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Abstract  Underwater optical imaging produces images with high resolution and abundant information and hence has outstanding 
advantages in short-distance underwater target detection. However, low-light and high-noise scenarios pose great challenges in un-
derwater image and video analyses. To improve the accuracy and anti-noise performance of underwater target image edge detection, 
an underwater target edge detection method based on ant colony optimization and reinforcement learning is proposed in this paper. 
First, the reinforcement learning concept is integrated into artificial ants’ movements, and a variable radius sensing strategy is pro-
posed to calculate the transition probability of each pixel. These methods aim to avoid undetection and misdetection of some pixels in 
image edges. Second, a double-population ant colony strategy is proposed, where the search process takes into account global search 
and local search abilities. Experimental results show that the algorithm can effectively extract the contour information of underwater 
targets and keep the image texture well and also has ideal anti-interference performance. 
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1 Introduction 
In recent years, underwater optical imaging equipment 

has rapidly developed, and underwater target detection 
technology has also been widely used (Lin et al., 2019). 
Such technology involves the laying of submarine optical 
cables (Fatan et al., 2016), the establishment and mainte-
nance of underwater oil platforms (Bonin-Font et al., 2015), 
the salvage of submarine sinking ships (Liu et al., 2019), 
and the research of marine ecosystems (Li et al., 2020). 
Underwater optical imaging produces images with high re- 
solution and abundant information and hence has out-
standing advantages in the short-distance underwater tar-
get detection task. However, due to the influence of water 
light absorption and scattering, images captured by the 
underwater optical imaging system often encounter many 
problems, such as increased noise interference, blurred tex- 
ture features, low contrast, and color distortion (Wang et al., 
2019). Therefore, the underwater target detection task faces 
many challenges. How to detect the underwater target 
accurately, quickly, and stably in a complex underwater 
scene with poor image visibility has become an urgent 
problem that needs to be solved. In recent years, domestic 

 
* Corresponding author. E-mail: wangxh@neepu.edu.cn 

and foreign research institutions and scholars have con-
ducted considerable research on the underwater target de- 
tection method, which can be divided into underwater 
target detection based on traditional features and underwa-
ter target detection based on deep learning networks. The 
traditional underwater target detection method based on 
feature descriptors describes underwater targets. The 
commonly used underwater image features include color, 
shape, and texture features, which is a simple method and 
has good real-time performance (Chuang et al., 2016). How- 
ever, they are also affected by changes in the target size, 
rotation, occlusion, shooting angle, and species category. 
With the development of the graphics processing unit (GPU) 
and other hardware systems, target detection technology 
based on deep learning has rapidly developed. In the com-
puter vision task, a deep learning network extracts infor-
mation layer by layer from pixel-level raw data to abstract 
semantic concepts, which makes it have outstanding ad-
vantages in extracting global features and context infor-
mation of images. Even in the case of occlusions or small 
object size, it can perform successful detection (Sun et al., 
2018). However, due to the complex structure of deep neu-
ral networks, they need to adjust several parameters when 
applied to a specific environment, resulting in a decline in 
the algorithm efficiency. 

In the fields of ecological monitoring of the marine 
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biological population, the edge contour of a target image 
is an important appearance feature used to distinguish ma-
rine biology. By detecting the edge of a target image, not 
only the feature information of the target can be effectively 
extracted, but also the computational complexity and amount 
of data processing can be greatly reduced. As a metaheu-
ristic algorithm, the ant colony optimization (ACO) algo-
rithm is insensitive to noise. Accordingly, this study at-
tempts to apply the ACO algorithm to underwater target 
image edge detection to improve the image edge detec-
tion accuracy and anti-noise ability. Our contributions are 
as follows: 

1) The reinforcement learning idea is integrated into 
the artificial ant movement, and a variable sensing radius 
strategy is proposed to calculate the transition probability 
of each pixel to avoid undetection or misdetection of some 
pixels in an image edge that cannot be detected or even 
mistakenly detected. 

2) The double-population strategy is proposed to control 
the movement direction of ants, the first population focuses 
on the global search, and the second population focuses on 
the local search. Thus, the search process takes into ac-
count global search and local search abilities. 

3) The proposed method can achieve high accuracy in 
practical datasets in the real world. 

