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ABSTRACT

Organic–inorganic lead halide perovskite nanocrystals (NCs) have received the

phenomenal attention of researchers in the last few years due to their advanced

optical properties and developments in simple synthetic procedures. In this work,

we demonstrate the effect of Ni-dopant on the ultrafast third-order nonlinear

optical (NLO) properties of two-dimensional (2D) CsPbBr3 NCs using 60 fs laser

pulses at a wavelength of 400 nm. Based on the probe pulse intensity, pure CsPbBr3

NCs exhibited saturable absorption and reverse saturable absorption (RSA). The

doping of NCs by Ni at different concentrations significantly modified the non-

linear absorption mechanism where the RSA was followed by the SA with growing

input laser intensity. The nonlinear refractive index of Ni-doped CsPbBr3 NCs

decreased when compared with the pure CsPbBr3. In addition, the NLO properties

of these 2D NCs are correlated with the efficiency of the high-order harmonics

generated during propagation of the two-color (800 ? 400 nm) and single-color

(800 nm) chirp-free (35 fs) and negatively/positively chirped pulses through the

laser-induced plasmas produced on the surface of undoped and Ni-doped per-

ovskite NCs. The ablation of Ni-doped NCs allowed increasing the harmonic yield

compared to undoped CsPbBr3 NCs. Our studies undoubtedly demonstrate the

advanced lower and higher order NLO properties of Ni-doped 2D CsPbBr3 NCs.
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Introduction

Lead halide-based perovskite nanocrystals (NCs)

have unique and venerable photophysical properties,

which permitted their efficient application in various

optoelectronic devices such as photodetectors, light-

emitting diodes, solar cells, and lasers. Their optical,

optoelectronic, photonic, and third-order nonlinear

optical (NLO) properties were frequently reported

and reviewed [1–16]. The excited-state dynamics

(pumped with 400 nm), NLO, and photoluminescent

properties of the undoped and Ni-doped CsPbBr3

NCs were explored in our recent work [17]. It was

demonstrated that the photoluminescence (PL) yields

from Ni-doped CsPbBr3 NCs were higher than from

pure CsPbBr3 NCs. Further, the central wavelength

was observed to vary in the PL spectra depending on

the weight percentage of the dopant. In addition, a

few research groups have explored the outstanding

NLO properties of different perovskite nanomaterials

such as (i) saturable absorption (SA) (ii) reverse sat-

urable absorption (RSA) (iii) two-photon absorption

(2PA) (iv) multiphoton absorption and (v) nonlinear

refraction using different excitation wavelengths and

input pulse durations [18–33]. However, there are

very few reports of the NLO properties of these exotic

molecules in the UV spectral region. Additionally,

the high-order harmonics generation (HHG) in

solids, gases, and laser-induced plasmas (LIPs)

attracted great attention due to the necessary infor-

mation of the efficient sources of coherent extreme

ultraviolet (XUV) radiation [34–57]. Various capable

solid materials and gas jets with control of driving

pulse duration to obtain better conversion efficiencies

and cut-off of harmonics were analyzed [40, 58–64].

Recently, Hussain et al. [65] have demonstrated HHG

with spectral shifts in the obtained harmonics in sil-

icon (Si) and zinc oxide (ZnO) achieved by scanning

the focal position of the 85 fs driving pulses at a

wavelength of 2.123 lm. The variations of the spectral

shape and harmonic distribution from silver plasma

using chirped pulses from the 793 nm, 44 fs laser

pulses were also reported [66]. Those studies under-

lined the role of chirped pulses in enhancing the

harmonic’s emission. Surprisingly, there are hardly

any reports on the understanding of the correlation

between different NLO properties of these NCs, for

instance, the HHG yield and the real and imaginary

parts of nonlinear susceptibilities.

In this study, we report the NLO properties of

undoped and Ni-doped CsPbBr3 NCs using fem-

tosecond pulses at the wavelength (k) of 400 nm. We

also analyze the high-order harmonics spectra using

the positively and negatively chirped femtosecond

laser pulses propagating through the plasmas
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generated on the NCs surfaces. A correlation between

the low-order NLO properties and the HHG in these

NCs is discussed. The examination of innovative and

effective materials (ablated Ni-doped NCs in the

current case) in this way will allow achieving XUV

radiation for a diversity of applications in attosecond

physics and nonlinear spectroscopy [67–70].

Experimental details

Synthesis and characterization
of nanocrystals

1 mM of PbBr2 and 0.08 mM NiBr2 were loaded into a

three-neck round bottom flask containing 5 ml of

1-octadecene with 0.5 ml of dried oleic acid and dried

olylamine (here, oleic acid and olylamine act as cap-

ping ligands). This was degassed for about one hour

under vacuum (10-2 mbar) at 120 �C. The flask was

subsequently flushed with nitrogen and heated to

150 �C. Later the temperature was raised to 210 �C
and was kept for 5–10 minutes to reach the temper-

ature. Subsequently, the cesium oleate solution was

heated to the chosen reaction temperature (typically

150 �C) before 5 ml of 1 mM of cesium oleate (1 mM

of CsCO3, 20 ml of 1-octadecene, and 1.25 ml of oleic

acid) solution was swiftly injected into the prepared

precursor solution. After five seconds, the reaction

mixer was cooled under an ice bath. Subsequently,

we obtained the precipitated NCs by adding them

with 5 ml of acetone.

