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a b s t r a c t 

Siamese networks have achieved great success in visual tracking with the advantages of speed and accu- 

racy. However, how to track an object precisely and robustly still remains challenging. One reason is that 

multiple types of features are required to achieve good precision and robustness, which are unattainable 

by a single training phase. Moreover, Siamese networks usually struggle with online adaption problem. 

In this paper, we present a novel two-stage aware attentional Siamese network for tracking (Ta-ASiam). 

Concretely, we first propose a position-aware and an appearance-aware training strategy to optimize dif- 

ferent layers of Siamese network. By introducing diverse training patterns, two types of required features 

can be captured simultaneously. Then, following the rule of feature distribution, an effective feature se- 

lection module is constructed by combining both channel and spatial attention networks to adapt to 

rapid appearance changes of the object. Extensive experiments on various latest benchmarks have well 

demonstrated the effectiveness of our method, which significantly outperforms state-of-the-art trackers. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Visual object tracking serves as a fundamental task in computer 

ision and receives increasing attention in recent years. Given the 

nitial state of an object in the first frame, object tracking aims to 

redict the object’s state in the subsequent frames, which is an 

mportant step for various applications ranging from autonomous 

riving [1] , visual surveillance [2] , augmented reality [3] to human- 

omputer interaction [4] . However, accurate and robust tracking 

till remains challenging because of the complex shape and ap- 

earance variations of the object, such as occlusion, illumination 

hange, background clutter, deformation, etc. 

Recently, Siamese networks [5–11] have stood out due to the 

deal trade-off between accuracy and speed, which formulate ob- 

ect tracking as a similarity learning problem in deep feature 

pace. Specifically, deep convolutional features are first extracted 

y Convolutional Neural Networks (CNNs) such as AlexNet [12] and 

esNet [13] . Then, similarity comparison is performed by Cross- 

orrelation layers [5] , Region Proposal Networks [ 8 , 10 ] or Anchor-

ree Networks [11] . To boost the quality of offline training, some 

pproaches [ 9 , 14 ] are further presented to benefit from large-scale 

ideo datasets. In addition, running average template [6] or feature 

ast transformation [7] is explored to complete online update. 
∗ Corresponding author. 
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Although achieving remarkable performance, Siamese trackers 

till suffer several problems. First, traditional training frameworks 

ail to ensure the tracking accuracy and robustness simultaneously 

espite have exploited distractor cases [9] and hard positive sam- 

les [14] during optimization. We discover that there actually ex- 

sts inherently contradictory requirement for the learned features 

o achieve both precise and robust tracking. Concretely, to ensure 

recision, the tracker prefers local details to perceive slight spatial 

isplacement of the object. But for robustness, it expects to ignore 

he details and capture high-level semantic information to better 

istinguish the object from cluttered background. Regardless of the 

bove issue, previous works adopted a unified training framework, 

here all network layers are optimized to learn the features ro- 

ust to position and appearance variations simultaneously, leading 

o less effective feature learning. 

Besides, training networks in an offline manner needs to resolve 

he online adaption problem. Since the object may undergo dras- 

ic and irregular appearance variations during tracking, it is critical 

or trackers to exploit the discriminative features of the object to 

dapt to object variations flexibly and reliably. Conventional solu- 

ions [ 6 , 7 ] try to introduce object features generated from diverse 

tages. However, these methods usually lack adaptivity in terms of 

omplicated appearance variations, and thus suffer drifting prob- 

em. 

To address these issues, this paper first proposes a novel two- 

tage aware training strategy for Siamese networks by introduc- 

ng diverse training patterns to individually optimize different 

etwork layers, rather than employing a unified pattern for the 

https://doi.org/10.1016/j.patcog.2021.108502
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108502&domain=pdf
mailto:hangl_ciomp@163.com
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hole network in the offline stage. Specifically, both position- 

ware and appearance-aware trainings are presented. The for- 

er utilizes spatial-augmented samples to train shallow layers to 

roduce position-aware features, while the latter optimizes deep 

ayers with context-augmented samples to generate appearance- 

ware features. By decomposing the contradictory requirements 

f feature learning, the tracker is expected to collect more suffi- 

ient features for precise and robust tracking. The proposed train- 

ng framework can be applicable for both Siamese and deep dis- 

riminative trackers, and also extensible to networks for other vi- 

ion tasks such as object detection, segmentation, etc. 

In addition, we observe that Siamese networks can improve 

heir capability of recognizing discriminative features by incorpo- 

ating self-attention mechanisms [ 15 , 16 ]. For a certain object, the 

ost discriminative features are usually encoded by only a few 

eature channels, and their spatial distribution varies with the vari- 

tions of object appearance. To better exploit these features, we 

ake advantage of both channel and spatial attention networks, 

hich are embedded into different input branches. The channel at- 

ention learns to highlight the representative channels according 

o object category, while the spatial attention emphasizes the dis- 

riminative locations in search regions. In this way, two attention 

echanisms complement well each other to extract real important 

eatures for the object, and thus benefit the prediction of target 

tates. 

