorithm is described as follows:
Input: Coarse band grouping for hyperspectral data cube {X′m}m=M

m=1 ;
Output: Fine band grouping for hyperspectral data cube {Xm}m=M

m=1 ;

(1) Define R to record the correlation between the current band xj and the central band
xCm , and initialize R to zero. The subspace label is defined as T which is initialized
to zero.

(2) Calculate the correlation coefficient r(xj, xCm) between the current band xj and the
central band xCm . The correlation between the two bands can be regarded as the
similarity between them. The greater the correlation, the higher the similarity.

(3) If r(xj, xCm) > R(j), set R(j) = r(xj, xCm) and T(j) = m.

(4) Traverse the neighborhood bands
{

xj
}j=b

j=a of each central band xCm .

(5) Remove the influence of the noise. The label value obtained by a neighborhood sub-
space may be [1,1,1,1,1,2,2,2], and the intermediate label value of 2 may be influenced
by noise. A singular value should be removed to avoid noise interference.

(6) In subspace m, for the current band xj, if r(xj, xCm−1) > r(xj, xCm), T(j) = m − 1; if
r(xj, xCm+1) > r(xj, xCm), T(j) = m + 1; else T(j) = m; for j ∈ (Cm−1, Cm), if T(j − 1) = m,
and T(j) = m + 1, the new band partition node of subspace m is G(m), G(m) = j.

(7) Obtain the fine subspace of the hyperspectral data cube {Xm}m=M
m=1 .

Figure 3 illustrates an example of fine subspace partitioning of the hyperspectral
data cube. To facilitate the expression of each algorithm in the experimental stage, in the
coarse-fine partition method, the coarse partition using means is called as the means and
correlation algorithm. The coarse partition using correlation is called as the correlation and
correlation algorithm. The coarse partition using Euclidean is called as the Euclidean and
correlation algorithm.
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Figure 3. Example of hyperspectral image cube finely divided into 5 subspaces.

2.1.4. K-Means Method

The K-means algorithm is a typical distance-based clustering algorithm, which uses
distance as an evaluation index of similarity. In other words, the shorter the distance
between two objects, the greater the similarity. The algorithm considers that clusters are
composed of objects close to each other. Therefore, the ultimate goal is to obtain compact
and independent clusters. The k-means algorithm adopted in this study is not exactly the
same as traditional k-means algorithm. According to the characteristics of the hyperspectral
image dataset, each band is regarded as a point, the similarity between points is evaluated
by the Euclidean distance between bands, and a compact and independent cluster is sought
as a subspace. The steps of subspace division based on k-means clustering are as follows:

(1) From L bands, according to the principle of equal-spacing partition, each equal-
spacing subset is taken as the initial cluster to find M cluster centers xCm (M = 1,2 . . .
M) as the initial clustering center, and the cluster label T is defined.

(2) For two adjacent cluster centers of xCm and xCm+1 , and for each band of xi, calculate
the Euclidean distance di,m and di,m+1 between xCm , and xi, and between xCm+1 and
xi, and take the label of the cluster center with a smaller Euclidean distance as the
updated cluster label of this band.

(3) Recalculate the center of each cluster xCm

(4) Repeat Steps (2) and (3) until all cluster centers do not change or the maximum
number of iterations is reached.

(5) The final M clusters are the desired M subspaces.
(6) If the cluster label is not continuous (e.g., the cluster label is... 1,1,1,1,2,2,1,1,1,1,2,2,2,2...),

in other words, if there are noise bands, the discontinuous label must be updated to
a label that is closer to the cluster. In the preceding example, 2,2 and 1,1,1,1 denote
discontinuous labels. The distance between 2,2 and its cluster is 4, and the distance
between 1,1,1,1 and its cluster is 2.

Figure 4 shows an example of dividing 4 subspaces by K-means method on the Indian
Pines dataset. The ifferent colors represent the different subspaces, and the black fork
marks the clustering center.
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Figure 4. Example of dividing 4 subspaces by K-means.

The comparison and analysis of the four subspace partition methods in this section
are carried out in Section 3.3, based on classification performance in two dimension and
computing time.

2.2. Spatial–Spectral Joint Information

After the subspace partition is completed, the method for finding the best band in
each subspace is the focus of this study. Other band selection methods treat each image as a
point and only consider the correlation between bands, but ignore the correlation between
pixels in each band and the spectral specificity between the target and background. To
make full use of the spatial and spectral information of the hyperspectral data cube, a
spatial–spectral combination algorithm is proposed in this paper for band selection. By
taking full consideration of the inner spatial correlation and spectral specificity, not only
the dimension reduction is achieved, but also the accuracy of the image classification and
the target detection probability can be improved. The main algorithms used in this study
are as follows.