The synthesis of Ni-doped CsPbBr3 was confirmed

by observing the change in NCs formation as both the

Ni:Pb ratio vary during the synthesis [71]. Post-syn-

thesis cation exchange procedures can incorporate

divalent guest cations into CsPbBr3 NCs, according to

our findings. The aliovalent exchange of Cs? by

smaller Ni?2 cations can substantially destabilize the

perovskite structure significantly, necessitate charge

compensation. As a result, we assumed that the

solely isovalent exchange of Pb?2 by Ni?2 occurred.

Chemical mapping was used to validate the incor-

poration and distribution of the guest cation using

energy-dispersive X-ray spectroscopy (EDS) data

[72]. Schematic illustration of the structural proper-

ties of CsPbBr3 NCs before and after substitution of

Pb?2 with 0.08 mM of Ni?2 ion is shown in Fig. 1.

Our previous works [17, 73] discussed the UV–

Visible absorption spectra, PL characteristics, and

surface morphologies of pristine (CsPbBr3) NCs, 0.03

percent Ni, 0.05 percent Ni, 0.08 percent Ni, 0.1 per-

cent Ni-doped CsPbBr3 NCs using transmission

electron microscopy (TEM) pictures. In a nutshell, the

absorption spectra of CsPbBr3 and NiCsPbBr3 were

measured in the 200–800 nm region using a UV–

Visible-NIR spectrophotometer (Model UV 3600, M/s

Shimadzu). The samples were organized by diluting

20 lL of the crude NCs solution in *1 mL of toluene

and placed in quartz cuvettes (1 cm). CsPbBr3 and

NiCsPbBr3 had absorption peaks near 482 and 508

nm. The emission spectra were recorded using a

spectrofluorometer (from Horiba Jobin Yvon) and the

corresponding PL emission peaks were observed at

530 and 566 nm. Ni-doping did not introduce a new

absorption band in CsPbBr3 and the resultant exci-

tation absorption of the NiCsPbBr3 NCs shifts to the

red spectral region. The lifetime of photogenerated

charge carriers was determined by time-resolved

photoluminescence. NiCsPbBr3 had a longer lifetime

(13.41 ns) compared to its pristine counterpart (11.38

ns), which can be considered as an advantage for

application in LED devices [17]. The synthesized NCs

had a square-like shape with an average size of *20

nm, according to the TEM studies. These NCs pos-

sessed a well-defined crystalline structure; it was

observed in the orthorhombic phase. The size and

uniformity of attained NCs were influenced by the

doping of Ni. The measured lattice fringe spacing for

pure and 0.08 percent Ni was 0.394 nm and 0.390 nm,

respectively, indicating that Ni-doped CsPbBr3 NCs

had a restricted size distribution.

Figure 1 Schematic illustration of the structural properties of

CsPbBr3 NCs before and after substitution of Pb?2 with 0.08 mM

of Ni?2 ion.
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Z-scan measurements

The Ti: sapphire (Spectra-Physics, Model Spitfire

Ace) laser system used in the present studies deliv-

ered linearly polarized 800 nm, 35 fs, 1 kHz pulses.

The laser pulses were broadened to 60 fs before the

focusing lens (200 mm focal length, beam waist

radius wo =16 lm) along the Z-scan path. The second

harmonic (400 nm) of 800 nm radiation was gener-

ated using a 0.2 mm thick barium borate (BBO, type I)

crystal and the 800 nm pulses were filtered using the

color filter [Fig. 2(a)]. The pulse energies of 0.1 lJ

(peak intensity (Io) =2.6 91011 W/cm2) and 0.15 lJ

(Io=3.9 91011 W/cm2) were used to analyze the third-

order NLO properties of the studied samples. The

1-mm thick fused silica cell filled with NCs suspen-

sion possessing a concentration of typically 4910-4

mM was moved along the Z-axis of the focused laser

beam as shown in Fig. 2a. For open-aperture (OA)

and closed-aperture (CA) Z-scan measurements, after

propagation of the sample, the two beams were col-

lected by photodiodes 1 and 2, respectively. In the

case of CA, the aperture was adjusted to allow the

propagation of *15% of the input beam. At each

point, the photodiode signal versus position of the

sample was monitored by a personal computer using

a data acquisition program developed using

LabVIEW.