2 Principle of the Algorithm 
2.1 ACO 

The ACO algorithm is a heuristic search algorithm that 
simulates ant foraging. As a probabilistic group intelligent 
search technology, ACO has been widely used in many 
fields, such as data mining (Gao et al., 2013), cluster ana- 
lysis (Deng et al., 2019), and image processing (Tian et al., 
2008). The application of the ACO algorithm in image 
edge detection was first proposed by Nezamabadi-pour et al. 
(2006). The flow of the image edge detection algorithm 
based on ACO is shown in Fig.1.  

In Fig.1, the basic principle of the ACO algorithm is that 
ants will deposit pheromones along the path they travel 
during foraging, and other ants can detect pheromones to 
guide their movement (Lu and Chen, 2008). During the ini-
tialization of the ACO algorithm, a predetermined number 
of artificial ants are placed in the search space. The move-
ment of each ant is based on the transition probability, which 
indicates the probability of the ant moving from one unit 
to another in the search space. The value of the transition 
probability depends on the pheromone and heuristic infor-
mation of the unit. After the ants move, the pheromone is up- 
dated. When the predefined number of iterations is reached, 
the search is terminated. Then, most ant travel routes that 
contain more pheromones are selected as the best solution. 

2.2 Reinforcement Learning 

The basic idea of reinforcement learning is, if a certain 
action of the system can bring positive returns, then the 
future trend of the action will be stronger; otherwise, the 
trend of the action will be weakened (Montague, 1999). 

Based on the reinforcement learning model, a reinforce-
ment learning system includes not only the agent and en-
vironment but also the four basic elements, namely, stra- 
tegy, value function, return function, and environment mo- 
del. Because the state transition probability function and 
reward function in the environmental model are unknown, 
the agent can only choose a strategy based on the rewards 
obtained from each trial. Therefore, a function for stra- 
tegy selection needs to be constructed between the stra- 
tegy and instantaneous reward (Mnih et al., 2015). 

 

Fig.1 Flow of the image edge detection algorithm based 
on ACO. 

Reinforcement learning is a heuristic learning strategy 
based on machine learning theory. The problem to be solved 
is how to choose the action that can achieve the optimal 
goal through learning (Silver et al., 2018). First, you need 
to build an agent that can sense the surrounding environ-
ment and complete the mapping from environment to action. 
Reinforcement learning regards learning as a process of 
continuous exploration. The standard reinforcement learn- 
ing model is shown in Fig.2. 

In Fig.2, the agent accepts the input state s of the envi-
ronment and outputs the corresponding action a through 
the internal learning inference mechanism. Under action a, 
the environment becomes a new State s'. At the same time, 
an enhanced signal r for a reward or punishment is gene- 
rated and fed back to the agent. The agent selects the next 
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operation based on the feedback information and the cur-
rent state of the environment (Vinyals et al., 2019). 

 

Fig.2 Reinforcement learning model. 

3 Related Work 
In recent years, many scholars have studied the appli-

cation of the ACO algorithm in image edge detection. Most 
of these methods improve the algorithm from two aspects: 
the improvement based on the algorithm itself and the fu- 
sion with other algorithms. Singh et al. (2019) proposed an 
ACO method based on bioinspired technology to identify 
the edges of ships in the ocean. To reduce the time comple- 
xity, a triangular fuzzy membership function is used. The 
results of the proposed work confirm the clear edges of 
small and partial objects. Kheirinejad et al. (2018) applied 
the max-min ACO method to detect image edges. More-
over, a new heuristic information function (HIF) is pro-
posed, namely, group-based HIF, to determine nodes that 
ants visit around their place. The proposed HIF exploits 
the difference between the intensity of two groups of nodes 
instead of two single ones. The simulation result sections 
show that the robustness of the proposed edge detection 
algorithm is more than that of the previous algorithms. 
Nasution et al. (2017) proposed improvements to the edge 
detection method with the approach graph with the ACO 
algorithm. The repairs may be performed to thicken the 
edge and connect the cutoff edges. The ACO method can 
be used as a method for optimizing operator Robinson by 
improving the image result of the Robinson detection 
average by 16.77% as compared with that of the classic 
operator Robinson. Rafsanjani and Varzaneh (2015) pro-
posed an approach based on the distribution of ants on an 
image. Here ants try to find possible edges using a state 
transition function. Experimental results show that the pro-
posed method is less sensitive to Gaussian noise com-
pared to standard edge detectors and gives finer details 
and thinner edges compared to earlier ant-based approa- 
ches. Liu and Fang (2015) proposed an edge detection me- 
thod based on the ACO algorithm. This method uses a new 
heuristic function and a user-defined threshold during the 
pheromone update process and provides a suitable set of 
parameters. Experimental results show that the method can 
also show good effectiveness in the presence of noise. Daw- 
son and Stewart (2014) presented the first parallel im- 
plementation of an ACO-based edge detection algorithm 
on the GPU using NVIDIA CUDA. By exploiting the mas- 