The main contributions of this work are summarized as follows: 

1. We propose a novel two-stage aware training framework for 

Siamese networks, in which position-aware and appearance- 

aware training schemes are presented to optimize the shal- 

low and the deep network layers, respectively (as described in 

Section 4 ). This contribution helps Siamese tracker to achieve 

precise and robust visual tracking. 

2. An effective feature selection module is presented to solve the 

online adaptation problem of Siamese trackers. By analyzing the 

changing principle of feature distribution, the module combines 

diverse attention networks in a unique way to explore the real 

discriminative features for the current object (as described in 

Section 3.3 ). 

3. The proposed tracker is evaluated on four popular benchmark 

datasets extensively. The results demonstrate that the tracker 

performs better than other state-of-the-art methods in terms 

of accuracy and robustness. 

. Related work 

.1. Siamese trackers 

Siamese network is a popular tracking paradigm, which learns a 

imilarity measuring function offline on large-scale video datasets. 

iamFC [5] first presented a Cross-correlation layer to match the 

eatures of the exemplar and the candidate samples, and then 

everal approaches were developed to promote the online updat- 

ng capability of the offline-trained model, including running av- 

rage template [6] , feature fast transformation [7] and reinforce- 

ent learning [17] . Some subsequent works designed more power- 

ul matching decision modules to predict the object state. SiamRPN 

8] introduced Region Proposal Network (RPN) to parallelly classify 

he object from background and regress the bounding box of ob- 

ect. Inspired by SiamRPN, some issues like SPM [18] and C-RPN 

19] exploited more complicated structures to achieve better re- 

ults. Anchor-free networks were also employed as decision mod- 

les to avoid complex hyper-parameters. Among them, SiamFC ++ 

20] presented a set of practical guidelines for target state estima- 

ion, while both SiamBAN [11] and SiamCAR [21] designed fully 

onvolutional networks to identify the objects and regress their 
2 
ounding boxes in a per-pixel prediction manner. Ocean [22] pro- 

osed an object-aware anchor-free Siamese tracker. Other meth- 

ds tried to explore deeper backbone networks to improve fea- 

ure representation level by breaking the limitation of padding. 

iamRPN ++ [10] overcame such a drawback by using spatial aware 

ampling, while SiamDW [23] directly built a novel residual block 

ithout padding operation. Besides, some literature [24] was de- 

oted to bridging the gap between object segmentation and ob- 

ect tracking. At present, Siamese trackers have established state- 

f-the-art results on most benchmarks. 

.2. Feature training methods 

It remains a great challenge to train deep tracking networks 

ith high quality, especially with limited training samples. As a 

esult, various strategies have been presented to improve train- 

ng quality. Concretely, deep discriminative trackers usually first 

rained the networks offline and then fine-tuned them online with 

racking results, in which transfer learning was often exploited 

o accelerate convergence. Among these, MDNet [25] proposed a 

ulti-domain learning architecture to capture domain-specific fea- 

ures. STCT [26] regarded CNN as an ensemble learner, and in- 

roduced a sequential training approach to alleviate the overfit- 

ing problem of online fine-tuning. DRT [27] constructed a relative 

earning model to fully exploit the relations among candidate sam- 

les, while VITAL [28] adopted adversarial learning to decorrelate 

ositive samples, providing robust features for tracking. Siamese 

etworks were often trained completely offline, and their back- 

ones were generally pretrained on datasets like ImageNet [29] to 

ift training efficiency. Moreover, DaSiamRPN [9] introduced se- 

antic distractors into training samples to extract distractor-aware 

eatures and used still images to train Siamese networks via data 

ugmentation. SINT ++ [14] generated massive hard positive sam- 

les using adversarial training and reinforcement learning. Though 

ifting tracking performance to a certain extent, all the above ap- 

roaches ignore the fact that visual tracking prefers diverse even 

pposite types of features, and optimize the whole network with a 

ingle pattern. 

.3. Attention mechanisms 

Attention mechanisms have shown performance gains in var- 

ous visual tasks. SENet [15] proposed a Squeeze-and-Excitation 

odule to learn channel-wise feature responses. CBAM [16] de- 

cribed a convolutional block attentional module, where both 

hannel and spatial attentions were constructed for adaptive fea- 

ure refinement. In the field of tracking, SA-Siam [30] introduced 

 channel attentional block to adjust the channel distribution of 

eatures according to the object category, while RASNet [31] de- 

igned a residual attentional module for Siamese networks by 

ombining channel and spatial attentional networks. The above 

rackers only employ attention networks to analyze the exem- 

lar features, which cannot adjust the emphasis based on the cur- 

ent appearance of the object. MAM [32] leveraged multiple at- 

ention mechanisms to make full use of visual information dur- 

ng tracking. TADT [33] illustrated a novel channel attentional 

odule based on backward gradient information, which was used 

o analyze the features of exemplar and current object simulta- 

eously. SiamAttn [34] explored a deformable Siamese attention 

odule by combining self-attentions and cross-attentions. In this 

aper, we first investigate the change rule of feature distribu- 

ion, and then present a novel attention-based module for feature 

election. 
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Fig. 1. Overview of the proposed framework, consisting of weight-shared backbone, channel attention networks, spatial attention networks and Region Proposed Networks. 