HHG experimental layout

Figure 2b illustrates the schematic of the experimen-

tal setup used for HHG measurements. We used a Ti:

Sapphire laser (800 nm, 35 fs) operated at 100 Hz

pulse repetition rate. The 200 ps, 800 nm heating

pulses (HP) from the same laser ablated the 2D NCs

targets to create the plasma plumes. The harmonics

spectra were obtained using the chirp-free single-

color pump (SCP, 800 nm wavelength) and two-color

pump (TCP, 800 nm ? 400 nm wavelengths) of the

LIPs produced on the surfaces of the studied sam-

ples. We also used the negatively and positively

chirped 135 fs radiation from this laser as the driving

pulses (DP) and compared the harmonic spectra

generated using the above pulses with those pro-

duced by the chirp-free 35 fs pulses. The intensities of

the chirp-free and chirped pulses in the focal plane

were 491014 and 0.991014 W/cm2, respectively. The

chirp of the DPs was varied by changing the sepa-

ration of the gratings in the pulse compressor of Ti:

sapphire laser [66]. The chirp-free, negatively, and

positively chirped pulses contain similar spectral

components while showing a difference in their

temporal characteristics and distribution of the

spectral components along the laser pulse (see also

Sect. 3.2). The details and description of the 2D NCs

samples preparation for HHG measurements are

presented in our earlier work [73]. Briefly, the NCs

were dispersed in toluene solvents and then precisely

drop-casted on the glass substrate until drying. The

approximated length 9 width 9 thickness of NCs

target was * 8 mm 9 6 mm 91 mm. The substrates

with NCs were placed in the target chamber (Fig. 2b)

and ablated by HPs. The DPs propagated through the

plasma plumes approximately 0.2 mm above the

target surface. The emitted harmonics from LIPs were

directed to the XUV chamber, which consists of a

gold-coated cylindrical mirror (CM), flat field grating

(FFG), and microchannel plate (MCP). Finally, the

harmonic spectra were recorded using a charge-

coupled device camera (CCD).

Results and discussion

Third-order NLO properties of nanocrystals

The third-order NLO properties of five (CsPbBr3 and

Ni (0.03, 0.05, 0.08, and 0.1 %)-doped CsPbBr3 NCs)

samples are measured using the standard Z-scan

technique at wavelength (k) of 400 nm. From the OA

and CA Z-scan measurements, one can obtain the

nonlinear absorption coefficient (b), saturation

intensity (Isat), and nonlinear refractive index (c) of

these species. The normalized transmittance of stud-

ied samples in the case of RSA and combination of SA

and RSA can be fitted by the following equations [74]

TRSA zð Þ � 1 � q

2
p

2
ð1Þ

TSAþRSA zð Þ � 1 � q

2
ffiffiffi

2
p

� �

� Io
Isat x2 þ 1ð Þ ð2Þ

Here q = bIoLeff/(1?z2/zo
2), x= z/zo, zo= k (wo)

2/2 is

the Rayleigh length. wo is the beam waist radius, k =

2p/k is the wavenumber, Io is the intensity of the laser

beam in the focal plane. Leff = [1-exp (-ao L)]/ao is

defined as the effective length of the samples, ao is

the linear absorption coefficient of sample, and L is

the thickness of the sample.
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The normalized transmittance in the presence of

nonlinear refraction and absorption (NRA) can be

written as [75]

TNRAðzÞ ¼ 1 þ 2ð�qx2 þ 2x� 3qÞ
ðx2 þ 9Þðx2 þ 1Þ DUo ð3Þ

Here DAo= kcIoLeff and q = b/2kc. Correspondingly,

the nonlinear refraction index can be determined as

c ¼ kDUo

2pIoLeff
ð4Þ

Figures 3 and 4 show the OA and CA Z-scan

curves for CsPbBr3 and Ni (0.03, 0.05, 0.08 and 0.1 %)-

doped CsPbBr3 NCs at input laser intensities Io = 2.6

9 1011 W/cm2, and 3.9 9 1011 W/cm2, respectively.

Five measurements were carried out for each OA and

CA Z-scans and the average data are presented in the

corresponding Figs. 3 and 4.

For CsPbBr3 NCs, the OA Z-scan curves illustrated

an upward trend at the outer part of the focal plane,

suggesting the presence of SA. However, once the

sample approached the focus, the Z-scan data

depicted a sharp dip in the transmittance represent-

ing the appearance of RSA. It was also observed that

the RSA increased with the growth of input intensi-

ties (Fig. 3, CsPbBr3 panels). The corresponding Isat

for pure CsPbBr3 NCs at Io = 2.6 9 1011 W/cm2 was

estimated to be 291011 W/cm2. Whereas in the case

of Ni-doped CsPbBr3 NCs, the Z-scan curves

demonstrated RSA and the dip moved in the upward

direction compared to pristine CsPbBr3 as shown in

Fig. 3a, b. We observed that Ni-dopant presence

demonstrated a massive impact on the nonlinear

absorption process. At the outer part of the focal

plane, Ni-counterparts possessed RSA and at the

focus they depicted SA, which was confirmed by

dividing the pure CsPbBr3 contribution from the

Z-scans of Ni-doped CsPbBr3 NCs. The correspond-

ing divided Z-scan data are shown in Fig. 5a, b. The

plots also show that the increment in the percentile

Figure 2 Experimental layouts for Z-scan and HHG

measurements. a Z-scan scheme. BBO: barium borate crystal;