sively parallel nature of the GPU, we can execute signifi-
cantly more ants per ACO iteration, allowing us to reduce 
the total number of iterations required to create an edge 
map. We hope that reducing the execution time of an ACO- 
based implementation of edge detection will increase its 
viability in image processing and computer vision. For the 
image edge detection problem in complex scenes, most ACO 
algorithms use a fixed number of neighborhood pixels to 
calculate the pixel gradient, which we call a fixed sensing 
radius, and then heuristic information that calculates the 
transition probability of each artificial ant at each pixel. 
However, this strategy may result in the undetection and 
misdetection of some pixels at the edge of the image. In 
other words, it may lose some important edges or detect 
worthless edges. In addition, the movement of artificial ants 
for complex scene images will produce precocity, resul- 
ting in only local optimal solutions, not global optimal so- 
lutions. 

4 Proposed Method 
To solve the abovementioned algorithm problems, this 

paper proposes an image edge detection algorithm that 
combines reinforcement learning and ACO. This method 
is different from the traditional method that uses a fixed 
and constant number of neighborhood pixels to calculate 
the gradient. By integrating multiagent reinforcement learn- 
ing with the movement of artificial ants, the number of 
neighborhood pixels used to calculate the gradient of each 
pixel can be adaptively determined. In addition, the dual- 
population strategy and adaptive parameters are introduced 
to control the movement direction of the artificial ant so 
as to prevent local optimization. 

4.1 Parameter Initialization of the ACO Distribution 

The image of m × n pixels is mapped into a two-di- 
mensional grid, and each pixel of the image corresponds 
to a cell of the grid. The number of ants is set to N = 

m n , and N ants are randomly distributed on the pixels. 
The pheromone matrix is constructed by moving artifi-

cial ants on the image grid, and the image edge detection 
is based on the pheromone matrix. Artificial ants deposit 
pheromones by constantly moving the pixels in the image 
grid. The initial value of pheromones is set to a random 
value. When the threshold of the convergence time or a 
given number of times is reached, pixels with higher phe- 
romones will have a greater probability of belonging to 
the edge of the image. 

4.2 Reinforcement Learning Transfer  
Probability Strategy 

Reinforcement learning is a field of machine learning 
inspired by behavioral psychology. It studies how agents 
should take actions in the environment to maximize the 
cumulative rewards (Lewis and vrabie, 2009). When cal-
culating the gradient information of pixels in the proof of 
artificial ant transfer, the selection of sensing radius will 
affect the effect of edge detection. As mentioned before, 
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most methods adopt the strategy of having the same sen- 
sing radius in all pixels throughout the search process. This 
condition affects the detection effect, which may make 
the algorithm lose some important edges or detect worth-
less edges (Kober et al., 2013). Considering the actual 
situation around each pixel, using different sensing radii 
for different pixels is a promising optimization approach. 

We propose a new variable radius sensing strategy to 
calculate the gradient of each pixel. Reinforcement learn-
ing is integrated into the artificial ant motion, and then the 
perception radius of each pixel is obtained. In the rein-
forcement learning strategy, the state of the ant is its posi-
tion in the m × n image grid, that is, State = (r, s), and (r, s) 
represents the pixel coordinates. The action of an ant is a 
binary Action = (a, k), which means that an action contains 
two subactions. The first action a is the movement from 
the current position to the adjacent position in the image 
grid, and the second action k is the perception radius. Af-
ter ants choose an action in a state, they will be rewarded. 
The Q(State, Action) function, that is, Q((r, s), a, k), is the 
maximum reward obtained by executing action a in state 
(r, s) and selecting perception radius k. The Q function is 
initially set to a random positive value. After each artificial 
ant moves, its updating formula is formulated as follows: 

(State,Action) (( , ), , ) rewardQ Q r s a k    

,
max (( , ) , , )
a k

Q r s a k
 

   ,      (1) 

where (r, s) is the next state of (r, s) after applying (a, k) 
action. All ants share the Q function and maintain the Q 
function. 

