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Abstract: Fringe projector profilometry (FPP) is an important three-dimensional (3D) measure-
ment technique, especially when high precision and speed are required. Thus, theoretical
interrogation is critical to provide deep understanding and possible improvement of FPP. By
dividing an FPP measurement process into four steps (system calibration, phase measurement,
pixel correspondence, and 3D reconstruction), we give theoretical analysis on the entire process
except for the extensively studied calibration step. Our study indeed reveals a series of important
system properties, to the best of our knowledge, for the first time: (i) in phase measurement, the
optimal and worst fringe angles are proven perpendicular and parallel to epipolar line, respectively,
and can be considered as system parameters and can be directly made available during traditional
calibration, highlighting the significance of the epipolar line; (ii) in correspondence, when two sets
of fringes with different fringe orientations are projected, the highest correspondence precision
can be achieved with arbitrary orientations as long as these two orientations are perpendicular to
each other; (iii) in reconstruction, a higher reconstruction precision is given by the 4-equation
methods, while we notice that the 3-equation methods are almost dominatingly used in literature.
Based on these theoretical results, we propose a novel FPP measurement method which (i) only
projects one set of fringes with optimal fringe angle to explicitly work together with the epipolar
line for precise pixel correspondence; (ii) for the first time, the optimal fringe angle is determined
directly from the calibration parameters, instead of being measured; (iii) uses 4 equations for
precise 3D reconstruction but we can remove one equation which is equivalent to an epipolar line,
making it the first algorithm that can use 3-equation solution to achieve 4-equation precision.
Our method is efficient (only one set of fringe patterns is required in projection and the speed is
doubled in reconstruction), precise (in both pixel correspondence and 3D reconstruction), and
convenient (the computable optimal fringe angle and a closed-form 3-equation solution). We
also believe that our work is insightful in revealing fundamental FPP properties, provides a more
reasonable measurement for practice, and thus is beneficial to further FPP studies.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

High accuracy three-dimensional (3D) optical measurement is increasingly important in industrial
applications [1]. Among various optical 3D shape measurement techniques, fringe projection
profilometry (FPP) has the merits of high accuracy, high-speed and non-contact measurement,

#467502 https://doi.org/10.1364/OE.467502
Journal © 2022 Received 10 Jun 2022; revised 8 Aug 2022; accepted 16 Aug 2022; published 29 Aug 2022

https://orcid.org/0000-0002-8914-7038
https://orcid.org/0000-0001-6988-3321
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.467502&amp;domain=pdf&amp;date_stamp=2022-08-29


Research Article Vol. 30, No. 19 / 12 Sep 2022 / Optics Express 33516

and has found wide applications in the fields of manufacturing [2], biomedicine [3] and forensic
science [4].

As shown in Fig. 1, a typical FPP system is composed of a projector, a camera and a computer,
where the projector projects the fringes onto an object surface, the camera captures the distorted
fringes, and the computer analyzes the data, extracts phase and reconstructs 3D geometry of
the object. Currently, there are two major reconstruction methods to obtain 3D geometry from
the phase distribution. One is the phase-to-height conversion method [5] which establishes
a mapping relationship between the height and phase. The other is the stereo-vision-based
model, or simply called Zhang’s method [6], where the camera and the projector (treated as an
inverse camera) form a stereo-vision system. By establishing correspondence between a camera
pixel (uc, vc) and the projector pixel (up, vp), a 3D object point (xw, yw, zw) can be subsequently
obtained. Compared with the phase-to-height method, Zhang’s method is more widely used in
FPP [7] and thus is the focus of this paper.

Fig. 1. A typical FPP system.

The typical measurement principle and procedure are as follows [6],

(i) Calibration: since the camera and projector are modeled by pinhole models, their internal
and external parameters are calibrated;

(ii) Phase measurement: the projector projects the designed sinusoidal fringe patterns onto the
object surface, and the camera captures the deformed patterns. The phase which carries the
3D shape information is extracted, i.e., for each camera pixel (uc, vc), its phase Φ(uc, vc) is
obtained;

(iii) Correspondence: if a camera pixel (uc, vc) and a projector pixel (up, vp) correspond to
a same object point (xw, yw, zw), they will have the same phase value. Consequently, by
finding the same phase value, (uc, vc) and (up, vp) can be paired or corresponded;

(iv) Reconstruction: once corresponded, using the pinhole models established in (i), each of uc,
vc, up and vp can provide an equation inferring the unknown 3D object point (xw, yw, zw).
By solving these equations, the 3D object point is reconstructed.

In these four steps, the first (calibration) step has been intensively studied [8]. The second
(phase measurement) step has the largest body of literature [9–12], including the current strong
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interest for fast measurement [13,14]. However, the projected fringe patterns are designed to be
horizontal or vertical, until recently, Wang and Zhang [15] insightfully described the optimal
fringe angle and proposed to measure it by projecting two sets of fringe patterns, one horizontal
and one vertical, onto a step-height object. The optimal angle phenomenon was further analyzed
and verified by Zhou et al. [16] and Zhang et al. [17]. However, there is a lack of theoretical
analysis of the optimal fringe angle for convenient use.

In the third (correspondence) and fourth (reconstruction) steps, given (uc, vc), Φ(uc, vc) is
known from the second step. If the vertical fringes are projected, the equal-phase line is vertical,
from which, up alone is immediately determined. Since uc, vc and up provide three equations, they
are sufficient to reconstruct (xw, yw, zw). We call it the Ver3 method to highlight that a vertical
fringe orientation is used for correspondence and three equations are used for reconstruction. This
idea can be extended to projecting horizontal fringe patterns, which is called the Hor3 method.
One can also project both vertical and horizontal fringe patterns to obtained both up and vp, so
that four equations will be used for 3D reconstruction, which is called the HorVer4 method. In
practice, especially in existing literature, the Hor3 and Ver3 methods are seen more widely used
because they project only one set of fringe patterns (either horizontal or vertical, but not both) and
thus achieve a higher speed than the HorVer4 method. Furthermore, it is noticeable that, when
projecting fringe patterns with the optimal fringe angle, the equal-phase line is tilted, i.e., it is no
longer horizontal or vertical. Thus, neither up nor vp can be immediately determined. To this end,
Li [18] developed a method to project two sets of fringe patterns, one rotates the optimal angle
by π/4 counterclockwise so that the fringe angle is θopt + π/4, while the other rotates clockwise
and the fringe angle is θopt − π/4. Two sets of fringe patterns provided two equal-phase lines to
solve (up, vp) as the intersection point, which is then used for 3D reconstruction. We abbreviate it
as an OptR4 method where Opt and R highlight the involvement of the optimal fringe angle and
the angle rotation, respectively. Unfortunately, although we have seen the interesting variety of
methods for correspondence and reconstruction, there is no theoretical analysis on them.