L1: focusing lens (f=200 mm), S: sample (1-mm thick cell filled

with NCs suspension); L2: focusing lens for the collection of the

propagated beam (f = 200 mm); PD1 and PD2: photodiodes for

the measurements of propagated radiation in the case of open-

aperture and closed-aperture schemes, respectively. b HHG

scheme. DP: 800 nm driving pulses; L1: focusing lens (f = 500

mm) for the driving pulses; BBO: barium borate crystal; T: target;

PP: plasma plume; L2: focusing lens (f = 200 mm for the heating

pulses; HP: 200 ps, 800 nm heating pulses; CM: gold-coated

cylindrical mirror; FFG: flat field grating; MCP: microchannel

plate; CCD: charge-coupled device camera.
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change of Ni-dopants depicts a nonlinear growth of

the saturable absorption peaks at focus. The conclu-

sion about the growing role of RSA was also con-

firmed during the division of the pure CsPbBr3

contribution from Ni-doped CsPbBr3 NCs in the case

of CA measurements (see data presented in Fig. 5(c,

d)).

Pure and doped NCs illustrated a self-focusing

behavior, evident from the CA Z-scan data presented

in Fig. 4. However, the addition of Ni led to a

decrease in self-focusing. Consequently, Ni dopants

showed the self-defocusing properties and the non-

linear refractive index of dopants has a negative sign

(see Figs. 5c, d, 6b]. The experimental data of OA and

CA measurements at Io = 2.6 9 1011 W/cm2 and 3.9 9

1011 W/cm2 of the undoped and doped NCs are fitted

using Eqs. 1, 2 and 3, respectively and the calculated

NLO parameters are listed in Table 1. Whereas, for

ratio of NiCsPbBr3 NCs to the pure CsPbBr3 NCs the

obtained Isat and c values are shown in Table 2.

In this work, we have pumped with 400 nm (3.0

eV) pulses for extracting the NLO coefficients of pure

CsPbBr3 and NiCsPbBr3 NCs. The obtained results

demonstrate that the NiCsPbBr3 NCs possessed RSA

and self-focusing properties. However, these pro-

cesses magnitude were found to be decreased with

the growth of the Ni concentration. Consequently, it

was observed that for NiCsPbBr3 NCs possess lower

b and c values compared to pure CsPbBr3 NCs. This

is due to the fact that the Ni dopants possess negative

nonlinear absorption coefficient (due to the influence

of SA) and negative nonlinear refractive index com-

pared to the pure CsPbBr3 NCs. Correspondingly, the

studied mixture (Ni ? CsPbBr3 NCs) shows smaller

values of b and c compared to the pure CsPbBr3 NCs.

The mechanisms of Ni dopants are extracted from

Figure 3 Open-aperture

Z-scan curves in the case of

pristine and Ni-doped CsPbBr3
nanocrystals, at the a 2.6 9

1011 and b 3.9 9 1011 W/cm2

intensities of laser pulses.

Open symbols represent

experimental data points while

the solid lines are theoretical

fits.

Figure 4 Closed-aperture

Z-scan curves in the case of

pristine and Ni-doped CsPbBr3
nanocrystals at the a 2.6 9

1011 and b 3.9 9 1011 W/cm2

intensities of laser pulses.

Solid symbols represent

experimental data points while

the solid lines are theoretical

fits.
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both OA and CA measurements by dividing the pure

CsPbBr3 NCs data to NiCsPbBr3 data. Meanwhile,

after the deduction of pure CsPbBr3 contribution

from NiCsPbBr3 NCs, though Ni doped samples

demonstrated decreased Isat values with respect to

their % changes. In this case, the materials transmit-

ted higher power than the pure NCs. These materials

can be used for optical limiting and/or optical

switching applications. Furthermore, we believe

these materials have the potential for optical com-

munications/sensing applications since the nonlin-

earities can be tuned by changing the dopant and the

doping levels. See, for example, a recent report by

Gopala Krishna et al. [76] wherein they demonstrated

that doping resulted in the passivation of surface

defect states, which improved the photoluminescence

Figure 5 The ratio of Z-scans

at 2.6 9 1011 and 3.9 9 1011

W/cm2 for the Ni-doped

CsPbBr3 NCs with regard to

the pure CsPbBr3 in the case

of a, b OA and c, d CA

measurements. Open and solid

symbols represent

experimental data points while

the solid lines are theoretical

fits..