During the movement of artificial ants, the sensing ra-
dius is determined by P (k|(r, s), a). This probability can 
be calculated by Eq. (2): 

(( , ), , )
( | ( , ), ) (( , ), , )

(( , ), )

P r s a k
P k r s a P r s a k

P r s a
  .  (2) 

In Eq. (2), the denominator does not include k, so Eq. 
(3) is proportional to the numerator. 

,

(( , ), , )
(( , ), , )

(( , ), , )
a k

Q r s a k
P r s a k

Q r s a k



.          (3) 

In Eq. (3), the selection probability P (k|(r, s), a) of the 
perceptual radius can be obtained by the Q function. 

In summary, the new transition probability combining 
ants and reinforcement learning is defined in Eq. (4): 

     
( , ) ( , , ) ( , , )

( , ) ( , , ) ( , , )
( , ) ( , , )   ( , )
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0                                                          , otherwise
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r s x y k x y

r s

x y r s

P

  
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

  

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




 


 




 .               (4) 

In Eq. (4), (x, y) represents the pixel coordinates, τ(x, y) 
represents the pheromone position (x, y), ψ(x, y, k) is the 
heuristic information of the pixel (x, y), k represents the 
perceived radius of a pixel (x, y), and θ(i, x, y) is the direc-
tion factor that controls the movement direction of the ant 
in the population i. Ω(r, s) is a collection of neighbor-
hoods containing pixels (r, s). α is expressed as the τ(x, y) 
factor, β is expressed as the ψ(x, y, k) factor, and γ is ex-
pressed as θ(i, x, y). 

Heuristic information guides the movement trends of 
artificial ants. The new heuristic function ψ(x, y, k) is de-
fined as follows: 

( , )
( , , ) ( , ) ( , )

( , )
1 1

ln(grad )
( | ( , ), )

ln(grad )

k x y
x y k r s x y M N

k x y
i j

I
P k r s a

I

 

 

 


, (5) 

where grad1 and grad2 calculation formulas are as fol-
lows: 

1 , 1, 1 1, 1 1, 1,grad  | | | |x y x y x y x y x yI I I I I              

1, 1 1, 1 , 1 , 1| | | |x y x y x y x yI I I I        ,      

2 , 2, 1 2, 1 2, 1 2, 1grad  | | | |x y x y x y x y x yI I I I I             

1, 2 1, 2 1, 1 1, 1 1, 1,| | | | | |x y x y x y x y x y x yI I I I I I              

1, 1 1, 1 1, 2 1, 2 , 1 , 1| |  | | | |x y x y x y x y x y x yI I I I I I              . 

 

Fig.3 Grad1 calculation strategy. 

 

Fig.4 Grad2 calculation strategy. 
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In addition, we introduce a dual-population strategy, 
which divides the ACO into two populations. The first po- 
pulation focuses on the global search, and the second popu- 
lation focuses on local search. The calculation formula is 
defined as follows: 

pre pre
( , , )

pre pre

exp( | 2 | | 2 |),  1

exp(| 2 | | 2 |),  2 i x y

r x r s y s i

r x r s y s i


             
, (6) 

where θ(i, x, y) is a directional factor controlling the move-
ment direction of the ant of the population i and γ is an 
influence factor of the azimuth factor θ(i, x, y). i (i = 1, 2) re- 
presents the population number, (r, s) is the current posi-
tion of the ant, (rpre, spre) is the previous position of the ant, 
and (x, y) is the next position of the ant. 

The double-population strategy ensures that the ants of 
the first population will advance in the same direction as 
the original direction with a high probability and perform a 
global search to find the optimal solution as soon as possi-
ble in the initial stage of the search. The ants of the second 
population will advance in the same direction as the origi-
nal direction with a small probability, move around the cur- 
rent position with a high probability, and perform a local 
search to carefully find the optimal solution near the op-
timal solution. 