Knowing the extreme importance of theoretical understanding in precision measurement, this
paper interrogates the optimal fringe angle, the correspondence and the reconstruction equations
in a theoretical manner. Interesting results will be discovered, based on which, a novel FPP
measurement method is proposed. Our contributions are as follows:

(i) We theoretically derive the expressions of the optimal and worst fringe angles, and discover
the fact for the first time that the optimal fringe orientation is perpendicular to the epipolar
line. This finding makes the optimal fringe angle immediately computable;

(ii) We theoretically show that the two sets of fringes with different angles for correspondence
should be perpendicular to achieve higher precision;

(iii) We theoretically prove the advantage of using four equations for reconstruction, which
provides higher precision than that of using three equations;

(iv) Based on the above theoretical results, we propose a novel FPP measurement method
where we (a) simply compute the optimal angle and project the fringes with this angle
according to (i); (b) find the correspondence assisted by the epipolar line according to (ii);
and (c) reconstruct the 3D object point using four equations according to (iii).

(v) We then theoretically discover that, in our method, one equation is redundant, and thus we
only use three equations for reconstruction. We further prove that dropping one equation
does not affect the reconstruction precision, which makes our method even more unique
and graceful. Experiments are carried out for verification.

We believe that our theoretical results are fundamental for the study of FPP, and our proposed
method is effective in practice.
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The rest of the paper is arranged as follows: the basic introduction of FPP and the problem
statement are given in Sec. 2; the theoretical aspects of general FPP is analyzed in Sec. 3, based
on which, our proposed method is described in Sec. 4 and verified in Sec. 5.

2. Basics of an FPP system and the problem statement

For the FPP system shown in Fig. 1, the camera and the projector play an important role. Both
of them are usually modeled by a pinhole model and the epipolar line can also be derived,
which is described in Sec. 2.1. Theoretical questions to interrogate the phase measurement,
correspondence and reconstruction steps will be raised in Sec. 2.2 as our problem statement.

2.1. Pinhole model and the epipolar geometry

The camera essentially realizes the conversion from a world coordinate system to the camera’s
physical coordinate system and further to the camera’s pixel coordinate system, which can be
described by a pinhole model as follows [19],

sc[uc, vc, 1]t = Ac[Rc, tc][xw, yw, zw, 1]t, (1)

where the superscripts c, w and t denote the camera’s pixel coordinate system, the world coordinate
system and matrix transpose; [xw, yw, zw, 1] indicates the homogeneous coordinate of an object
point in the world coordinate system, [uc, vc, 1] indicates the homogenous coordinate of the image
of the object point in the pixel coordinate system; Ac is the 3 × 3 intrinsic matrix of the camera
to realize the conversion from the camera’s physical coordinate system to the camera’s pixel
coordinate system, which can be written as

Ac =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
f c
u 0 uc

0

0 f c
v vc

0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (2)

where f c
u and f c

v describe the focal lengths of the camera lens along uc and vc direction respectively,
and (uc

0, vc
0) is the camera’s principle point coordinate; Rc (a 3 × 3 rotation matrix) and tc (a

3 × 1 translation vector) are the camera extrinsic matrix to realize the conversion from the world
coordinate system to the camera coordinate system; and sc is a scale factor.

For convenience, we select the camera’s physical coordinate system to be the same as the world
coordinate system so that Rc is an identity matrix and tc is a zero vector [20]. By substituting
the special Rc and tc and Eq. (2) into Eq. (1), we can readily get the following simple relationship
between (xw, yw, zw) and (uc, vc),

xw =
uc − uc

0
f c
u

zw, (3)

yw =
vc − vc

0
f c
v

zw. (4)

Similarly, the pinhole model can be used to describe the projector, and is written below by
merely changing the subscript c in Eq. (1) to a subscript p,

sp[up, vp, 1]t = Ap[Rp, tp][xw, yw, zw, 1]t, (5)

where the projector has its own physical and pixel coordinate systems but shares the world
coordinate system with the camera. The projection matrix of the projector is then written as,

Pp = Ap[Rp, tp] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
f p
u 0 up

0

0 f p
v vp

0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6)
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where f p
u and f p

v describe the focal lengths of the projector lens along up and vp direction
respectively, (up

0, vp
0) is the projector’s principle point coordinate, rij and tj (i = 1, 2, 3; j = 1, 2, 3)

are the entries of the rotation matrix and translation vector, respectively. Substituting Eqs. (3),
(4) and (6) into Eq. (5) gives,

up =

⎧⎪⎪⎨⎪⎪⎩
(f p

u r11 + up
0r31)(uc − uc

0)z
w + (f p

u r12 + up
0r32)

f c
u
f c
v
(vc − vc

0)z
w

+ (f p
u r13 + up

0r33)f c
u zw + (f p

u t1 + up
0t3)f c

u

⎫⎪⎪⎬⎪⎪⎭
r31(uc − uc

0)zw + r32
f c
u
f c
v
(vc − vc

0)zw + r33f c
u zw + t3f c

u
, (7)

vp =

⎧⎪⎪⎨⎪⎪⎩
(f p

v r21 + vp
0r31)(uc − uc

0)z
w + (f p

v r22 + vp
0r32)

f c
u
f c
v
(vc − vc

0)z
w

+ (f p
v r23 + vp

0r33)f c
u zw + (f p

v t2 + vp
0t3)f c

u

⎫⎪⎪⎬⎪⎪⎭
r31(uc − uc

0)zw + r32
f c
u
f c
v
(vc − vc

0)zw + r33f c
u zw + t3f c

u
. (8)

Further canceling zw in Eqs. (7) and (8) leads to the following epipolar line equation,

upl1 + vpl2 + l3 = 0, (9)

l1 =
1

f c
u f p

u
[(uc − uc

0)(−t3r21 + t2r31) + (vc − vc
0)(t2r32 − t3r22)

f c
u
f c
v
+ (−t3r23 + t2r33)f c

u ], (10)

l2 =
1

f p
v f c

u
[(uc − uc

0)(t3r11 − t1r31) + (vc − vc
0)(t3r12 − t1r32)

f c
u
f c
v
+ (t3r13 − t1r33)f c

u ], (11)

l3 =
(uc − uc

0)

f c
u

[
up

0

f p
u
(t3r21 − t2r31) +

vp
0

f p
v
(−t3r11 + t1r31) + (−t2r11 + t1r21)]

+
(vc − vc

0)

f c
v

[
up

0

f p
u
(t3r22 − t2r32) +

vp
0

f p
v
(−t3r12 + t1r32) + (−t2r12 + t1r22)]

−
up

0

f p
u
(−t3r23 + t2r33) −

vp
0

f p
v
(t3r13 − t1r33) + (−t2r13 + t1r23).