2.2.1. K-Nearest Neighbor of Pixel Points

The core idea of the k-nearest neighbor is the distance measurement, by which k points
closest to the target point are obtained. According to the classification rules, the closer the
pixel is to the target point, the higher the probability of the target being classified into the
same category. The Euclidean distance is used for the distance measurement.

The choice of k is also important. If k is smaller, the approximate error will be smaller,
but the random error will be larger. On the contrary, if k is larger, the approximation error
will be larger, and the random error will be smaller.

2.2.2. Spectral Angle Mapping

The spectral angle mapping (SAM) algorithm was proposed by Kruse, et al., in 1993,
which treated the spectrum of each pixel in the image as a high-dimensional vector. By
calculating the angle between two vectors, the similarity between two spectra is measured.
The smaller the angle, the more similar the two spectra and the greater the chance of
belonging to the same object. Therefore, unknown data can be identified according to the
size of the spectral angle. In the classification, the spectral angle forming by unknown
data and known data is calculated, and the category of unknown data is classified into the
category corresponding to the minimum spectral angle. The angle between the two vectors
is calculated based on the cosine relation, as follows:

θ(P, Q) = cos−1(
PTQ
||P||||Q|| ) = cos−1(

PTQ√
QTQ

√
PT P

) (7)
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where P is the spectral vector of the target point p, and Q is the spectral vector of its
neighborhood point q. The spectral angle is represented by a small radian angle, which
represents the majority of the spectral similarity between spectral curves and its variation
range is [0, π

2 ].

2.2.3. Information Entropy

According to Shannon’s information theory, information entropy is used to measure
the amount of uncertain information, which is a statistical form of a feature and reflects
the average amount of information in an image. To ensure that the band selection contains
a large amount of information, information entropy is considered in the algorithm. The
information entropy is defined as follows:

H(x) = −∑
z∈Ω

p(z) log p(z) (8)

where, x refers to the x band image, Ω is the gray-level space of the band x, and p(z) is the
probability of occurrence of each gray-level z.

2.2.4. Spatial–Spectral Combination Algorithm

In hyperspectral images, the closer the pixel is to the target point, the higher the prob-
ability of belonging to the same category. However, as hyperspectral images are greatly
affected by the environment in the acquisition process, and there is spectral aliasing. These
bring about problems of “homogeneous object with different spectrum” and “inhomo-
geneous objects with the same spectrum”. Therefore, spatial information and spectral
information of pixels should be considered in the classification of hyperspectral image. The
Euclidean distance quantifies the spatial information between the target and surrounding
pixels, while the spectral angle reflects the similarity between the target and surrounding
pixels. In the k-nearest neighbor of the target point p, the closer the pixel is to the target
point and the smaller the spectral angle forming with the target point, the higher the prob-
ability of the neighborhood point being the same as the target point, and the smaller the
spatial–spectral weight coefficient. However, at the junction of the target and background,
although the spatial distance is relatively short, the spectral angle is larger because of the
different spectral characteristics of target and background, and the spatial and temporal
spectral weight coefficients are larger. The hyperspectral data cube aims to obtain the
bands with low spatial correlation, strong spectral specificity between classes and large
image information as the best bands. To better reflect the joint function of spatial–spectral
information, the following spatial–spectral combination function is proposed:

Φ =
N

∑
p=1

k

∑
q=1

θ(P, Q)

dpq
(Vp −Vq)

2 (9)

where, θ(P, Q) is the spectral angle between the spectral vector P of the target point p and
spectral vector Q of the neighboring point q. The more similar the spectra of the two points,
the smaller the spectral angle. dpq is the Euclidean distance between target point p and field
point q, and the shorter the distance between two points, the smaller the Euclidean distance.
θ(P,Q)

dpq
represents the spatial–spectral weight coefficient between neighborhood point q and

target point p. Vp and Vq represent the pixel value of point p and point q, respectively. k
is the k-nearest neighbor of the target point, and N is the number of sample points of the
single band image. In a certain spectral band, the greater the difference between the similar
target and the surrounding background, that is, the more prominent the target, the larger
the spatial–spectral combination function of the band.