4.3 Pheromone Update and Edge Extraction 

4.3.1 Pheromone update 

After the ant moves one step each time, the artificial ant 
updates the pheromone on the pixel it visits using the fol- 
lowing Eq. (7). 

( , ) ( , ) ( , , )(1 ) +n n
x y x y x y k

k

       ,       (7) 

where ρ is the evaporation coefficient. The reward after an 
ant moves to a pixel (x, y) is defined as the difference be-
tween the pheromone of the pixel (x, y) and its neighbor-
ing pixel: 

 ( , ) ( , )
, 1,0,1

reward i j i u j v
u v

   


  .      (8) 

We update the Q function using Eq. (1). After the ant 
moves one step, the pheromone matrix is updated by Eq. 
(9): 

1 0(1 ) +n n     ,              (9) 

where φ represents the attenuation coefficient of the phe- 
romone and τ0 is the initial pheromone matrix. φ is used to 
avoid the ants in the path from depositing pheromone to 
avoid local optimization. When the threshold number of 
iterations is reached, the search is terminated, and the final 
pheromone matrix can then be used to detect edges in the 
image. 

4.3.2 Edge extraction 

The intensity threshold based on the pheromone matrix 

is calculated as follows: 
Step 1: Select the average value T in the pheromone ma-

trix and use T as the initial value of the threshold. 
Step 2: Divide the pheromone matrix into two groups: the 

first group contains elements larger than T, and the other 
group contains elements smaller than T. 

Step 3: Calculate the average of the two groups, namely, 
T1 and T2, and let T = (T1 + T2)/2. 

Step 4: Repeat the above three steps until T is not changed, 
and then obtain T as the threshold. If the value of the ele-
ment in the pheromone matrix is greater than T, the cor-
responding pixel belongs to the edge; otherwise, the pixel 
does not belong to the edge. 

5 Experiments 
5.1 Experimental Test Environment 

During the experiment, the computer hardware environ- 
ment is as follows: Intel Core i9-9900k processor, Ge-
Force RTX 2080 Ti graphics card, 64 GB memory, Win-
dows 10 (64 bit) system type, and Matlab R2018b program 
development tool. The pheromone influence factor α is 6, 
the heuristic information influence factor β is 0.1, the ori-
entation influence factor γ is 1, the initial pheromone τ0 is 
0.0001, and the maximum number of iterations is 1000. 

5.2 Experimental Test Plan 

First, two typical methods are selected to compare the 
methods proposed in this paper. The first ACO-based me- 
thod uses the fixed perception radius 1 to calculate the gra-
dient in heuristic information, instead of using the direc-
tion factor, herein referred to as ‘perception radius 1’ in 
short (Nezamabadi-pour et al., 2006). The second ACO- 
based method uses the fixed sensing radius 2 to calculate 
the gradient fixed sensing radius 2 in heuristic information, 
herein referred to as ‘sensing radius 2’ in short (Tian et al., 
2008). For each test image, the edge detection results of 
each method are given. 

The real image taken by an underwater camera (DEEP-
SEA Power & Light, San Diego, USA) in the turbid me-
dium is used as the edge detection dataset. Three images 
are randomly selected: underwater badminton (Fig.5), fish 
(Figs.6 and 7), and turtle (Figs.8 and 9). Figs.5 – 9 show the 
image edge detection results. In each figure, the subgraph 
(a) is the original image, (b) shows the image edge detec-
tion results of the ‘perception radius 1’ strategy, (c) shows 
the image edge detection results of the ‘perception radius 
2’ strategy, and (d) shows the image edge detection results 
of the proposed method. 

Table 1 shows the comparison values of the quantitative 
evaluation indexes of each method on the test image. Quan- 
titative criteria are used to evaluate the methods proposed 
in this paper. The quantitative criteria include complete-
ness, discriminability, precision, and robustness (Moreno 
et al., 2009). The completeness index measures the ability 
of edge detection to detect all possible edges of a noise-
less image. Discriminability measures the ability of edge 
detection to distinguish an important edge from an unim-



WANG et al. / J. Ocean Univ. China (Oceanic and Coastal Sea Research) 2022 21: 323-330 

 

328 

portant edge. Precision measures the degree to which the 
edge detected by the edge detection method is close to the 

actual edge. Robustness measures the ability of edge detec-
tion to be immune to noise. 