(12)

The epipolar line can also be derived by fundamental matrix [21,22]. This line indicates the
constraint of (up, vp), i.e., given (uc, vc), the corresponding (up, vp) is on a line as illustrated by
Fig. 2. We have listed the complicated Eqs. (7), (8) and (10–12) as a preparation, which will lead
to neat and interesting results later.

2.2. Problem statement

We have mentioned that the FPP system involves four steps: calibration, phase measurement,
correspondence and 3D reconstruction. However, there is a lack of interrogation on their
theoretical aspects. In detail,

(i) Phase measurement: the optimal fringe angle makes the phase most sensitive to a given
depth variation [15]. Can this angle be theoretically determined? Will it be an intrinsic
property of the system?

(ii) Correspondence: In general, the optimal fringe angle is arbitrary, thus the phase varies
along both the up and vp directions. We have to project two sets of fringes with different
fringe angles to correspond a camera pixel (uc, vc) and a projector pixel (up, vp) . However,
there are multiple choices for a pair of angles. Is there an optimal pair?
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Fig. 2. Epipolar geometry model of the projector and the camera, where lp is the epipolar
line.

(iii) Reconstruction: After corresponding the camera pixel (uc, vc) and the projector pixel
(up, vp), we can choose 3 or 4 equations to reconstruct the 3D profile of the object. Is there
a significant difference?

(iv) Application: Will the answers we obtain provide new insights of FPP for a better and more
reasonable measurement procedure?

3. Theoretical analysis on the FPP system

To answer the questions in Sec. 2.2, we perform a series of theoretical analysis on the FPP
system in this section. The optimal and worst fringe angles are derived and their relationships
with the epipolar line are discovered in Sec. 3.1. The best selection of a pair of fringe angles
in correspondence step is analyzed in Sec. 3.2. The effect of the number of equations on 3D
reconstruction precision is analyzed in Sec.3.3.

3.1. Analysis on phase measurement: the optimal fringe angle and worst fringe angles

We provide a theoretical analysis for the optimal and worst fringe angles, and then examine their
relationships with the epipolar line.

To start with, the sinusoidal fringe pattern with an arbitrary fringe angle θ to be projected are
designed as follows,

I(up, vp) =
1
2
+

1
2

cos[Φ(up, vp, θ)], (13)

Φ(up, vp, θ) =
2π
T
[up sin(θ) + vp cos(θ)], θ ∈ [0, π), (14)

where T is the fringe period; Φ is the phase distribution of the fringe; θ is the angle between the
fringe orientation and the horizontal axis, thus θ = 0 and θ = π/2 mean horizontal and vertical
fringes, respectively. The equal-phase line has a slope of −tan(θ).

The optimal fringe angle θ maximizes the sensitivity of the phase Φ(uc, vc) in the captured fringe
pattern with respect to the surface profile. Nevertheless, when (uc, vc) and (up, vp) correspond to



Research Article Vol. 30, No. 19 / 12 Sep 2022 / Optics Express 33521

the same object point (xw, yw, zw), we have

Φ(uc, vc) = Φ(up, vp). (15)

The above sensitivity can be expressed as,

H(θ) =
∂Φ(uc, vc)

∂zw(uc, vc)
=
∂Φ(up, vp)

∂zw(uc, vc)
=

2π
T

[︃
∂up

∂zw sin(θ) +
∂vp

∂zw cos(θ)
]︃

, (16)

where the rightmost part is obtained by taking the derivative of Eq. (14). The sensitivity can be
further rewritten as follows using trigonometric identities,

H(θ) =
2π
T

√︄(︃
∂up

∂zw

)︃2
+

(︃
∂vp

∂zw

)︃2
cos(θ − ψ), (17)

where tan(ψ) = ∂up

∂zw /
∂vp

∂zw .To find the optimal angle θopt is to maximize |H |. By considering
θopt ∈ [0, π), we have the following two cases,

θopt =

⎧⎪⎪⎨⎪⎪⎩
ψ, when ψ ≥ 0

ψ + π, when ψ<0
. (18)

In both cases, we have the following relationship,

tan(θopt) = tan(ψ) =
∂up

∂zw /
∂vp

∂zw . (19)

In order to calculate the optimal angle in Eq. (18), it is necessary to evaluate the partial
derivatives in the right hand of this equation, which can be easily derived based on Eqs. (7) and
(8) as,

∂up

∂zw =
f c
u f p

u

[︂
(r11t3 − t1r31)(uc − uc

0) + (r12t3 − t1r32)
f c
u
f c
v
(vc − vc

0) + (r13t3 − t1r33)f c
u

]︂
[︂
r31(uc − uc

0)zw + r32
f c
u
f c
v
(vc − vc

0)zw + r33f c
u zw + t3f c

u

]︂2 , (20)

∂vp

∂zw =
f c
u f p

v

[︂
(r21t3 − t2r31)(uc − uc

0) + (r22t3 − t2r32)
f c
u
f c
v
(vc − vc

0) + (r23t3 − t2r33)f c
u

]︂
[︂
r31(uc − uc

0)zw + r32
f c
u
f c
v
(vc − vc

0)zw + r33f c
u zw + t3f c

u

]︂2 . (21)

By substituting the Eqs. (20) and (21) into Eq. (19), the optimal angle can be obtained as
follow,

tan
(︁
θopt

)︁
=

f p
u

[︂
(r11t3 − t1r31)

(︂
uc − uc

0

)︂
+ (r12t3 − t1r32)

f c
u
f c
v

(︂
vc − vc

0

)︂
+ (r13t3 − t1r33) f c

u

]︂
f p
v

[︂
(r21t3 − t2r31)

(︂
uc − uc

0

)︂
+ (r22t3 − t2r32)

f c
u
f c
v

(︂
vc − vc

0

)︂
+ (r23t3 − t2r33) f c

u

]︂ .

(22)
This equation clearly indicates that the optimal angle is not only a function of both the internal

and external parameters of the system setup but also the camera pixel coordinates (uc, vc). Strictly
speaking, this means that the optimal angle is not a constant, but varying with (uc, vc). In the
meantime, for a typical FPP system with a camera and a projector placed on the left and right,
r11, r22 and r33 are close to 1, and the other entries of the rotation matrix R are much smaller. In
addition, the focal lengths of the camera and the projector are larger than the respective detector
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resolutions, and thus (uc − uc
0)/f

c
u , (vc − vc

0)/f
c
v , (up − up

0)/f
p
u and (up − up

0)/f
p
v are all relatively

small values. We will show such system details in our experiments in Sec. 5.1. Another such
system with detailed calibration results is given in Ref. [20]. The optimal angle can then be
approximated as,

tan(θopt) ≈
f p
u (r13t3 − t1r33)

f p
v (r23t3 − t2r33)

, (23)

which is irrelevant to (uc, vc) and only relies on FPP system parameters. Thus, the optimal angle
can also be considered as an FPP system parameter and can be directly obtained through the
camera and projector calibration without any additional measurements. For further theoretical
analysis, we continue to follow the original form in Eq. (22), while in the experiments, we will
compare the results from both the original form in Eq. (22) and the simplified form in Eq. (23).