Figure 6 The variations of

saturation intensities (left:

Y-axis) and ratios of Io/Isat
(right: Y-axis) (a) and

nonlinear refraction indices

(b) at different concentrations

of Ni using two intensities (Io=

2.6 9 1011 W/cm2 and 3.9 9

1011 W/cm2).
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quantum yield and PL lifetime of the CsPbBr3

nanocrystals. Figure 6 shows the variations of satu-

ration intensities and nonlinear refractive indices of

Ni components at the input intensities Io= 2.6 91011

and 3.991011 W/cm2, respectively. The 0.05 and

0.08% Ni-containing NCs possessed lower saturation

intensities than the 0.03 and 0.1% Ni.

We also deduced that with further growth of laser

intensity, the NLO coefficients decreased. The non-

linear coefficients ideally should not depend on

excitation fluence. It is true for the small intensities of

the probe pulses. It is well known in the literature

that increasing input intensity will result in further

excitation from the higher energy levels (conduction

band in this case). Depending on the input peak

intensities, a SA process can switch to RSA process

and vice-versa [see, for example, Ref. [82] in the case

of gold nanoparticles prepared by laser ablation

techniques and Ref. [83] in the case of Au coated

triangular Ag-Au nanostructures]. When there are

excitations into the higher energy states, the NLO

coefficients get modified with the presence of other/

higher-order NLO processes.

We observed the tendency of NLO coefficients to

look similar at two used intensities of laser pulses,

i.e., at 2.6 91011 W/cm2 and 3.991011 W/cm2. It is

assumed that, at higher input laser intensities, the

valence band electrons are trapped in the higher

levels of the conduction band. Probably this led to a

slight decrease in the NLO coefficients. Moreover,

multiple factors contribute to the NLO response of

the materials. In brief, the influence of the pumping

wavelength, input pulse duration, and the sizes/

shapes of nanoparticles/quantum dots/nanocrystals

significantly affect the NLO parameters. Zhu et al.

reported b and c values of CsPbBr3 QDs using exci-

tation wavelengths of 700–1200 nm at 30 kHz repe-

tition, 34–172 fs pulses, and they reported that b and c
were considerably different with respect to different

excitation wavelengths [84]. Analysis of size-depen-

dent off-resonant nonlinear optical properties of gold

nanoparticles showed the variation of the sign of

nonlinear refraction index and nonlinear absorption

coefficient for different Au NPs [85]. The same can be

said about the influence of pulse duration of the

probe radiation on the nonlinear optical response of

nanoparticles [86]. We have systematically compared

the NLO parameters at different excitation parame-

ters for different sizes and shapes as of CsPbBr3

perovskites reported by other research groups, as

shown in Table 3.

The typical energy level diagrams of CsPbBr3, as

well as Ni-doped CsPbBr3 NCs, are illustrated in

Fig. 7. We believe that the transitions responsible for

RSA are different for Ni-doped CsPbBr3 NCs com-

pared to pristine CsPbBr3 NCs because of the

Table 1 Summary of the NLO

parameters of studied samples

at k = 400 nm

Samples At Io=2.6 9 1011 W/cm2 At Io=3.9 9 1011 W/cm2

b(910-11) cm/W c(910-16) cm2/W b(910-11) cm/W c(910-16) cm2/W

CsPbBr3 4.88±0.23 6.6±0.33 6.52±0.32 7.58±0.37

Ni0.03%-CsPbBr3 4.37±0.21 5.09±0.25 3.83±0.19 4.20±0.21

Ni0.05% -CsPbBr3 3.59±0.17 3.40±0.17 3.06±0.15 3.27±0.16

Ni0.08% -CsPbBr3 3.03±0.15 3.30±0.16 2.70±0.13 2.79±0.13

Ni0.10% -CsPbBr3 4.06±0.20 4.78±0.23 3.56±0.17 3.60±0.18

Table 2 Summary of the NLO parameters for only Ni NCs. The NLO parameters were obtained from division data of Ni CsPbBr3 to pure

CsPbBr3 NCs

Samples (%NiCsPbBr3/ CsPbBr3) At Io=2.6 9 1011 W/cm2 At Io=3.9 9 1011 W/cm2

Isat(91011) W/cm2 -c(910-16) cm2/W Isat(91011) W/cm2 -c(910-16) cm2/W

Ni0.03% 3.05 6.13 3.37 3.86

Ni0.05% 2.46 7.43 1.62 4.19

Ni0.08% 1.18 8.40 1.19 5.16

Ni0.10% 2.51 7.29 3.29 3.90
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modification of their energy level structure due to

doping. It is known that Ni doping reduces the

bandgap and induces the defect states in the bandgap

region (closer to the conduction band). Possibly, with

a higher doping percentage, the density of defect

states also increases. Furthermore, at k = 400 nm, the

absorbance in doped NCs is higher than that in pure

NCs. Once the electrons are excited to the conduction

band (with 400 nm pump photon corresponding to

*3.0 eV energy), the saturation effect dominates at

lower peak intensities since the NCs possess strong

linear absorption. However, with increasing peak

intensities, there is a possibility of RSA (as shown in

Fig. 7).