The network modules in orange are optimized with position-aware training scheme, while the modules in blue are trained with appearance-aware training strategy. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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. Attentional Siamese network 

In this section, we describe the proposed attentional Siamese 

etwork carefully. In particular we combine two components, a 

ual backbone network for extracting features from input samples 

nd several RPN modules for predicting tracking results. In addi- 

ion, diverse attention modules are inserted between the backbone 

nd the PRN modules to adjust features for similarity matching, as 

llustrated in Fig. 1 . 

.1. Siamese networks 

Siamese networks formulate visual tracking as learning a simi- 

arity matching function to compare the template z with the can- 

idate sample patches in search region x . They are generally com- 

rised of two input branches with shared weights to extract fea- 

ures from the exemplar and the search region, respectively. More- 

ver, a matching module is introduced to measure the correlation 

etween the input pairs, which can be formulated as in Eq. (1) . 

 ( z, x ) = D ( f ( z ) , f ( x ) ) + b. (1) 

here f (·) denotes the mapping function learned by the backbone 

etwork that is commonly implemented by CNNs pretrained for 

lassification or detection tasks. D (·) indicates the similarity com- 

arison function, which is adopted to find the most similar candi- 

ate and predict the object state. b is an offset value and S repre- 

ents the output similarity confidence map. 

.2. Backbone network 

Backbone network plays a key role in Siamse tracker as 

he quality of learned feature representation would directly af- 

ect tracking performance. Following the recent state-of-the-art 

iamRPN ++ tracker [10] , we adopt widely-used ResNet-50 [13] as 

he backbone, and employ several modifications to make it more 

ppropriate for tracking. First, we remove the last residual block, 

.e., the fifth block, to make the network more compact and effi- 

ient, which is also necessary to retain network symmetry for two- 
3 
tage aware training. In addition, we reduce the stride and intro- 

uce dilated convolution in the fourth residual block to preserve 

patial details without hurting receptive fields. 

It is well-known that the features provided by shallow layers 

re rich in local details, which are beneficial for accurate localiza- 

ion. In contrast, deep layers encode abstract semantic information, 

hich helps to distinguish the object from background. Hence, we 

xploit features from multiple layers, i.e., the third and the fourth 

esidual blocks, to take advantage of both low-level details and 

igh-level semantics to boost tracking. An additional 1 × 1 convo- 

utional layer is appended to each of block end to align its feature 

hannels to 256. For the template branch, only the features in the 

entral 7 × 7 region are cropped as template features. 

.3. Feature selection with attention networks 

Backbone network can extract a large quantity of convolutional 

eatures. However, only a small portion of them are critical to pre- 

icting the object states, while the rest are redundant and may 

isturb the judgment of trackers in some cases. To alleviate this, 

ttention mechanisms provide a popular solution to identify the 

iscriminative features. Inspired by the solution, we first analyze 

he distributional rule of features, and then present a reliable fea- 

ure selection module based on attention networks. 

.3.1. Feature selection 

Each channel in convolutional features emphasizes on a special 

isual pattern, and only a few channels are activated for a certain 

ategory of object. Typically, only the features from these chan- 

els are discriminative for recognizing the object, while the fea- 

ures provided by other channels are irrelevant. The distribution 

f discriminative feature channels only depends on the category of 

bject, which keeps unchanged with the variations of object ap- 

earance. Hence, we are able to identify the critical channels by 

irectly analyzing the initial exemplar. In addition to the difference 

etween feature channels, the importance diversity of features also 

xists in the spatial dimension. That is, the features in some spe- 

ific spatial positions may be of more importance than those of 
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Fig. 2. Classification confidence maps output by the deeper RPN modules. The 1st to 5th column illustrate search regions, maps without any attention, maps with channel 

attention, maps with spatial attention and maps with both channel and spatial attentions, respectively. 
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ther positions when tracking an object. It’s necessary to note that 

he critical region often varies with object appearance. For exam- 

le, the eyes are the most discriminative features in the initial 

tage of tracking a face, but the mouth would become more im- 

ortant instead when the eyes are occluded during tracking. There- 

ore, in the spatial domain, it is essential to dynamically explore 

he really important features depending on the current object ap- 

earance instead of only the initial exemplar. 

.3.2. Channel attention network 

Based on the above analysis, we adopt a channel attention net- 

ork [ 15 , 16 ] to predict the importance of each channel in exem-

lar features. Concretely, a global average and a global max pool- 

ng layers are first employed to compress the spatial dimension of 

he features. Then, a Multi-Layer Perceptron (MLP) comprised of 

wo fully connected layers and one RELU activation layer is used 

o encode these pooled features. Finally, the network accumulates 

he features produced by the average and the max pooling layers, 

nd introduces a sigmoid activation layer to normalize the out- 

ut weight. Given multiple-channel features f (z) ∈ R H×W ×C as in- 

ut, the network computes an attentive vector C(z) ∈ R l × l ×C as the 

eights of different channels: 

 ( z ) = g 
(
M LP ( f max ( z ) ) + M LP 

(
f a v g ( z ) 

))
(2) 

here, g(·) denotes the sigmoid function, and f max (•) and f a v g (•) 
ndicate the features after global max pooling and global average 

ooling, respectively. 