The information entropy represents the amount of information in an image. The chosen
band is expected to be not only a band with low spatial correlation and strong spectrum
specificity, but also a band with a large amount of information. Therefore, the algorithm in
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this study considers both the joint features of the spatial and spectral information. As the
value of the spatial–spectral combination function is not in the same order of magnitude as
the information entropy, it is normalized to [0, 1].

Φ = (Φ−Φmin)/(Φmax −Φmin) (10)

H = (H − Hmin)/(Hmax − Hmin) (11)

In each subspace, the band with a large amount of information and prominent spatial–
spectral combination characteristics is found to be the optimal band, and the expression is
as follows:

x′m = max
x∈X′m
{Φ · H}, m = 1, 2, . . . , M (12)

where x is the image of a certain band, X′m is the mth subspace, M is the number of
subspaces, and x′m is the optimal band image selected from the mth subspace.

2.2.5. Image Classification

In this study, the classical support vector machine (SVM) classifier [32] and KNN clas-
sifier are used to test the dimensionality reduction effect of the spatial–spectral combined
band selection algorithm. SVM has many unique advantages in solving high-dimensional,
nonlinear and small-sample pattern recognition problems, and can be successful in the
classification of hyperspectral images. The KNN classifier is one of the simplest and most
widely used non-parametric classifiers. When there is little or no prior knowledge of
the data distribution, it is often used as the preferred classifier and is commonly used to
evaluate the performance of band selection methods for classification accuracy [28,41].

2.2.6. Recommended Number of Bands

When selecting bands for hyperspectral images, it is usually unknown how many
bands are appropriate to select [6,7,42]. To solve this problem, this paper proposes a
method to recommend the number of bands based on information redundancy. For the
hyperspectral image data, the information redundancy of the band is related to the correla-
tion coefficient, and the greater the correlation coefficient of the band set, the higher the
redundancy. The redundancy formula is defined as follows:

Rr =

M
∑

i=1

M
∑

j=1
ri,j

L
∑

i=1

L
∑

j=1
ri,j

(13)

where M is the number of selected bands, L is the total number of bands, and ri,j is the
correlation coefficient between band i and band j. When the number of the selected
bands is smaller and scattered, the correlation coefficient between the bands is smaller
and the redundancy degree is smaller. When the number of the selected bands increases
gradually, the band redundancy degree increases. The critical point, namely the number
of recommended band sets, is determined by the maximum change of the slope of the
redundancy curve. The discriminant conditions of the critical point are as follows:

S = arg max
i∈(1,M)

(
Rri − Rri−1

Rri+1 − Rri ) (14)

3. Experiment

This section consists of three parts. The first part briefly introduces the basic features
of the three classical hyperspectral image datasets. In the second section, the experimental
setup, classifier setup and comparison methods are introduced. The third part presents a
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comparative analysis of the four types of subspace partition methods. In the fourth part,
three types of public datasets are used to verify the effectiveness of the proposed algorithm.

3.1. Data Sets
3.1.1. Indian Pines

The Indian Pines hyperspectral image dataset was captured in 1992 with an airborne
visible/infrared imaging spectrometer (AVIRIS) sensor in an agricultural region of north-
western Indonesia (40◦ 4′ 3.4638′′N, 116◦ 17′ 36.8982′′E). It contains 220 wavebands. After
removing the water absorption and noisy bands, 200 bands are used in the experiments.
The image size is 145 × 145 pixels and there are 16 different types of ground objects. Due to
the small number of seven kinds of samples, they are not representative. Figure 5a shows
false color composite images of B50(R), B27(G), and B17(B) in the Indian Pines. Figure 5b
shows the real ground object types in this data field. Only nine of these types are used in
this experiment, and the number of sample sets for each type is shown in Figure 5c.
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3.1.2. Salinas

Similar to the Indian Pines dataset, the Salinas dataset was recorded by the AVIRIS
sensor over the Salinas Valley in California (36◦42′48.3876′′N, 121◦34′54.3972′′W), USA,
with a spatial resolution of 3.7 m. There are 224 bands in this dataset, and 204 bands remain
after removing bands 108–112, 154–167 and 224. The bands removed cannot be reflected by
water. The image size of each band is 512 × 217 pixels, with 16 types of ground features.
Figure 6a is a pseudo-color image, Figure 6b is a real ground object type, and Figure 6c is
the number of sample sets for each category.
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3.1.3. Botswana