On the other hand, the worst angle, i.e., the angle gives the least sensitivity, can be determined
from H = 0. By referring to Eq. (16), we obtain

tan(θworst) = −
∂vp

∂zw /
∂up

∂zw . (24)

From Eq. (18) and (24), we have [−tan(θopt)] × [−tan(θworst)] = −1, which leads to an
interesting and important theoretical result on projecting fringe patterns with an angle:

• [T-P-1] Both the optimal and worst fringe angles can be theoretically determined from the
calibration parameters and they are perpendicular to each other.

In additional, from Eqs. (10) and (11), the slope of the epipolar line can be calculated as,

k1 = −
l1
l2
= −

f p
v [(uc − uc

0)(t2r31 − t3r21) + (vc − vc
0)(t2r32 − t3r22)

f c
u
f c
v
+ (−t3r23 + t2r33)f c

u ]

f p
u [(uc − uc

0)(t3r11 − t1r31) + (vc − vc
0)(t3r12 − t1r32)

f c
u
f c
v
+ (t3r13 − t1r33)f c

u ]
. (25)

Thus, we also have [−tan(θopt)] × k1 = −1, and thus we have

• [T-P-2] The epipolar line orientation is perpendicular to the optimal fringe angle and thus
parallel to the worst fringe angle. On the other hand, once the system is calibrated, both
the optimal and worst fringe angles can be determined from the epipolar line.

After we have discovered this interesting property, we find that this result is rather intuitive.
Referring to Fig. 2, it is clearly that (uc, vc) correspond to multiple candidates of (up, vp) which are
all at the epipolar line. To differentiate different object points with high sensitivity is the same as
to differentiate different (up, vp) on the epipolar line. Since we rely on phase for correspondence,
and we know that there is no phase change along the epipolar line, we can conclude that the
epipolar line orientation is the worst fringe orientation; on the contrary, the fringe orientation
perpendicular to the epipolar line gives the highest sensitivity and hence becomes the optimal
angle. Both our solid theoretical analysis and the intuitive explanation highlight the essential role
of the epipolar line.

3.2. Analysis on correspondence: selection of a pair of fringe angles

If the optimal fringe angle is an arbitrary value, i.e. neither horizontal nor vertical, we have to
project two sets of fringes with different fringe angles. As an example, in OptR4, θopt + π/4 and
θopt − π/4 are used as a pair, which are perpendicular to each other. We can also use 0 and π/2 as
a pair, as in HorVer4. In general, an arbitrary pair of (θ1, θ2) with θ1 ≠ θ2 is qualified for finding
(up, vp). We examine the influence of different (θ1, θ2).

As we know, the purpose of using two sets of fringe patterns is to determine (up, vp) when
given (uc, vc), and the result of (up, vp) affects the 3D reconstruction result according to Eqs. (3),
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(4), (7) and (8). Thus we focus on the accuracy and precision of (up, vp) which is the intersection
point of the following two equal-phase lines according to Eq. (14),

Φ1 =
2π
T
[up sin(θ1) + vp cos(θ1)], (26)

Φ2 =
2π
T
[up sin(θ2) + vp cos(θ2)], (27)

where Φ1 and Φ2 are the measured phase of (uc, vc) by projecting two sets of fringe patterns with
angles of θ1 and θ2, respectively. Combining these two equations gives,

up =
T
2π

[︃
Φ1 cos(θ2) − Φ2 cos(θ1)

sin(θ1 − θ2)

]︃
, (28)

vp = −
T
2π

[︃
Φ1 sin(θ2) − Φ2 sin(θ1)

sin(θ1 − θ2)

]︃
. (29)

Based on these two equations, if Φ1 and Φ2 have zero means [13], up and vp also have zero
means. Furthermore, the variances of up and vp can be calculated as follow,

σ2
up =

(︃
T
2π

)︃2
[︄
σ2
Φ1

cos2(θ2) + σ
2
Φ2

cos2(θ1)

sin2(θ1 − θ2)

]︄
, (30)

σ2
vp =

(︃
T
2π

)︃2
[︄
σ2
Φ1

sin2(θ2) + σ
2
Φ2

sin2(θ1)

sin2(θ1 − θ2)

]︄
, (31)

where Φ1 and Φ2 are considered as random valuables due to various error source such as noise.
In this paper, we assume that the variances of the phases with different angles are the same and
abbreviated as σΦ. Thus, the total variance of (up, vp) is

σ2
(up,vp) = σ

2
up + σ2

vp =

(︃
T
2π

)︃2
[︄

2σ2
Φ

sin2(θ1 − θ2)

]︄
. (32)

This theoretical analysis result gives two following important conclusions:

• [T-C-1] Obviously, when |θ1 − θ2 | = π/2, the total variance takes the minimum value of
2(T/2π)2σ2

Φ, suggesting that two fringe orientations should indeed be perpendicular;

• [T-C-2] As long as they are perpendicular, the values of θ1 and θ2 have no influence on
the total variance, i.e., taking (0, π/2), (θopt − π/4, θopt + π/4) or (θopt, θworst) gives no
difference. In other words, the optimal fringe angle does not present any significance or
specialty in this situation, which is a rather surprising result, but will be verified in our
experiment later.

Finally, for completeness, we consider Hor3, where vp = ΦHT/2π. The variance of vp

can be obtained as σ2
vp = (T/2π)2σ2

Φ . We do the same for up in Ver3 and similarly obtain
σ2

up = (T/2π)2σ2
Φ. We have used an earlier assumption that both variances of ΦH and ΦV are σ2

Φ.

3.3. Analysis on reconstruction: 4 equations vs 3 equations

Now that we have many FPP measurement methods, such as the Hor3, Ver3, HorVer4 and OptR4
methods. According to the number of equations they use for reconstruction, we group them
into two categories: 3-equation methods (Hor3 and Ver3) and 4-equaiton methods (HorVer4
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and OptR4). A natural question is whether the number of equations makes a difference in 3D
reconstruction and whether this difference is significant.