Then, the weight vector is adopted to modulate the features of 

he exemplar and the search region through channel-wise prod- 

ct operation. With such modulations, the Siamese network can 

e modified as: 

 ( z, x ) = D ( C ( z ) • f ( z ) , C ( z ) • f ( x ) ) + b (3) 

n which the dot denotes channel-wise product. The modulated re- 

ults are displayed on Fig. 2 . 
4 
.3.3. Spatial attention network 

A spatial attention network [16] is introduced to select the dis- 

riminative spatial component from the features of search region. 

oncretely, a channel average pooling layer and a channel max 

ooling layer are first used to reduce the quantity of channels. 

hen, the network captures local semantic patterns with a convo- 

ution. Finally, the features generated by the average and the max 

ooling layers are summed together and further normalized by a 

igmoid layer. For the features of search region f (x ) ∈ R H 
′ ×W 

′ ×C , the 

patial attention computes a weight matrix P (x ) ∈ R H 
′ ×W 

′ ×1 as in 

q. (4). 

 ( x ) = g 
(
C on v ( f c max ( x ) ) + C on v 

(
f ca v g ( x ) 

))
(4) 

here Con v (•) denotes the convolutional layer, f c max (•) and 

f ca v g (•) are the features from channel max pooling and channel 

verage pooling, respectively. 

Then, the features of search region are adjusted by the spatial 

eight matrix via Hadamard product. With the channel and the 

patial attentions, the Siamese network can be viewed as: 

 ( z, x ) = D ( C ( z ) • f ( z ) , P ( x ) × ( C ( z ) • f ( x ) ) ) + b (5) 

here × indicates the hadamard product operation. As shown in 

ig. 2 , the attention mechanisms help to identify the discriminative 

eatures for tracking an object, such that the Siamese network can 

dapt to appearance variations of the object more efficiently. 

.4. Region proposal network 

The RPN module presented in SiamRPN ++ [10] is adopted to 

nfer the object state. The template and the search region features 

djusted by attention networks are inputted into the RPN module, 

hich would be compared by a depth-wise cross-correlation layer. 

hen, a classification and a regression heads are employed to dis- 

riminate the object from background and predict the bounding 

ox of object, respectively. To utilize the features from different 

ayers, we introduce multiple RPN modules for the third and the 



X. Sun, G. Han, L. Guo et al. Pattern Recognition 124 (2022) 108502 

Fig. 3. Training samples augmented with diverse spatial transformations. Images from left to right illustrate original, shifted, in-plane rotated and scaled samples, respec- 

tively. 

f

R

C

i

s

g

T

u

4

d

p

a

e

t

t

t

w

p

l

a

4

d

f

f

f

n

w

a

f

c

i

1

t

a

t

t

b

r

T

t

b

p

t

4

a

d

a

t

a

o

i

fi

s

c

f

r

t

v

l

t

m

t

l

r

a

a

a

e

d

t

t

d

o

d

n

p

F

t

t

S

t

b

w

e

ourth residual blocks of backbone. The output maps from different 

PN modules are adaptively aggregated, as described in Eq. (6) . 

 all = 

∑ 4 

l=3 
αl ∗ C l , P all = 

∑ 4 

l=3 
βl ∗ P l (6) 

n which C and P denote the classification and the regression re- 

ults of RPN blocks, respectively. α and β represent trainable aggre- 

ation weights, which are trained along with the network weights. 

he classification and the regression outputs are combined individ- 

ally since they are supposed to support different tasks. 

. Two-stage aware training 

During tracking, distractors are mainly caused by position 

isturbances as well as appearance variations. Hence, a high- 

erformance tracker must simultaneously capture position-aware 

nd appearance-aware features to handle these distractors. How- 

ver, these features cannot be provided by a unified training pat- 

ern due to the opposite relationship among them. In this sec- 

ion, we present a two-stage aware training framework to tackle 

he problem. Inspired by the principle that training samples decide 

hat the network emphasizes on, the framework adopts the sam- 

les with different attributes to optimize the shallow and the deep 

ayers, respectively. It mainly consists of two patterns: position- 

ware training and appearance-aware training. 

.1. Position-aware training 

If a network learns to deal with spatial variations frequently 

uring offline training, it will pay more attention to capture the 

eatures which are sensitive to spatial position disturbances. These 

eatures are really important to lift the tracking accuracy. There- 

ore, we introduce abundant spatial transformations into origi- 

al training samples through data augmentation, which has been 

idely discussed in previous works [9] . To imitate the spatial vari- 

tions of the object, the adopted data augmentations are listed as 

ollows: 

Shift : Randomly translate a sample both horizontally and verti- 

ally. The shift range (max shift distance) is set to 64 pixels, which 

s identical with spatial aware sampling. 