In pure NCs, the RSA is dominant even at lower

peak intensities. The pertinent issue here is the

depopulation from excited states to either the lower

part of the conduction band (pure case) or to either

lower part of the conduction band followed by a

transition to the defect states (in doped case), which

will possibly affect further absorption leading to

either stronger RSA or slightly weaker RSA,

depending on the possible scenarios, and thereby

influencing the Isat. The lifetimes (intra-band relax-

ation) of the electron, typically in the femtosecond

time domain, in the excited states are significant for

further absorption through RSA. Further detailed

high-resolution pump-probe investigations are nec-

essary to explore this effect.

We estimated the bandgap of CsPbBr3 as 2.34 eV

(Fig. 7a), which is close to the one reported in Ref.

[87]. The doped divalent element can form the defect

levels in the perovskite structure, which trap the

electrons and reduce the recombination of charge

carriers [71]. Ni2? has partially filled d-orbital and

thus can create the donor levels in the bandgap of

CsPbBr3, leading to a decrease in bandgap (Fig. 7b).

The nonlinear absorption mechanism depends on the

material’s bandgap and pumping photon energy. The

initial absorption process for an electron moving

from valence to conduction band can be quantified by

considering the ratio between material bandgap and

pump photon energy. It is estimated that the ratio

values equal to one 1 or less shows saturable

absorption, i.e., the case when the pump photon

energy is equal or higher than the bandgap of mate-

rial leads to SA. However, the total nonlinear

absorption process depends on the intensity of pho-

ton energy and energy levels of the conduction band.

In the current case, pure CsPbBr3 NCs demonstrated

SA at lower intensities (out of focal plane). When

intensity of pulses reached peak values, the RSA is

predominated (for Z-scan results, please see Fig. 3).

Similarly, if the photon energy is lower than the

bandgap of a material then it leads to a multi-photon

absorption process. Depending on pump photon

energy, the initial absorption process may lead to

2PA, 3PA, 4PA, and 5PA, etc. For example, the ratio

values for 2.34 eV to pump photon energy between

700–1200 nm range; the absorption process agrees

with previous work reported by Chenyang Zhu et al.

[84], i.e., at 700–1100 nm the CsPbBr3 QDs possess

2PA and at 1100–1200 nm having 3PA.

In the case of NiCsPbBr3, the addition of Ni prob-

ably led to a decrease in the bandgap (Fig. 7b).

Therefore, at the peak intensities of pump wave-

length, Ni NCs possessed SA and the saturation

varies depending on the concentration of Ni NCs. It

was observed that the absorption process for pure

NCs is SA?RSA. In the case of Ni NCs, near to the

focus, they possess SA; due to this effect near the

focus, there is a decrease in the RSA compared to

pure NCs (see Fig. 3). In conclusion, the NLO process

could be influenced by pumping wavelength and

pulse duration and the size and shape of the small-

sized species. Therefore, it is necessary to explore the

NLO properties of materials at required pump

wavelengths along with different pulse durations.

In the case of magnetic properties of the synthe-

sized materials, the electron and hole are subjected to

various Zeeman interactions in the presence of a

magnetic field. As a result, the combined electron-

hole energy level broadens and changes, affecting the

PL line width appropriately [88]. The presence of a

magnetic field results in a net increase in triplet

excitons due to the formation of anti-parallel (singlet

state) and parallel (triplet state) spin states excitons.

When charge-separated states are achieved, then

more electrons and holes with parallel spin states will

be formed [89]. An elaborative study about the

magnetic properties of the synthesized material has

to be explored further.

HHG from LIPs containing nanocrystals
using chirp-free 35 fs and chirped 135 fs
pulses

The low-order NLO properties of Ni-doped CsPbBr3

NCs at 400 nm wavelength can be used in different

applications such as light-emitting diodes,
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Table 3 Summary of the ultrafast NLO properties/coefficients of various perovskite materials

Samples Size

distribution

Excitation

details

NLO

process

b (cm/GW) Isat (GW/

cm2)

c (cm2/W) Ref.

CsPbBr3 materials

Square NCs * 20 nm 800 nm, 70fs, 1

kHz

2PA 3.9910-2 3.52910-12 [17]

Cubic NCs * 9 nm 800 nm, 70 fs, 1

kHz

2PA 0.097 [25]

Nano cubes: *12.4 nm 800 nm, 50 fs, 1

kHz

2PA 0.091 [21]

QDs: spherical(blue

emissive)

5 nm 800 nm, 130 fs,

76 MHz

2PA – 1.71 – 5.18910-15

QDs: nano cubes (green

emissive)

*17 nm 800 nm, 130 fs,

76 MHz

2PA – 0.68 0.011 1.99910-15 [32]

Nanosheet: 104.6 nm 800 nm; 80 fs 2PA 10.94 3.12

195.4 nm 800 nm; 80 fs 2PA 4.73 4.79 [77]

Mono-crystal 1000 nm 30 ps, 50 Hz 2PA 5.00 [29]

Nanocrystal film: 1060 nm,500 ps SA 10.7 [78]

Nano cubes: 10-16 nm 1064 nm, 1 ns,

20 kHz

3PA 0.9–1.1 cm3/GW2 0.8-1 0.8-1.2910-12 [79]

Single crystal: 1200 nm 3PA c = 0.14 cm3/GW2 [79]

2050-2300 nm,

50 fs.