To answer this question and for convenience, we re-write Eqs. (3), (4), (7) and (8), as follows,

xw + azw = 0, (33)

yw + bzw = 0, (34)

cxw + dyw + ezw − m = 0, (35)

f xw + gyw + hzw − n = 0, (36)

where
a = −

uc−uc
0

f c
u

, b = −
vc−vc

0
f c
v

,

c = r11 − r31
up−up

0
f p
u

, d = r12 − r32
up−up

0
f p
u

, e = r13 − r33
up−up

0
f p
u

,

f = r21 − r31
vp−vp

0
f p
v

, g = r22 − r32
vp−vp

0
f p
v

, h = r23 − r33
vp−vp

0
f p
v

,

m = t3
up−up

0
f p
u

− t1, n = t3
vp−vp

0
f p
v

− t2.

(37)

The 3D reconstruction task is simply to solve three unknowns of a 3D point (xw, yw, zw) from
the linear equations (33-36). As mentioned before, the solution of Eqs. (33–35) corresponds
to the Ver3 method, the solution of Eqs. (33), (34), (36) corresponds to the Hor3 method and
the solution of Eqs. (33–36) corresponds to the HorVer4 and OptR4 methods, depending on the
fringe angles used for correspondence.

In the ideal case, all Eqs. (33–36) are satisfied. However, in practice, the left hand of one or
more equations of Eqs. (33–36) is nonzero, resulting in a residual. We use the sum of squared
residuals (SSR) to indicate the quality of a solution. For example, for the Ver3 method, the three
equations (33-35) give a unique solution (xw, yw, zw). When we substitute this solution back
to these three equations, the residual is zero. However, when we substitute it into Eq. (36), a
residual will be resulted as

v1 = fxw
0 + gyw

0 + hzw
0 − n, (38)

which after some straightforward but tedious derivations, can be expressed as,

v2
1 =

λ1
λ2

, (39)

where λ1 = [(af + bg − h)m + (e − ac − bd)n]2 and λ2 = (ac − e + bd)2. With the same way, for
the SSR of the Hor3 method can be derived as,

v2
2 =

λ1
λ3

, (40)

where λ3 = (af + bg − h)2. For the case of using all four equations of Eqs. (33–36), we obtain a
least squares solution using the normal equation method [23], and then substitute it back into all
the equations. The SSR is,

v2
3 =

λ1
λ2 + λ3 + λ4 + λ5

, (41)

where λ4 = [a(cg − df ) + (bh − eg)]2 and λ5 = [b(cg − df ) + (ef − ch)]2. Some details of the
derivation are given in Appendix A.

Obviously, by comparing the SSRs in Eqs. (39–41), we can immediately conclude that the
3D reconstruction by the 4-equation methods is better than that by the 3-equation methods. In
order to more quantitatively estimate the magnitude of the SSRs, we consider a typical FPP
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system with a camera and a projector placed on the left and right, which has been used in getting
Eq. (23) in Sec. 3.1. In such case, we recall that r11, r22 and r33 are close to 1, and the other
entries of the rotation matrix R are much smaller, and (uc − uc

0)/f
c
u , (vc − vc

0)/f
c
v , (up − up

0)/f
p
u

and (up − up
0)/f

p
v are all relatively small values. Thus, we also have c ≈ 1 and g ≈ 1. In addition,

a product between the two small quantities approaches zeros, e.g., bd ≈ 0, af ≈ 0, df ≈ 0, dh ≈ 0,
ef ≈ 0. With these facts, we can make the following approximations:

λ2 = (ac − e + bd)2 ≈ (a − e)2,

λ3 = (af + bg − h)2 ≈ (b − h)2,

λ4 = [a(cg − df ) + (dh − eg)]2 ≈ (a − e)2 ≈ λ2,

λ5 = [b(cg − df ) + (ef − ch)]2 ≈ (b − h)2 ≈ λ3.

(42)

Substituting Eq. (42) into Eq. (41), we have the following neat results,

v2
3 ≈

λ1
2(λ2 + λ3)

<
λ1
2λ2
= 0.5v2

1, (43)

v2
3 ≈

λ1
2(λ2 + λ3)

<
λ1
2λ3
= 0.5v2

2. (44)

This result clearly indicates that,

• [T-R-1] The SSR from a 4-equation method for 3D reconstruction is at most half of that
from a 3-equation method. Even if the optimal fringe angle is used, the Hor3 and Ver3
methods are still inferior to HorVer4 and OptR4 methods. Thus, using a 4-equation method
is suggested when pursuing high measurement precision.

4. Novel FPP measurement method with high accuracy and precision, efficiency
and convenience

Based on the theoretical analysis in Sec. 3, we propose a novel FPP measurement method in Sec.
4.1. The role of the epipolar line in our proposed method is analyzed in Sec. 4.2. The accuracy
and precision of our proposed method are analyzed in Sec 4.3 and 4.4, respectively.

4.1. Novel FPP measurement method with a set of optimal angle fringes

Based on the theoretical analysis in Sec. 3, we propose a novel FPP measurement method based
on the following considerations:

(i) Our method will involve 4 equations, because a 4-equation method performs better than a
3-equation method, according to [T-R-1] in Sec. 3.3;

(ii) Thus, we project two sets of fringe patterns and their fringe angles are perpendicular for
higher precision, according to [T-C-1] in Sec. 3.2;

(iii) Among all possible perpendicular pairs, we choose θopt and θworst, because θworst is the
same as the epipolar line orientation according to [T-P-1] and [T-P-2] in Sec. 3.1. In
other words, the epipolar line serves as one equation for determination of (up, vp) without
projecting the second set of fringe patterns; To emphasize, both up and vp can be determined
from a single set of fringe patterns, which is the first time to the best of our knowledge;

(iv) Although we are motivated to follow the 4-equaion idea, we only need to use three equations,
either Eqs. (33–35), or Eqs. (33), (34) and (36), for 3D reconstruction to achieve the same
precision. This surprising and interesting fact will be revealed in Sections 4.2–4.4.
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We thus call our method OptE3, where Opt, E and 3 indicate the involvement of the optimal
angle, the epipolar line, and the three equations for reconstruction, respectively. Our OptE3
method achieves high precision (being essentially a 4-equation method), high efficiency (by
projecting only one set of fringe patterns) and high convenience (by obtaining θopt effortlessly
during calibration, without any extra measurements). To ease the implementation of our OptE3
method, its procedure is illustrated in Fig. 3 with detailed explanations below:

1. The calibration step:

A. Calibrate the internal and external parameters of the FPP using Zhang’s calibration
method [6];

B. Estimate the optimal fringe angle θopt by Eq. (23);
C. Obtain the epipolar line by using Eqs. (9–12).

2. The phase measurement step:

A. Design the optimal fringe patterns by Eq. (13) using θopt from step 1B;
B. Project the optimal fringe patterns by the projector and capture the deformed patterns

by the camera;
C. Calculate and unwrap the phase distribution [24];

3. The correspondence step:

A. Establish the pixel correspondences between (uc, vc) and (up, vp) using Eqs. (9) and
(14);

4. The reconstruction step:

Fig. 3. The proposed OptE3 measurement procedure.