Rotation : Rotate a sample with several fixed angles: 0 ◦, 90 ◦, 

80 ◦ and 270 ◦. Adopting these angles is for the ease of re-labelling 

he ground-truth. 

Scale : Scale a sample with a random ratio set. The horizontal 

nd the vertical ratios are inconsistent to simulate object deforma- 

ion. The ratio range is 30% of the object size. 

Fig. 3 displays some instance samples augmented with spatial 

ransformations. Since the features from the shallow layers of back- 

one contain informative local details and are of relatively high 

esolution, they are more suitable for processing spatial variations. 

herefore, we employ the above spatially augmented samples to 

rain the shallow layers, including the third residual block of back- 

one, the corresponding attention networks and RPN module. The 
5 
osition-aware training scheme would help the Siamese network 

o track an object more accurately. 

.2. Appearance-aware training 

A tracker must collect enough appearance-aware features to 

dapt to the appearance variations of an object. Hence, we apply 

ata augmentation to generate training samples with more appear- 

nce variations, which will prompt the network to produce the fea- 

ures robust to appearance changes. Considering that the appear- 

nce of an object is usually influenced by background variations, 

ther similar objects and so on, we take advantage of the follow- 

ng data augmentation techniques. 

Blur : Blur a sample with a Gaussian filter. The kernel size of the 

lter varies from 5 to 24 pixels. 

Color transformation : Transform the color and brightness of a 

ample, which is expected to simulate the illumination changes in 

omplex scenarios. 

Occlusion : Occlude a sample via region dropout. This is per- 

ormed by randomly setting the pixel values in a local region to a 

andom fixed value. The size of dropout region is generally smaller 

han 70% of the object size. 

The examples of training samples augmented with appearance 

ariations are shown in Fig. 4 . Compared with shallow network 

ayers, the deeper layers can extract more abstract semantic pat- 

erns from a global view. Therefore, features from these layers are 

ore effective to recognize the object from distractors. We utilize 

he presented context augmented samples to optimize the deeper 

ayers containing the fourth residual block of backbone, the cor- 

esponding attention networks and RPN module. The appearance- 

ware training pattern would help the Siamese network to tackle 

ppearance distractors more effectively. 

In training phase, the position-aware training and the 

ppearance-aware training can be combined into an end-to- 

nd manner. Specifically, we first construct two disparate training 

atasets with different data augmentations, which correspond to 

he position-aware and the appearance-aware trainings, respec- 

ively. Then, in each batch, we extract samples from the first 

ataset to perform forward propagation, and compute the loss for 

ptimizing the shallow-layer modules. The samples from the other 

ataset are adopted to calculate the training loss for the deeper 

etwork layers. Finally, we combine these losses to backward 

ropagate gradients and optimize network parameters jointly. 

ig. 5 illustrates the tracking results of our tracker under diverse 

raining schemes. Compared to the standard training, it is easy 

o find that the proposed training framework is able to help our 

iamese network to classify the object more robustly and regress 

he bounding box more precisely. 

In fact, multi-layer feature aggregation is a kind of ensem- 

le learning technique [ 35 , 36 ], which manages to combine some 

eak sub-learners into a stronger learner. For a neural network, 

ach output layer can be regarded as a sub-learner. In this regard, 
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Fig. 4. Training samples generated with different context augmentation techniques. Images from left to right illustrate original, color-adjusted, blurred and occluded samples, 

respectively. 

Fig. 5. Tracking results of our attentional Siamese network under different training schemes. The first row display the results with standard training method (using samples 

without any augmentations), while the second show the results under our two-stage aware training. In each figure, the object is annotated by the classification heatmap and 

its regressed bounding box. 
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ow to decorrelate these sub-learners is critical to maximizing the 

dvantages of ensemble learning. In our two-stage aware train- 

ng framework, each module is optimized with a specific strategy, 

hich diversifies the learned features significantly, and thus pro- 

otes the performance of the ensemble learner. 

. Experiments and results 

.1. Implementation details 

Following some previous works, the sizes of exemplar and 

earch region patches are set to 127 × 127 and 255 × 255 , respec- 

ively. The backbone network is initialized with the parameters 

retrained on ImageNet, whose first two residual blocks are always 

rozen throughout the training. 