The Botswana dataset was obtained from NASA’s EO-1 satellite in the Okavango Delta
of Botswana (19◦ 39′ 3.6318′′S, 22◦ 54′ 21.1674′′E) in the year from 2001 and 2004 with a
spatial resolution of 30 m. After removing the water absorption and noise bands, there
were 145 bands with an image size of 1476 × 256 pixels and 14 categories for each band.
Figure 7a is a pseudo-color image, Figure 7b is a real ground object type and Figure 7c is
the number of sample sets for each category.
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3.2. Experimental Setup

All the algorithms in this experiment run on a PC at the main frequency of 1.8 G Hz
CPU and 8 GB RAM, and are programmed with matlabR2015b (v8.6.0.267246). The k-
nearest neighbor of SSCBS is set to 3 × 3 neighborhood according to the empirical value,
and the number of bands is set to be 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and
30. To reduce the processing time, the image is reduced to 0.1 times of the original when
calculating the spatial–spectral combination function, which greatly improves the operation
efficiency of the algorithm without destroying the spatial–spectral relationship between the
target and the background in the image.

To verify the effectiveness of the band selection, SVM and KNN classifiers are used
to classify three public hyperspectral datasets. In our experiment, the two classifiers have
the same parameter settings on different datasets. The neighborhood parameter of the
KNN classifier is set to be 5. SVM classifier uses an RBF kernel with penalty factors of
C and gamma initialized to be 1 × 105 and 0.5, respectively. Because both classifiers are
supervised, 10% of all samples are randomly selected as the training set and the rest as
the test set. Owing to the randomness of the training samples, the classification result
is unstable. To reduce its influence, the final result is given by the average value of
five calculations.

In this study, three classification accuracy measurements, OA (Overall Accuracy), AA
(Average Accuracy), and Kappa coefficient, are adopted to evaluate the classification accu-
racy. To evaluate the effectiveness of the proposed method, the SSCBS is compared with five
unsupervised band selection methods, including: ABS, E-FDPC, FNGBS, TRC_OC_FDPC
and NC_OC_MVPCA. The evaluation is based on the three aspects of multiple dimensions
of classification performance, optimal band set selection and calculation time.

3.3. Comparison of Different Subspace Partitioning Methods

To compare the performance of the four types of subspace partitioning methods,
means, correlation, Euclidean, means and correlation, correlation and correlation, Eu-
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clidean and correlation and k-means algorithms are used to divide subspaces in the Indian
Pines dataset. After division, the spatial–spectral combination algorithm described in
Section 2.2.4 was used to select the optimal bands. Then, SVM, KNN and LDA classifiers
are separately used for classification. The evaluation of classification performance is with
OA, AA and Kappa coefficients, and the operating efficiency of the algorithm is compared
with each other via computing time. The classification performances of the Euclidean,
and Euclidean and correlation methods are shown in Figure 8a–i. It can be seen that
the classification accuracy of Euclidean, Euclidean and correlation is significantly lower,
regardless of whether the SVM, KNN or LDA classifier is adopted. The following is the
correlation algorithm. However, means, means and correlation and k-means perform better.
To further compare the performances of the three algorithms, the classification accuracy of
each algorithm with the number of bands selected from 2 to 30 is calculated and the average
of the acquired accuracy values is taken. The classification accuracy and calculation time
after quantization are listed in Table 1. It can be seen that, when using the SVM classifier,
the mean classification accuracy of the means algorithm is best. When using the KNN
classifier, the mean classification accuracy of the k-means algorithm is best, and the means
algorithm is second. From the perspective of the computing time, the means algorithm
is significantly faster than the other algorithms. Considering the classification accuracy
and computing time comprehensively, the means algorithm is selected as the best subspace
partition method in this paper.

Table 1. Comparison of Different Subspace Partitioning methods on Indian Pines Data Set.