Reconstruct 3D profile (xw, yw, zw) using Eqs. (33), (34) and (35) or Eqs. (33), (34) and (36).
The detailed measurement procedure enables us to further elaborate its high convenience:
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1) In the calibration step, a traditional system with vertical or horizontal fringe projection only
needs Step 1A, but we require additional Steps 1B and 1C. However, there is no additional
physical operations. We only need to do simple computation based on the information
from Step 1A.

2) By adopting the epipolar geometry, we only need to project one set of fringe patterns with
the optimal angle. There is no extra physical operations for obtaining the optimal fringe
angle.

4.2. Theoretical revealing of the epipolar constraint in 3D reconstruction

We now provide more theoretical analysis on 3D reconstruction in OptE3. We first show that the
four equations for reconstruction, Eqs. (33–36), are redundant when the epipolar line is used for
correspondence. To prove it, we first re-write the linear Eqs. (33–36) as the following augmented
matrix form, ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 b 0

c d e m

f g h n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (45)

Next, by Gaussian elimination, the matrix becomes,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 a 0

0 1 b 0

0 0 e − ac − bd m

0 0 0 (e − ac − bd)n − (h − af − bg)m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (46)

Finally, we check when the following equation holds:

(e − ac − bd)n − (h − af − bg)m = 0. (47)

The checking is straightforward as all the parameters appearing in Eq. (47) are given in Eq. (37).
By substituting Eq. (37) into Eq. (47), followed by some rearrangement, Eq. (47) turns into the
epipolar line as given by Eq. (9). In other words, this means that one equation in the reconstruction
is equivalent to an epipolar line. This is rather interesting but in fact not surprising, because
the epipolar constraint can indeed be implied in the triangulation principle for reconstruction.
Because in our OptE3, this epipolar constraint has been used in the correspondence step to obtain
(up, vp) from (uc, vc) and thus has already been satisfied, this equation is redundant. Thus, we
only need to use three equations, Eqs. (33–35) or Eqs. (33), (34), and (36), for reconstruction,
which has been used in our proposed method. We list and highlight this theoretical property of
3D reconstruction below:

• [T-M-1] In the four equations for 3D reconstruction, one equation is equivalent to the
epipolar line constraint. If this constraint has been used in the correspondence step, one
equation is redundant.

An advantage of using three equations to solve three unknowns for 3D reconstruction is that,
an elegant closed-form solution with simple algebra computation is now available. From the
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third row in Eq. (46), we obtain zw as

zw
OptE3 (u

p) = m/(e − ac − bd). (48)

Submitting the parameters given in Eq. (37) into Eq. (48), we have

zw
OptE3 (u

p) =
C1 + C2up

C3 + C4up , (49)

where C1 = −
up

0
f p
u

t3 − t1, C2 =
t3
f p
u
,

C3 =

(︄
uc − uc

0
f c
u

r11 + r13 +
vc − vc

0
f c
v

r12 +
uc − uc

0
f c
u

up
0

f p
u

r31 +
up

0

f p
u

r33 +
vc − vc

0
f c
v

up
0

f p
u

r32

)︄
C4 =

(︂
−

uc−uc
0

f c
u

r31
f p
u
−

r33
f p
u
−

vc−vc
0

f c
v

r32
f p
u

)︂
. This simple solution increases the reconstruction speed,

which will be tested in Sec. 5.3. We list this property below:

• [T-M-2] By reducing one equation for reconstruction, a simple closed-form solution
without matrix inversion can be established.

4.3. Theoretical analysis on OptE3’s reconstruction accuracy

The proposed OptE3 is unique in the sense that it follows the 4-equation methods for high precision
but finally, it only uses 3 equations because of the special involvement of the epipolar line for
correspondence. It is of importance to find out how this uniqueness affects the final reconstruction
accuracy and precision, which are analyzed in this and next subsections, respectively.

To do so, we first use the OptE3 method for correspondence, i.e., find (up, vp) by solving
Eqs. (9) and (14) as follows,

up =
l2Φ + 2π

T l3 cos θopt
2π
T (l2 sin θopt − l1 cos θopt)

, (50)

vp =
l1Φ + 2π

T l3 sin θopt
2π
T (l1 cos θopt − l2 sin θopt)

, (51)

which have zero means and the following variances,

σ2
up =

(︃
T
2π

)︃2
(l2)2

(l1)2 + (l2)2
σ2
Φ, (52)

σ2
vp =

(︃
T
2π

)︃2
(l1)2

(l1)2 + (l2)2
σ2
Φ. (53)

The depth from OptE3 is given in Eq. (49). When the phase noise presents, up will be deviated
by δup , and the reconstructed depth becomes,

zw
OptE3 (u

p, δup ) =
C1 + C2(up + δup )

C3 + C4(up + δup )
. (54)

Combining Eqs. (49) and (54), the depth error is

δz = zw
OptE3 (u

p, δup ) − zw
OptE3 (u

p) =
[C2C3 − C1C4]δup

(C3 + C4up)(C3 + C4up + C4δup )
. (55)

Finally, in practice, as shown in Appendix B, C4δup ≪ C3 + C4up. We can use which Taylor
approximation to approximate (C3 + C4up + C4δup )−1 as (C3 + C4up)−1 ×

[︂
1 −

C4
(C3+C4up)δup

]︂
, so
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that
δz ≈

(C2C3 − C1C4)

(C3 + C4up)2
δup . (56)

Since δup has a zero mean, δz also has a zero mean. We have the following conclusion:

• [T-M-3] The OptE3 method reconstructs an unbiased depth.