The presented Siamese network is optimized on the datasets of 

mageNet VID [29] , YouTube-BoundingBoxes [37] , COCO [38] and 

mageNet DET [29] . We optimize the network via Stochastic Gra- 

ient Descent (SGD) algorithm with a momentum of 0.9 and a 

eight decay of 0.0 0 05. The network is trained 20 epochs with 

 minibatch of 32. We employ a warm-up learning rate setting, 

here the learning rate increases from 0.001 to 0.005 in the first 

 epochs, and decays from 0.005 to 0.0 0 0 05 in the last 15 epochs.

n addition, the backbone module is optimized only in the last 10 

pochs, whose learning rate is 16 times smaller than other mod- 

les. For each anchor box in RPN blocks, it will be labelled as pos- 

tive sample if its IOU ratio with ground-truth is larger than 0.6, 

hile be regarded as negative sample if the ratio is smaller than 

.3. In one input image pair, we only extract 16 positive and 32 

egative samples for training. 
6 
During inference, we extract the exemplar features using back- 

one network from the initial frame, which are saved for subse- 

uent tracking. In each subsequent frame, we crop the search re- 

ion sample according to the object state in the previous frame, 

nd infer the current object state by comparing its features 

ith exemplar features. Besides, cosine window penalty and scale 

hange penalty are employed to re-rank the confidence scores of 

ll anchors. The bounding box of object is updated linearly by the 

egression result of the anchor with the highest confidence. Our 

ork is performed using PyTorch on a computer with one NVIDIA 

itan Xp GPU. 

.2. Comparison with the state-of-the-art 

To present the performance of the proposed tracker (Ta-ASiam), 

e compared it with some state-of-the-art trackers on four pop- 

lar datasets, OTB-100 [39] , VOT2019 [40] , UAV123 [41] and La- 

OT [42] . On these datasets, our tracker runs at a speed of over 80

rames-Per-Second (FPS). 

.2.1. OTB-100 dataset 

Online Tracking Benchmark was first presented including 50 

ully-annotated video sequences [43] , and then was expanded 

ith 50 extra challenging sequences, named as OTB-100 [39] . The 

ataset covers 11 kinds of challenging factors, such as motion blur, 

ackground clutter, occlusion, etc. It is very suitable for analyzing 

he characteristics of different trackers. 

We compared our tracker to thirteen state-of-the-art trackers. 

he first six trackers are representative Siamese networks, con- 

isting of Siam R-CNN [44] , SiamBAN [11] , SiamRPN ++ [10] , TADT 
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Fig. 6. Success and precision plots of OPE for all trackers on OTB-100. These trackers are ranked according to the performance score. The performance score of precession 

plot is at error threshold of 20 pixels, while the performance score of success plot is the value of area under curve (AUC). 

Fig. 7. Success plots of OPE for different attributes on OTB-100. The number in the parenthesis denotes the number of sequences within the attribute. These trackers are 

ranked according to the performance score of success. 
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33] , DaSiamRPN [9] and SiamRPN [8] . While the last seven meth- 

ds are based on correlation filters or deep classification networks, 

ncluding ECO [45] , ECO-HC [45] , DIMP-50 [46] , MDNet [25] , ATOM

47] , CREST [48] and UDT [49] . There are two main evaluation met-

ics: center location error and bounding box overlap error. The 

enter location error measures the relative distance between pre- 

icted and ground-truth locations, in which precision plots can be 

omputed by counting the percentage of images when the loca- 

ion errors are within a given threshold. The overlap error indi- 

ates the IoU ratio between predicted and ground-truth bounding 

oxes, and success plots can be drawn by computing the percent- 

ge of images when the IoU ratios are higher than a given thresh- 

ld. We performed the evaluation in One-Pass Evaluation (OPE) 

ormulation. 
7 
uantitative evaluation. Overall comparison : The overall success 

nd precision plots on OTB-100 are displayed in Fig. 6 . One can ob-

erve that Ta-ASiam outperforms other state-of-the-art approaches 

n both success and precision. Specifically, Ta-ASiam achieves the 

ighest success score of 70.1% and the highest precision score of 

2.2%. Among other methods, Siam R-CNN realizes the leading suc- 

ess score, but its precision decreases by about 3% compared to our 

racker. SiamRPN ++ also gets satisfactory tracking performance, 

ut still has an unignorable gap with ours. 

The outstanding performance of our network can be attributed 

o the strong capability in feature processing. First, the presented 

wo-stage aware training scheme successfully overcomes the de- 

and conflict of features between tracking precision and robust- 

ess, and produces position-aware and appearance-aware features 
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Fig. 8. Precision plots of OPE for different attributes on OTB-100. The number in the parenthesis denotes the number of the sequences within this attribute. These trackers 

are ranked according to the performance score of precision. 
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imultaneously. In addition, the proposed feature selection module 

an eliminate irrelevant features and distinguish real discrimina- 

ive features to infer the object states. With these advantages, Ta- 

Siam implement s more successful tracking than previous Siamese 

rackers. 