Classifier Classification
Accuracy Means Correlation Euclidean Means and

Correlation

Correlation
and

Correlation

Euclidean
and

Correlation
K-Means

SVM

OA 0.7447
± 0.0134

0.7083
± 0.0182

0.6371
± 0.0203

0.7430
± 0.0149

0.7182
± 0.0097

0.6668
± 0.0231

0.7398
± 0.0189

AA 0.6752
± 0.0207

0.6333
± 0.0156

0.5171
± 0.0279

0.6872
± 0.0156

0.6675
± 0.0221

0.5613
± 0.0173

0.6747
± 0.0129

Kappa 0.7230
± 0.0245

0.6847
± 0.0203

0.6078
± 0.0168

0.7212
± 0.0218

0.6950
± 0.0147

0.6398
± 0.0263

0.7177
± 0.0136

t(s) 0.0001
± 2E-5

0.0519
± 0.0042

0.0296
± 0.0022

9.7414
± 0.068

9.9139
± 0.093

9.9949
± 0.075

9.8488
± 0.084

KNN

OA 0.6506
± 0.0276

0.6442
± 0.0159

0.6089
± 0.0145

0.6475
± 0.0224

0.6497
± 0.0178

0.6263
± 0.0126

0.6524
± 0.0214

AA 0.5172
± 0.0157

0.5069
± 0.0166

0.4898
± 0.0275

0.5152
± 0.0243

0.5144
± 0.0176

0.5110
± 0.0189

0.5154
± 0.0177

Kappa 0.6271
± 0.0173

0.6202
± 0.0211

0.5852
± 0.0156

0.6240
± 0.0264

0.6262
± 0.0166

0.6030
± 0.0197

0.6289
± 0.0208

t(s) 0.0001
± 3E-5

0.0536
± 0.0025

0.0295
± 0.0032

10.1750
± 0.068

10.3461
± 0.088

10.3837
± 0.093

10.1713
± 0.079

LDA

OA 0.6364
± 0.0187

0.5829
± 0.0245

0.5734
± 0.0166

0.6396
± 0.0204

0.5989
± 0.0198

0.6043
± 0.0231

0.6307
± 0.0187

AA 0.6134
± 0.0239

0.5204
± 0.0223

0.4889
± 0.0169

0.6061
± 0.0251

0.5468
± 0.0297

0.5345
± 0.0307

0.6040
± 0.0163

Kappa 0.6115
± 0.0218

0.5546
± 0.0266

0.5463
± 0.0285

0.6146
± 0.0223

0.5710
± 0.0153

0.5783
± 0.0286

0.6055
± 0.0266

t(s) 0.0001
± 2E-5

0.0447
± 0.0039

0.0267
± 0.0080

7.6649
± 0.089

7.8705
± 0.069

7.8880
± 0.082

7.6763
± 0.057
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Figure 8. Classification accuracy of different subspace partitioning methods. (a–i) are OA, AA and
Kappa Results by SVM, KNN and LDA classifiers.

3.4. Experimental Results and Analysis

To investigate the performance of the proposed SSCBS algorithm at different lati-
tudes, further analysis will be carried out in the aspects of the recommended bands, the
classification performance and the computational time.

3.4.1. Recommended Bands

According to the method based on information redundancy proposed in Section 2.2.6,
the information redundancy curves are drawn for the Indian Pines data set, the Salinas
data set and the Botswana data set separately, as shown in Figure 9. Through Equation (14),
the change rate of the slope of information redundancy on each data set is obtained, as
shown in Figure 10.
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Figure 9. Information redundancy curves on different data sets.

Figure 10. Slope rate of information redundancy (a) Indian Pines data set (b) Salinas data set
(c) Botswana data set.

The recommended number of band sets should be on the location of the local maximum
points. As can be seen from Figure 10, the local maximum points are 6, 12, 18 and 24 on the
Indian Pines data set. The local maximum points are 8, 14, 18, and 22 on the Salinas data set
and 16, 22, and 26 on the Botswana data set. Combined with the classification performance
of the proposed algorithm, the best number of band sets suitable for this paper is selected
from the recommended number of band sets, and 12, 22 and 16 are selected for the Indian
Pines, the Salinas and the Botswana data sets, respectively. Table 2 lists the band sets of
different band selection algorithms in each data set, arranged in ascending order, and
adjacent bands are displayed in bold. Hyperspectral images are characterized by strong
correlation between adjacent bands and high redundancy. Generally speaking, the closer
the adjacent bands are, the stronger the correlation and the worse the algorithm. As can
be seen from Table 3, the bands selected by ABS, E-FDPC, FNGBS, NC_OC_MVPCA and
TRC_OC_FDPC algorithms have adjacent bands, and the bands selected by TRC_OC_FDPC
algorithm have an edge band 1, which are all unreasonable bands. However, the band
subset selected by SSCBS in this paper is more dispersed, covering a larger spectral range,
and has stable performance in the three data sets.
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Table 2. Classification Results on Three Data Sets.