5PA gd5 = (0.09-6.5)

9 10-136 cm10 s4

photon-4

[18]

Other perovskites

QDs cubes: *12.4 nm 800 nm, 50fs, 1

kHz

2PA 0.054

CsPbCl2Br: 0.064 [21]

Cs2AgIn0.9Bi0.1Cl NCs 1-5nm 800 nm, 57fs 2PA 6.88 55910-13 [80]

CsPbI1.5Br1.5 *40 lm 1064 nm, 2

ps,58 MHz

2PA 0.94 [81]

Figure 7 Energy levels of

a CsPbBr3 and b Ni-doped

CsPbBr3 nanocrystals. Also

depicted are the transitions for

RSA and SA (blue dotted

lines).
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photodetectors, and lasers. Meanwhile, in our earlier

work, we have already demonstrated the application

of such species for HHG of the chirp-free 35 fs pulses

using the same samples, which were ablated by

nanosecond and picosecond heating pulses [73]. In

this subsection, we analyze the harmonics emission

from LIPs of reported NCs using chirped TCP and

SCP driving laser pulses and compare the results

with chirp-free pulses.

The spectral profiles of chirp-free and chirped

pulses were measured using a USB spectrometer

(Ocean Optics) and are shown in Fig. 8a. All these

pulses possess the same spectral components.

Meanwhile, their distribution along the laser pulses

significantly differs from each other. The blue and

red components were equally distributed along the

temporal shape of chirp-free 35 fs pulses (Fig. 8b).

The spectral distribution along the negatively and

positively chirped 135 fs pulses is shown in Fig. 8c, d,

respectively. The blue and red components are

moved toward the leading front and the tailing part

of the pulses, respectively, for negatively chirped

pulses. Whereas, for positively chirped 135 fs pulses,

the reverse pattern is seen compared with the nega-

tively chirped pulses. The red component is moved

toward leading front of pulse, while blue component

of spectrum is concentrated at the tailing part of the

laser pulse.

Figure 9a, b show 2D color map and Figure 9c, d

depict the corresponding line profiles of HHG spectra

from 2D NCs generated by two-color pump and

single-color pump of LIPs using chirp-free 35 fs

pulses, negatively and positively chirped 135 fs pul-

ses, respectively. The intensities of chirped pulses

during propagation through the LIPs were 0.9 9 1014

W/cm2. The laser intensity of the chirp-free 35-fs

pulse was 4.0 9 1014 W/cm2. Similar pulse energies

(0.6 mJ) of the driving pulses were used in the case of

chirp-free and chirped pulses. The harmonics shifted

toward shorter and longer wavelengths in the case of
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Figure 8 Spectral shapes and spectro-temporal distributions of

used laser pulses for HHG. a Spectra of chirp-free 35 fs pulses,

negatively chirped 135 fs pulses, and positively chirped 135 fs

pulses. b Autocorrelation trace of 35 fs pulses. Spectral

distribution along these chirp-free pulses represents the

homogeneously distributed red and blue components in both the

leading and trailing parts of the laser pulse. c Autocorrelation trace

and spectral distribution along the positively chirped 135 fs pulses.

The red component is moved toward the leading front of the pulse.

d Autocorrelation trace and spectral distribution along the

negatively chirped 135-fs pulses. The blue component is moved

toward the leading front of the pulse. The squares shown in (b–

d) represent the autocorrelation traces. Solid lines represent the

Gaussian fits of experimentally obtained spectra.
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negatively and positively chirped driving laser pul-

ses, respectively. For example, tenth harmonic (10H)

in the case of TCP and ninth harmonic (9H) in the

case of SCP of plasma showed *0.30 and *0.85 nm

blue shifts, in the case of negatively chirped driving

laser pulses with regard to the harmonics generated

using chirp-free pulses. The leading parts of nega-

tively and positively chirped DPs produced the har-

monics from the blue and red spectral components,

respectively, which led to the blueshift and redshift

of harmonics. Therefore, one can finely control the

shift of harmonics by changing the chirp of driving

laser pulses. These modifications of harmonic spectra

can find application in nonlinear spectroscopy of

materials using tunable coherent XUV pulses.

The cut-off of harmonics is reduced for chirped

pulses due to a decrease in the peak intensity of DPs.