Attribute comparison : The success and precision plots of all 

rackers on 11 kinds of challenging attributes are displayed in Figs. 

 and 8 . Benefiting from the training framework and the feature 

election module, Ta-ASiam realizes promising performance on all 

ttributes, and surpasses other state-of-the-art trackers in most 

hallenging cases, such as Out-of-plane rotation, Illumination vari- 

tion, Deformation and so on. However, the tracking performance 

f Ta-ASiam is obviously inferior to some compared methods, like 

iam R-CNN and ECO in the attribute of Out of view. The main 

eason is there is not a re-detection mechanism in our proposed 

ramework. Our tracker searches the object only in a local region, 

hich is difficult to recapture the object if the object runs out of 

iew and reappears in subsequent frames. 

ualitative evaluation. Result comparison : The qualitative tracking 

esults of some methods on a subset of sequences are exhibited in 

ig. 9 . Ta-ASiam obtains excellent tracking results on these chal- 

enging sequences. In Singer2, the proposed method can overcome 

he interference of background clutters, and identify the signer ef- 

ciently. In Diving and Trans, our tracker can adapt to severe de- 

ormation and scale variations. In sequence of Skating1, Ta-ASiam 

racks the skater robustly although occlusion occurs frequently. In 

atrix, the scenario is very complex due to deformation, illumina- 

ion variations, background clutters, etc. Our tracker can still per- 

orm favorably against than other state-of-the-art approaches. 

Failing analysis : In spite of achieving outstanding results, our 

racker is not perfect in certain tracking scenes, and Fig. 10 gives 

ome failure cases. In Bird1, the presented method performs well 

n the beginning although the object deforms seriously. However, 

fter the bird is fully occluded by clouds over a long time (about 
8 
0 frames), Ta-ASiam fails to discover the object again when it 

eappears. In sequence Soccer, the background is pretty cluttered, 

nd the target is often fully occluded by similar background ob- 

ects. In this case, our tracker cannot stably track the object be- 

ause it does not introduce an effective updating module to take 

dvantage of the object information in various times. 

.2.2. VOT2019 dataset 

We evaluate the proposed method on Visual Object Tracking 

hallenge 2019 Dataset (VOT2019), which is a popular benchmark 

or testing online model-free single object trackers. The dataset 

onsists of 60 sequences covering different challenging cases, such 

s occlusion, camera motion, illumination change and so on. In 

he VOT evaluation protocol, trackers are reinitialized once track- 

ng failure (IoU ratio equals to zero). The performance of a tracker 

s evaluated by Accuracy (average overlap on successfully tracked 

rames), Robustness (failure times) and EAO (expected average 

verlap), which synchronously considers the accuracy and the ro- 

ustness. 

We compare the presented network with some state-of-the- 

rt trackers, containing MemDTC [50] , SA_SIAM_R [30] , SPM [18] , 

iamCRF_RT [40] , SiamRPN ++ [10] , SiamMASK [24] , SiamDW-ST 

23] , ATOM [47] and SiamBAN [11] , as illustrated in Table 1 and

ig. 11 . Analyzing the comprehensive performance based on EAO, 

ur tracker is superior to most of approaches, which receives a per- 

ormance gain of 1.9% compared to the recent SiamRPN ++ . Only 

xception is SiamBAN, which achieves the best performance on 

AO. This is because SiamBAN adopts an anchor-free model to pre- 

ict the state of object, which is more robust and flexible than 

he RPN module used in our tracker. With the advantage of fea- 

ure representation, the proposed tracker ranks first on Accuracy. 

owever, our robustness is inferior to some state-of-the-art meth- 

ds. The main reason is that our tracker does not update the ob- 

ect template during tracking, which limits its adaptability in some 

hallenging cases. 
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Fig. 9. Qualitative results of our tracker on some challenging sequences (Singer2, Diving, Skating1, Trans, Matrix). 

Fig. 10. Failing cases of our tracker on some challenging sequences. (Bird1, Soccer). 

Table 1 

Detailed Comparison with state-of-the-art trackers on 

VOT2019. The best three results are highlighted in 

red, blue and green fonts. 

Robustness Accuracy EAO 

MemDTC 0.587 0.485 0.228 

SA_SIAM _R 0.507 0.562 0.252 

SiamCRF_RT 0.346 0.549 0.262 

SPM 0.507 0.577 0.275 

SiamRPN ++ 0.482 0.599 0.285 

SiamMASK 0.461 0.594 0.287 

SiamDW-ST 0.467 0.600 0.299 

ATOM 0.411 0.602 0.301 

SiamBAN 0.396 0.602 0.327 

Ta-ASiam 0.472 0.618 0.304 
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.2.3. UAV123 dataset 

UAV123 dataset consists of 123 video sequences captured from 

nmanned Aerial Vehicles, whose average length is 915 frames. 

racking the annotated objects in the dataset is very challenging 

ith the influence of frequent distractors, such as fast motion, 

cale change, illumination variation, occlusion, etc. Similar with the 

TB dataset, the center location error and the overlap error are 
9 
mployed to evaluate the performance of trackers. We compare 

ur tracker with several state-of-the-art methods, and present the 

esults in Fig. 12 . We observe that the proposed tracker performs 

etter than most compared methods in both precision and success, 

nd achieves similar results with ATOM and SiamRPN ++ . 