4.4. Theoretical analysis on OptE3’s reconstruction precision

In Sec. 4.3, we have concluded that the OptE3 method is an unbiased depth estimation. In
this Section, we will explore whether the reconstruction precision of OptE3 follows 4-equaiton
methods or 3-equation methods. Fortunately, the former is the answer, making OptE3 a precise
method. To demonstrate it, we will show that the OptE3 method has approximately the same
depth variance as the OptR4 method, where the depth variance is defined as

σ2
z =

(︃
∂z
∂up

)︃2
σ2

up +

(︃
∂z
∂vp

)︃2
σ2

vp . (57)

Since vp is not used, the second term on the righthand of Eq. (57) is zero. Thus, with
Eqs. (37), (52) and (57), we have

σ2
zOptE3 =

(︃
T
2π

)︃2 [︃ l2f p
v

f p
u (ac − e + bd)2

]︃2
(l2)2

(l1)2 + (l2)2
σ2
Φ. (58)

As for the OptR4 method, (up, vp) has been obtained in Eqs. (28) and (29), and their variance
in Eqs. (30) and (31). More specifically, in the OptR4 method, θ1 = θopt − π/4, θ2 = θopt + π/4,
and thus we have

σ2
up = σ2

vp =

(︃
T
2π

)︃2
σ2
Φ. (59)

Next, we obtain the depth from Eqs. (33–36) by the least squares method, which has been used
in Sec. 3.3 with details given in Appendix A. Finally, substituting Eq. (59) into Eq. (57), we have,

σ2
zOptR4 =

(︃
T
2π

)︃2
[︄(︃
∂zOptR4

∂up

)︃2
+

(︃
∂zOptR4

∂vp

)︃2
]︄
σ2
Φ, (60)

where zOptR4 is expressed in Eq. (A(1)1).
Now thatσ2

zOptR4 andσ2
zOptE3 have been obtained in Eqs. (58) and (60), respectively, the remaining

task is to examine their ratio,

F(uc, vc, up, vp) = σ2
zOptE3/σ

2
zOptR4 . (61)

As all the variables and parameters in Eqs. (58) and (60) are already available in earlier
equations, the calculation of the ratio seems to be straightforward, but turns out to be very difficult
because of tens of terms will appear in deriving ∂zOptR4/∂up and ∂zOptR4/∂vp in Eq. (60). As such,
we use a numerical verification. First, we obtain ∂zOptR4/∂up and ∂zOptR4/∂vp from Eq. (A(1)1)
using the symbolic operation in MATLAB. Next, For each (uc, vc) under the projection with the
optimal fringe angle, we follow the practical depth range given in Eq. (B.3), based on which, we
calculate Φzmin(uc, vc) and Φzmax(uc, vc) corresponding to zmin and zmax, respectively, and we have
Φzmin(uc, vc) ≤ Φ(uc, vc) ≤ Φzmax(uc, vc). We then randomly select 1000 phase values within this
range and calculate (up, vp) by Eqs. (9) and (14). Finally, substituting all (uc, vc) and (up, vp) into
Eq. (61), we obtain the ratio 0.9999 ≤ F(uc, vc, up, vp) ≤ 1, indicating that the OptE3 method
and the OptR4 method indeed give an approximately (maybe theoretically exactly) the same
reconstruction precision. We have also tested that the same result is applicable to HorVer4.
Hence,
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• [T-M-4] The OptE3 method has a same measurement precision as the 4-eqaution methods
such as OptR4 and HorVer4.

5. Experiments

5.1. System setup and calibration

An FPP system has been set up to verify the performance of the proposed method. The system
includes a camera (model: DAHENG MER-131-210U3M-L, resolution: 1024× 1280 pixels)
attached with a 25 mm lens (model: Computar-M2514-MP2) and a digital-light-processing
projector (model: PROVIS900, resolution: 1080× 1920 pixels). The optimum three-frequency
method is applied for phase extraction and unwrapping [24], where the nine-, five-, and five-step
phase-shifting methods are used with fringe periods of T0 = 21pixel s, T1 = 700/33 pixels,
T2 = 70/3 pixels, respectively. In Ref. [24], three primary color channels (RGB) are used to
project three- frequency fringe patterns, while we project three set of gray-scale fringe patterns
with different frequencies sequentially. To conveniently compare the number of patterns required
by different 3D reconstruction methods, we define L as the total number of patterns to obtain

one unwrapped phase. L can be expressed as L =
F∑︁

i=1
Mi, where F is the number of fringe total

frequencies used and Mi represents the phase-shifting steps, i.e. in this paper, i = 1, 2, 3,and
M1 = 9, M2 = M3 = 5.

In step 1A, the system is calibrated by Zhang’s [6] method and the intrinsic and extrinsic
matrices are obtained as follow,

Ac =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
5039.2022 0 623.182

0 5037.449 489.898

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (62)

Ap =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
3379.554 0 979.913

0 3379.911 488.030

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (63)

[Rp, tp] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0.994 −0.007 0.107 −97.595

−0.0002 0.998 0.069 −48.540

−0.108 −0.069 0.992 10.786

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (64)

In step 1B, we substitute the intrinsic and extrinsic parameters given in Eqs. (62–64) into
Eq. (22) and obtain the optimal angle as 1.108 rad.

Subsequently, in Step 1C, we substitute the intrinsic and extrinsic parameters given in
Eqs. (62–64) to Eqs. (10 12) and obtain the parameters l1, l2 and l3 of the epipolar line, which
are dependent on (uc, vc).

5.2. Validation of the optimal fringe angle

In this section, we verify that the epipolar line is indeed perpendicular to the optimal fringe angle
because this property is used in our proposed method as a key ingredient. Furthermore, with
this property, the optimal fringe angle can be directly obtained from the epipolar line without
measurement. For this purpose, we measure the optimal fringe angle by Wang and Zhang’s
method [15] which uses a step-height block. Figures 4(a) and 4(b) show the horizontal and
vertical fringe images captured by a camera, respectively. Figure 4(c) shows the measured optimal
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fringe angle distribution at the position of the step-height block, following the steps detailed in
[15]. We also calculate the optimal angle using Eq. (22), which is a field varying with (uc, vc), as
shown in Fig. 4(d). Note that Wang and Zhang’s method only provides the optimal angle for the
pixels in the step-height area, while our method provides the optimal angle for all the camera
pixels. Thus, a red box is shown in Fig. 4(d) to indicate the same step-height block area.

Fig. 4. Determining the optimal fringe angle. (a) One of the captured horizontal fringe
patterns; (b) one of the captured vertical fringe patterns; (c) the optimal fringe angle
distribution by Wang ang Zhang [15]; (d) the optimal fringe angle distribution by our
method.

We do the following verifications:

(i) As we have predicated in Sec. 3.1, the optimal angle is varying but within a small range,
which is seen from both Zhang and Wang’s result in Fig. 4(c) and our result in Fig. 4(d).
To be more quantitative, a variation range (the peak-valley difference) is calculated from
Fig. 4(c) to be 0.009 rad. Because the data in Fig. 4(c) is noisy, a 5× 5 averaging is applied
for pre-filtering. The same variation range calculation without pre-filtering is applied to
the red box in Fig. 4(d), with a result of 0.006 rad. Both results are small and close to each
other. In addition, we calculate the variation range from all the data in Fig. 4(d) and the
result is 0.029 rad which is larger but not yet significant;

(ii) Since the optimal angle is varying within a small range, we use the average value as the
final optimal angle. The results from Fig. 4(c) and from the red box in Fig. 4(d) are
1.097 rad and 1.105 rad, respectively. The difference is considered to be small and well
verifies the correctness of our method. The small difference is from the fact that the former
uses practical measurement practical measurement while the latter directly computes the
angle from the calibration result. We also calculate the average value from all the data
in Fig. 4(d), which is 1.108 rad. Both the average values are almost identical to what we
obtained from the simplified Eq. (23), which is calibration (1.108 rad). This comparison
well verifies [T-P-2].
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5.3. Quantitative evaluation with a planer object

With the completion of the calibration in Step 1, we proceed to do the phase measurement in
Step 2, the correspondence in Step 3 and the 3D reconstruction in Step 4. All the methods listed
in Table 1 are compared for quantitative evaluation. Since these methods are tested in the same
calibrated FPP system, they share the same intrinsic and extrinsic metrices as given in Sec. 5.1.