Dataset Classifier
Method

M E-FDPC ABS FNGBS NC_OC_MVPCA TRC_OC_FDPC SSCBS

Indian Pines

6
SVM 0.4693

± 0.0218
0.4392
± 0.0196

0.5816
±0.0309

0.6224
± 0.0383

0.5598
± 0.0276

0.5397
± 0.0223

KNN 0.475
± 0.0133

0.4778
± 0.0088

0.5417
±0.0332

0.5168
± 0.0315

0.5098
± 0.0235

0.5568
± 0.0187

LDA 0.4515
± 0.0143

0.3274
± 0.0093

0.5281
±0.0328

0.4707
± 0.0421

0.4743
± 0.0274

0.5276
± 0.0258

12
SVM 0.5147

± 0.0147
0.5348
± 0.0120

0.6895
± 0.0356

0.692
± 0.0302

0.6944
± 0.0286

0.7354
± 0.0278

KNN 0.481
± 0.0279

0.47
± 0.0056

0.5596
± 0.0259

0.5677
± 0.0409

0.5129
± 0.0210

0.5726
± 0.0381

LDA 0.5562
± 0.0304

0.3938
± 0.0027

0.5984
± 0.0251

0.5513
± 0.0358

0.5674
± 0.0246

0.5792
± 0.0295

18
SVM 0.536

± 0.0215
0.6117
± 0.0084

0.7587
± 0.0195

0.7193
± 0.0295

0.7454
± 0.0247

0.7663
± 0.0216

KNN 0.4872
± 0.0294

0.4912
± 0.0078

0.5705
± 0.0155

0.5686
± 0.0406

0.5338
± 0.0224

0.5829
± 0.0224

LDA 0.5532
± 0.0217

0.444
± 0.0108

0.6368
± 0.0292

0.634
± 0.0327

0.5935
± 0.0268

0.6553
± 0.0218

24
SVM 0.5722

± 0.0210
0.6181
± 0.0125

0.7546
± 0.0357

0.7628
± 0.0269

0.7566
± 0.0394

0.7836
± 0.0169

KNN 0.4899
± 0.0341

0.4903
± 0.0102

0.571
± 0.0014

0.587
± 0.0287

0.5439
± 0.0281

0.5745
± 0.0052

LDA 0.5558
± 0.0157

0.439
± 0.0047

0.6515
± 0.0368

0.7032
± 0.0294

0.6338
±0.0357

0.6847
± 0.0259

30
SVM 0.6227

± 0.0157
0.6586
± 0.0102

0.7675
± 0.027

0.7583
± 0.0237

0.7598
± 0.0248

0.7728
± 0.0213

KNN 0.4963
± 0.0425

0.5271
± 0.0317

0.5645
± 0.0073

0.5831
± 0.0261

0.5727
± 0.0413

0.5957
± 0.0187

LDA 0.5662
± 0.0158

0.4993
± 0.0196

0.6819
± 0.0286

0.72
± 0.0302

0.6528
± 0.0267

0.6672
± 0.0158

Salians

6
SVM 0.9388

± 0.0157
0.7484
± 0.0014

0.9399
± 0.0119

0.9428
± 0.0135

0.9321
± 0.0237

0.94
± 0.0153

KNN 0.9237
± 0.0132

0.7542
± 0.0125

0.9257
± 0.0147

0.9267
± 0.0204

0.9215
± 0.0138

0.9218
± 0.0149

LDA 0.8415
± 0.0179

0.6984
± 0.0093

0.8684
± 0.0148

0.8741
± 0.0151

0.8437
± 0.0197

0.8863
± 0.0104

12
SVM 0.9501

± 0.0178
0.8618
± 0.0156

0.9527
± 0.0147

0.9537
± 0.0249

0.9529
± 0.0193

0.9545
± 0.0172

KNN 0.9328
± 0.0138

0.8262
± 0.0094

0.932
± 0.0273

0.9308
± 0.0192

0.9263
± 0.0124

0.9339
± 0.0204

LDA 0.9128
± 0.0084

0.7474
± 0.0047

0.905
± 0.0138

0.918
± 0.0216

0.8973
± 0.0273

0.9178
± 0.0178

18
SVM 0.958

± 0.0197
0.8945
± 0.0117

0.9538
± 0.0180

0.958
± 0.0132

0.9572
± 0.0208

0.9574
± 0.0153

KNN 0.9371
± 0.0196

0.8644
±0.0148

0.9322
± 0.0284

0.9327
± 0.0235

0.929
± 0.0148

0.9349
± 0.0150