 

Fig.5 Edge detection results for the badminton image. (a), real image; (b), perception radius 1; (c), perception radius 2; (d), 
proposed method. 

  

Fig.6 Same as Fig.5 but for the fish image. 

 

Fig.7 Same as Fig.5 but for the fish image. 

 

Fig.8 Same as Fig.5 but for the turtle image. 

 

Fig.9 Same as Fig.5 but for the turtle image. 



WANG et al. / J. Ocean Univ. China (Oceanic and Coastal Sea Research) 2022 21: 323-330 

 

329

Table 1 Quantitative comparison results of the methods 

 
Perception 

radius 1 
Perception 

radius 2 
Proposed 
method 

Completeness 0.70 0.78 0.93 
Discriminability 11.60 13.21 16.81 
Precision 0.70 0.79 0.85 
Robustness 0.58 0.51 0.63 
 
As shown in Figs.5 to 9 and Table 1, the method proposed 

in this paper can detect the unclear edge pixels and can 
also remove some noise in the image, which is superior to 
the comparison method in details and as a whole. 

Fig.10 shows the pheromones deposited on the pixels 
of the image after the end of the algorithm. The plane in 
the two horizontal axes represents the image, and the ver-
tical axis represents the pheromone on each pixel. Fig.10(a) 
shows the pheromone of Fig.7, and Fig.10(b) shows the 
pheromone of Fig.8. The experimental results show that 
the algorithm can extract the image edge effectively and 
deposit the pheromone on the edge pixels of the image 
correctly. 

 

Fig.10 Pheromone of ants deposited on images. (a), the phe- 
romone is deposited on the image in Fig.7. (b), the phero- 
mone is deposited on the image in Fig.8. 

Finally, to evaluate the performance of the algorithm 
objectively and accurately, 20 images are randomly se-
lected from the actual underwater image dataset as test 
samples and then randomly divided into 5 groups with 4 
images in each group. The ‘perceptual radius 1’ method, 
‘perceptual radius 2’ method, and the algorithm proposed 

in this paper are used to evaluate the image edge detection 
algorithm quantitatively. The comparison results are shown 
in Tables 2 – 5. 

Table 2 Completeness of the comparison results  
of the methods 

Sample group 
Perception  

radius 1 
Perception 

radius 2 
Proposed 
method 

1 0.73 0.75 0.81 
2 0.65 0.68 0.79 
3 0.81 0.82 0.90 
4 0.88 0.83 0.95 
5 0.79 0.79 0.86 

 

Table 3 Discriminability comparison results of the methods 

Sample group 
Perception 

radius 1 
Perception 

radius 2 
Proposed 
method 

1 10.80 12.31 15.63 
2 8.05 9.56 13.91 
3 12.37 12.15 16.94 
4 18.65 17.56 19.89 
5 12.54 11.32 16.23 

 

Table 4 Precision comparison results of the methods 

Sample group 
Perception  

radius 1 
Perception 

radius 2 
Proposed 
method 

1 0.72 0.81 0.86 
2 0.56 0.66 0.76 
3 0.82 0.81 0.82 
4 0.91 0.93 0.94 
5 0.80 0.78 0.78 

 

Table 5 Robustness comparison results of the methods 

Sample group 
Perception  

radius 1 
Perception 

radius 2 
Proposed 
method 

1 0.59 0.61 0.65 
2 0.43 0.43 0.45 
3 0.67 0.71 0.75 
4 0.70 0.71 0.74 
5 0.64 0.62 0.67 

 

6 Conclusions 
In this paper, an ant colony pheromone computing stra- 

tegy based on reinforcement learning is proposed, which is 
different from the traditional gradient computing method 
with a fixed number of neighborhood pixels and can realize 
adaptive variable neighborhood pixel gradient computing. 
In addition, a double-population strategy is proposed to 
control the movement direction of ants: the first population 
focuses on the global search, whereas the second popula-
tion focuses on the local search. Thus, the search process 
takes into account global search and local search abilities. 
Experimental results show that the algorithm can effec-
tively reduce the impact of noise on edge detection, obtain 
complete and clear image edges, and achieve good results. 
In the future, we will study the complexity of the algori- 
thm to further improve its efficiency and adaptively adjust 
other parameters in the algorithm. 
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