In the case of SCP, the chirp-free pulses produced

maximum harmonic cut-off compared with chirped

pulses. Also, for all samples, the even harmonics

have higher intensities than odd harmonics. Higher

intensity of the harmonics is attributed to the shorter

wavelength sources (400 nm) compared with the 800

nm radiation, which is related to the growth of

ponderomotive energy (Up) of DP. In other words,

the enhancement of harmonic yield is proportional to

k-5 or k-6 [90–92]. Whereas, the cut-off of harmonics is

proportional to *k2, since the energy cut-off is given

by Ecut�off ¼ Ip þ 3:17Up. Where Ip is the ionization

potential, Up= 9.33910-14 I (W/cm2) k2 (lm), and I is

the laser intensity [93].

Below we summarize our studies. The addition of

Ni-dopants to the CsPbBr3 NCs demonstrated sig-

nificant changes in the NLO properties at different

excitation wavelengths. In our earlier work [17] (800

nm, Z-scan measurements), the nonlinear absorption

Figure 9 a, b 2D color map and c, d corresponding line profiles of Harmonic spectra from 2D nanocrystals generated by two-color pump

and single-color pump of LIPs using chirp-free 35 fs pulses, negatively and positively chirped 135 fs pulses, respectively.
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coefficients and nonlinear refractive indices are

increased with % change of Ni compared to the pure

NCs. In contrast, in the current case with excitation

by 400 nm pulses, the NLO coefficients are decreased.

However, in this case the Ni dopants possess a self-

defocusing effect, and in both cases, i.e., for 400 nm

(only Ni contribution, current work) and 800 nm

(earlier work [17]), we observed the incremental

variation of c. In both cases, the incremental trend is

almost similar to HHG yields from the same studied

samples for TCP (800 nm?400 nm) and SCP (800 nm).

In the case of HHG using TCP, the harmonic gener-

ation originates from both excitation wavelengths,

i.e., from 800 nm and 400 nm pumps. Therefore, we

have shown that higher nonlinear refractive indices

for Ni-doped NCs correlate with higher HHG yields

from the plasma plumes composed of the compo-

nents of Ni?CsPbBr3. Adding Ni to pure CsPbBr3

could enhance the NLO response in terms of c for 800

nm and 400 nm measured using Z-scan technique,

and a similar behavior is also achieved for HHG

yields for both driving schemes (SCP and TCP).

Meanwhile, by considering the nonlinear absorp-

tion, the Ni dopants demonstrate SA at higher

intensities. In Fig. 6a, we showed the calculated Isat

and Io/Isat ratios for Ni NCs. The Io/Isat and c
dependencies look similar. Figure 10a shows the

values of valleys in the OA and CA normalized

transmittances; these curves are similar to the HHG

curves for the samples shown in Figs. 10b–e. Finally,

we can summarize that the NLO coefficients mea-

sured by Z-scan technique using 800 and 400 nm

excitation wavelengths and HHG yields demonstrate

similar tendency with variation of the Ni

concentration.

Conclusions

In this work, we have explored the third-order NLO

properties of pure CsPbBr3 and Ni-doped CsPbBr3

NCs using 400 nm, 60 fs, 1 kHz laser pulses. We also

demonstrated the enhanced high-order harmonics

generation in the plasmas produced on the surfaces

of the latter species compared with the pristine NCs

using different configurations of the driving pulses.

The OA Z-scan measurements have shown that pure

CsPbBr3 NCs possess SA and RSA at lower and

higher intensities of laser pulses, respectively. These

samples have shown a self-focusing effect. However,

the nonlinear absorption and refraction decreased for

Ni-doped CsPbBr3 NCs due to the opposite NLO

properties of Ni dopants with regard to the CsPbBr3

due to the growing influence of the SA and self-de-

focusing attributed to the Ni. In addition, we have

examined the high-order harmonics emission from

the LIPs of these NCs using TCP and SCP chirp-free

and chirped driving laser pulses. The Ni-dopants

have increased the harmonic cut-off and yield from

the corresponding plasmas. We have also demon-

strated the advantages of chirped laser pulses for

Figure 10 Summary graphs of the NLO response of studied

samples versus the concentration of Ni. a Valley values of

normalized T(z) for OA and CA measurements at 400 nm. b–

e Harmonics intensity and cut-off for TCP and SCP chirp free and

chirped driving pulses (see text).
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tuning the harmonics, which might be helpful for the

XUV nonlinear spectroscopy of different materials. In

summary, our detailed studies have demonstrated

that b and c values for combined NiCsPbBr3 NCs are

decreased compared to pure CsPbBr3 NCs. However,

if we consider NLO coefficients for Ni NCs, the c
values are increased with the growth of Ni doping

concentration. The same tendency was observed in

the harmonics yield and cut-off for both SCP and TCP

of LIPs. Thus, the correlation between the low-order

NLO properties and HHG of similar materials was

demonstrated.
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