LDA 0.9236
± 0.0146

0.7875
± 0.0153

0.9198
± 0.0186

0.9269
± 0.0138

0.9178
± 0.0196

0.9292
± 0.0153

24
SVM 0.9591

± 0.0205
0.9224
± 0.0174

0.9569
± 0.0208

0.961
± 0.0156

0.9603
± 0.0195

0.9593
± 0.0147

KNN 0.9337
± 0.0140

0.9027
± 0.0196

0.9312
± 0.0146

0.9348
± 0.0207

0.9296
± 0.0147

0.9352
± 0.0084

LDA 0.9266
± 0.0168

0.8409
± 0.0147

0.9257
± 0.0185

0.932
± 0.0296

0.9229
± 0.0157

0.9306
± 0.0161

30
SVM 0.9603

± 0.0159
0.939
± 0.0102

0.9618
± 0.0162

0.963
± 0.0147

0.9626
± 0.0205

0.9616
± 0.0159

KNN 0.9351
± 0.0149

0.9092
± 0.0175

0.9342
± 0.0256

0.9357
± 0.0196

0.9316
± 0.0135

0.9377
± 0.0115

LDA 0.9301
± 0.0154

0.8748
± 0.0102

0.9298
± 0.0157

0.9346
± 0.0179

0.9274
± 0.0271

0.9328
± 0.0143
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Table 2. Cont.

Dataset Classifier
Method

M E-FDPC ABS FNGBS NC_OC_MVPCA TRC_OC_FDPC SSCBS

Botswana

6
SVM 0.7413

± 0.0234
0.6787
± 0.0157

0.8439
± 0.0275

0.8587
± 0.0235

0.8379
± 0.0186

0.861
± 0.0169

KNN 0.7752
± 0.0157

0.6319
± 0.0177

0.8115
± 0.0286

0.8399
± 0.0223

0.8223
± 0.0288

0.8355
± 0.0213

LDA 0.818
± 0.0286

0.7339
± 0.0254

0.8821
± 0.0271

0.8734
± 0.0209

0.8642
± 0.0374

0.8763
± 0.0196

12
SVM 0.8671

± 0.0237
0.7199
± 0.0211

0.8732
± 0.0297

0.873
± 0.0317

0.8711
± 0.0211

0.861
± 0.0169

KNN 0.8485
± 0.0260

0.6188
± 0.0182

0.8335
± 0.0299

0.8497
± 0.0301

0.8408
± 0.0223

0.8329
± 0.0297

LDA 0.8894
± 0.0280

0.7514
± 0.0214

0.9002
± 0.0166

0.8951
± 0.0183

0.8868
± 0.0288

0.8876
± 0.0209

18
SVM 0.8714

± 0.0281
0.8763
± 0.0197

0.8712
± 0.0212

0.8732
± 0.0231

0.8797
± 0.0375

0.8777
± 0.0280

KNN 0.8548
± 0.0297

0.8094
± 0.0275

0.8365
± 0.0269

0.8463
± 0.0234

0.8478
± 0.0127

0.8464
± 0.0251

LDA 0.8938
± 0.0286

0.8588
± 0.0163

0.8964
± 0.0218

0.8973
± 0.0264

0.8922
± 0.0188

0.9001
± 0.0157

24
SVM 0.8764

± 0.0175
0.8885
± 0.0191

0.8798
± 0.0144

0.897
± 0.0219

0.8937
± 0.0157

0.8853
± 0.0136

KNN 0.861
± 0.0188

0.8336
± 0.0098

0.8441
± 0.0127

0.8596
± 0.0274

0.8546
± 0.0146

0.849
± 0.0124

LDA 0.8945
± 0.0286

0.8624
± 0.0189

0.8973
± 0.0145

0.9082
± 0.0269

0.8922
± 0.0128

0.9066
± 0.0087

30
SVM 0.8801

± 0.0143
0.8824
± 0.0186

0.8897
± 0.0162

0.9025
± 0.0121

0.8911
± 0.0198

0.9041
± 0.0087

KNN 0.8589
± 0.0175

0.8241
± 0.0188

0.8522
± 0.0223

0.8607
± 0.0129

0.8584
± 0.0186

0.861
± 0.0213

LDA 0.8945
± 0.0166

0.8594
± 0.0159

0.9022
± 0.0035

0.9067
± 0.0068

0.8906
± 0.0082

0.9068
± 0.0034

Table 3. Computational Time on Three Data Sets.