.2.4. LaSOT dataset 

We validate the proposed framework on LaSOT dataset, which 

s a recent larger and more challenging dataset for single ob- 

ect tracking. It provides 1400 manual annotated sequences be- 

onging to 70 classes, where 280 sequences are set as the test- 

ng set. The average length of these sequences is more than 2500 

rames, which is a great challenge to short-time trackers. Accord- 

ng to official evaluation protocol, normalized precision and suc- 

ess metrics are adopted to measure the tracking performance. 

e compare our method with 11 state-of-the-art approaches, in- 

luding ECO [45] , VITAL [28] , ATOM [47] , MDNet [25] , Dsiam [7] ,

tructSiam [51] , SiamDW [23] , DIMP [46] , C-RPN [19] , SiamMask 

24] and SiamRPN ++ [10] . The overall success and normalized pre- 

ision plots are shown in Fig. 13 . Our method is inferior to DIMP 

ut outperforms the rest of methods. Taking SiamRPN ++ as the 

aseline, our tracker realizes substantial gains of 0.9% on success 

nd 2% on normalized precision. For DIMP, there is an online up- 
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Fig. 11. Expected averaged overlap (EAO) performance of all methods on VOT2019. 

Fig. 12. Success and precision plots of OPE for all trackers on UAV123. These trackers are ranked according to the performance score. 

Fig. 13. Success and normalized precision plots of OPE for all trackers on LaSOT. These trackers are ranked according to the performance score. 
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ating module, which is very valuable for completing high-quality 

ong-time object tracking. Therefore, we believe that it is meaning- 

ul for Siamese trackers to design an effective updating mechanism. 

.3. Ablation experiments 

To verify the impact of each contribution in the proposed 

ramework, we set up some variations and perform ablation ex- 
10 
eriments. First, we construct a basic tracker which is stan- 

ardly trained using samples without any augmentations, and does 

ot introduce any attention networks (Std + None). Then, the ba- 

ic tracker is respectively trained with the proposed Position- 

ware training (Pa + None) and Two-stage aware training (Ta + None) 

rameworks. To demonstrate the advantage of our training ap- 

roach, Distractor-aware samples [ 9 , 10 ] are also used to optimize 

he tracker (Da + None) that include spatial and context transfor- 
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Table 2 

Results for the ablation study of the proposed tracker on VOT2019. 

Std + None Pa + None Ta + None Da + None Ta + CAN Ta + SAN Ta-ASiam 

EAO 0.241 0.258 0.281 0.271 0.288 0.294 0.304 

Accuracy 0.560 0.602 0.610 0.599 0.612 0.612 0.618 

Robustness 0.637 0.552 0.502 0.507 0.487 0.477 0.472 

Fig. 14. Success and precision plots of OPE for the ablation study of the proposed 

tracker on OTB-100. 
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ations simultaneously. Last of all, we alternately introduce the 

hannel attention network (Ta-CAN) or the spatial attention net- 

ork (Ta + SAN) to test its effect. 

The results on OTB-100 and VOT2019 are given in Fig. 14 and 

able 2 , respectively. By adopting our Position-aware training, the 

UC on OTB-100 increases by 1.6% and the EAO on VOT2019 im- 

roves by 1.7%. The two-stage aware training framework is more 

ffective in lifting tracking performance, which gains 3.4% incre- 

ent on OTB-100 and 4% increment on VOT2019. Furthermore, our 

raining approach outperforms Distractor-aware training by 1.2% on 

UC and 1.0% on EAO. These demonstrate that the proposed train- 

ng framework can address the feature conflict between precision 

nd robustness, and help Siamese networks to achieve more suc- 

essful tracking. 

In addition, we observe that both channel and spatial atten- 

ion networks are useful to improve tracking capability. The former 

ields gains of 0.4% on OTB-100 and 0.7% on VOT2019, while the 

atter improves 0.6% AUC score on OTB-100 and 1.3% EAO score on 
11 
OT2019. Combining two attention mechanisms boosts the perfor- 

ance by 1.4% on OTB-100 and 2.3% on VOT2019, respectively. 

. Conclusion 

In this paper, we proposed a two-stage aware attentional 

iamese network for visual tracking. To overcome the feature de- 

and conflict between tracking precision and robustness, differ- 

nt training patterns were first presented to optimize Siamese net- 

orks. Specifically, position-aware training was used to train shal- 

ow layers to ensure precision, while appearance-aware training 

as employed to optimize deep layers to distinguish the object 

rom background robustly. To the best of our knowledge, it is the 

rst trial to introduce different training patterns into an end-to- 

nd training manner, especially for Siamese networks. Besides, we 

esigned a novel feature selection module with attention networks 

o eliminate superfluous features in a channel-wise manner, and 

ynamically identify the real discriminative features in the spatial 

imension. Extensive experimental results on OTB-100, VOT2019, 

AV123 and LaSOT manifested that our tracker significantly out- 

erforms the state-of-the-art methods. 

Although the proposed tracker has achieved accurate and ro- 

ust tracking performance, there still remain some drawbacks. The 

ost distinct issue is that we do not explore an appropriate online 

pdater, which can take advantage of the appearance of the object 

n various time, and is critical to keeping the adaptivity of track- 

rs, especially for long-term tracking. In the future, we would pay 

ore attention to online updating problem. 
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