Data set Classifier E-FDPC ABS FNGBS NC_OC_MVPCA TRC_OC_FDPC SSCBS

Indian Pines
SVM 0.0948 0.5413 0.4326 0.6399 0.7779 0.3918
KNN 0.1083 0.5108 0.4285 0.6411 0.7841 0.4067
LDA 0.0492 0.0371 0.2301 0.3749 0.5291 0.1897

Salinas
SVM 0.4819 2.8015 1.3425 1.8894 1.5748 1.2712
KNN 0.6344 4.1058 1.7736 2.7571 1.8979 1.7373
LDA 0.3145 0.2796 1.0651 1.1772 1.3049 0.8705

Botswana
SVM 1.1568 8.2198 4.8423 4.2913 2.638 5.256
KNN 1.2409 5.6202 4.1123 4.088 2.5618 3.9562
LDA 0.5855 0.4557 2.2882 1.8047 1.3911 2.1106

3.4.2. Classification Performance

To verify the effectiveness of the proposed algorithm, the SSCBS, SVM, KNN and
LDA classifiers are used for classification on the three datasets: Indian Pines, Salinas, and
Botswana. A comparison of the classification accuracies is shown in Figures 11–13.
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Figure 12. Classification results on Salinas data set. (a–i) are OA, AA and Kappa Results by SVM,
KNN and LDA classifiers.

Figure 13. Classification results on Botswana data set. (a–i) are OA, AA and Kappa Results by SVM,
KNN and LDA classifiers.

It can be seen from Figure 11a–i that the proposed SSCBS algorithm performs best on
the Indian Pines dataset using the SVM classifier. Using the KNN classifier, SSCBS has the
highest AA accuracy. FNGBS has the highest OA and Kappa coefficients, SSCBS is second,
and ABS and E-FDPC have the worst performance. In the Salinas dataset, as shown in
Figure 12a–i, except for the ABS algorithm, the performance of the other six algorithms
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is good, and the SSCBS method tends to be best. As shown in Figure 13a–i, the SSCBS
method performs best on the Botswana data set. Combining the three datasets, SSCBS is
the best comprehensive performance. To quantify the advantages of the SSCBS algorithm
in the classification accuracy of different datasets, the classification accuracy results of
selecting the representative bands are listed in Table 2, and the maximum value of each
row is represented in bold.

By comparison, we can notice that SSCBS maintained excellent classification perfor-
mance on the different datasets. This shows that the algorithm in this paper fully considers
the spatial correlation and spectral correlation of pixels, and the optimal bands extracted
not only have low spatial correlation, but also have strong spectral specificity and obvious
spectral characteristics between different classes, which is helpful to image classification.

3.4.3. Computational Time

To compare the operating efficiency of the six algorithms, the running times of the six
algorithms on the three datasets are recorded. Thirty bands on the datasets are selected
for the running time calculation. The results are listed in Table 3. It can be seen from the
table that E-FDPC has the shortest computational time on the three datasets. Then on the
Indian Pines and the Salinas datasets, generally SSCBS has the second short computational
time. On the Botswana dataset, owing to the larger image resolution of this dataset,
the calculation time of SSCBS algorithm is longer. This is because the SSCBS algorithm
considers the spatial–spectral relationship between pixels, and the calculation time is
related to the image resolution of the dataset. The higher the image resolution, the longer
the calculation time of the algorithm. The operation effect of the SSCBS algorithm can
be improved by setting a larger zoom ratio of the original image. Figure 14a–f shows a
comparison of classification accuracy using the SVM classifier on the Indian Pines dataset
with different scaling ratios in the proposed algorithm. In Figure 14d–f, the band is selected
to be 30 and the scaling ratio range is from 0.005 to 1, with an interval of 0.005. As is shown
in the figure, the results are stable regardless of the scaling ratio used.

Figure 14. Comparison of classification accuracy with different scaling ratios. (a–c) are OA, AA and
Kappa Results by SVM. (d–f) are OA, AA and Kappa Results under different scaling ratios.



Remote Sens. 2022, 14, 3217 21 of 22

4. Conclusions

For hyperspectral image data, the most valuable information is usually concentrated
in limited spectral attributes. Selecting a band subset that is sensitive to different types
of ground objects can classify images more effectively. The SSCBS method is proposed in
order to extract representative bands with large information content, low spatial correlation
and strong inter-class spectral distinctness. First, all the bands are divided into the required
number of subsets through subspace division. In each subset, the spatial and spectral
combination features are integrated into a uniformed objective function by constructing
the weight coefficient. Then the band with the large and more discriminative information
is selected. Third, in order to solve the problem of the appropriate number of bands
to choose, an automatic method is proposed to determine the number of appropriate
bands. Experimental results show that the optimal band subset extracted by SSCBS leads
to excellent classification accuracy and less time consumption. If the image resolution is
high, it can be solved by reducing the resolution of the original image. The experimental
results show that reducing the image resolution does not affect the classification accuracy.
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