Table 1. Comparison of different 3D reconstruction methods

Methods Number of
projected

fringe
patterns

Projection
angles

Reconstruction
equations except

for Eqs. (33)
and (34)

Average
SSR (mm)

Average
STDE
(mm)

3D recon-
struction
speed (s)

Hor3 L 0 36 0.068 0.418 0.012

Ver3 L π/2 35 0.017 0.239 0.012

HorVer4 2L 0 and π/2 35 and 36 0.007 0.207 0.024

OptR4 2L θopt±π/4 35 and 36 0.006 0.207 0.024

OptE3 L θopt 35 or 36 0 0.207 0.012

A ceramic plate with a size of 300× 300 mm2 and flatness of less than 0.005 mm is used as the
measured object. After measuring the plate and obtaining its 3D point cloud, a plane is fitted as

A0x + B0y + C0z + D0 = 0. (65)

Then the closest distance from each measurement object point (x0, y0, z0) to the fitted plane is
computed by

Dist(x0, y0, z0) =
A0x0 + B0y0 + C0z0 + D0√︁

A0
2 + B0

2 + C0
2

, (66)

from which the spatial standard deviation error (STDE) is computed. The process is repeated
15 times by placing the plate at 15 different locations in the same volume space during the
calibration. Figure 5(a) shows the depth data (the middle row along uc direction) of the ceramic
plate at the first location; Fig. 5(b) shows the STDEs for all 15 positions. The average values of
these STDEs are given in Table 1 for convenient reference. It can be observed that:

(i) The HorVer4, OptR4, and OptE3 methods give nearly identical STDEs which verifies
that, as long as a pair of angles are perpendicular, their angle values do not affect the
measurement precision [T-C-2]. Although the OptE3 method only projects one set of fringe
pattern and uses only 3 equations for reconstruction, it gives the same precision [T-M-4].
Because the optimal fringe angle is 1.108 rad (∼ 63.48°) which is closer to vertical fringes
than horizontal ones, the Ver3 method performs better than the Hor3 method;

(ii) The SSRs are slightly different for different (uc, vc) at different plate positions. We calculate
all of them and give the average values in Table 1. It is seen that the SSRs of the Hor3,
Ver3, HorVer4 and OptR4 methods are positively correlated with theirs STDEs, and the
SSRs of 4-equation method are less than half of those by using 3-equation method [T-R-1].
The SSR of our proposed method is zero, which verify that one equation is redundant
[T-M-1].

(iii) Table 1 clearly indicates the advantages of the proposed OptE3 method, which only needs
1 set of fringe pattern to be projected but provides the lowest STDE. In addition, the
reconstruction speed is also tested. The OptE3 method using Eqs. (3), (4) and (49) (shown
in Table 1) is 95× faster than the 4-equation methods using Eq. (A2) (not shown) and 2×
faster than the 4-equation methods using Eqs. (3), (4) and (A11) (shown in Table 1).
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(iv) However, it is noticed from Fig. 5(a) that the Hor3 and Ver3 results have observable
deviations from the other methods. We have done careful analysis and simulations and
found that it is not due to noise [T-M-3]. Instead, the deviation is most likely caused by
the calibration process. In all our previous analysis, we have a basic assumption that the
pinhole modes and the calibration parameters are ideal, which is not true in practice. We
have noticed that the Hor3 method is most sensitive to the deviation of the calibration
parameters such as the focal lengths of the camera lens and the projector lens, followed by
the Ver3 method, and then by the other methods. More detailed analysis is beyond the
scope of this paper and will be our future work.

Fig. 5. Comparison of measurement results of the ceramic plate at 15 different positions.
(a) The depth data of the ceramic plate at the first location. (b) The STDE distributions of
the ceramic plate at 15 different positions.

It is worth noting that, in OptE3, we can project an additional set of fringe pattern with the
worst fringe angle for correspondence, and then use all four equations (33–36) for reconstruction
(abbreviated as OptWor4). The OptWor4 and OptE3 methods are expected to give same results,
which has indeed been verified in our experiment. Since OptWor4 is slower and more troublesome
than OptE3, we do not encourage readers to use it and thus not listed in Table 1.

5.4. Qualitative evaluation of a complicated object

To visually demonstrate the advantage that the proposed method, we test all the five measurement
methods on a Briar Bear as shown in Fig. 6(a). Figures 6(b)-(f) are the 3D results, where the hand
portion is magnified. It can be seen that the results by HorVer4 (Fig. 6(d)), OptR4 (Fig. 6(e)),
and OptE3 methods (Fig. 6(f)) are very similar, and all of them are smoother than those from the
Ver3 method (Fig. 6(c)) and the Hor3 method (Fig. 6(b)), which is consistent with our previous
analysis and the plate experiment. Again, since the optimal fringe angle is closer to vertical
fringes, the Ver3 method performs better than the Hor3 method.
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Fig. 6. Measurement results of a complex object. (a) The original picture of the object;
(b) Hor3; (c) Ver3; (d) HorVer4; (e) OptR4; (f) OptE3.

6. Conclusions

This paper performs a series of fundamental theoretical analysis on a FPP system, which is
critical in precision measurement. Our investigation reveals that, (i) in phase measurement, the
optimal and worst fringe angles are perpendicular and parallel to epipolar line, respectively, and
can be considered as system parameters and can be directly made available during traditional
calibration, highlighting the significance of the epipolar line; (ii) in correspondence, the variance
of up and vp when using two sets of fringes with a pair of (θ1, θ2) is minimized where θ1⊥θ2, but
is independence of θ1 itself, clarifying the angle selection problem; (iii) in reconstruction, the
sum of squared residual of equations from the 4-eqation methods is at most half of that from
3-equation method, suggesting the preference of the 4-equation methods for higher precision.

Based on these theoretical analysis results, this paper proposes a novel FPP 3D measurement
method (OptE3). Compared with the HorVer4 and OptR4 methods, the OptE3 method only
needs to project one set of optimal angle fringes, solve three equations by a simple closed form,
but achieve the same precision as the 4-equation methods. This unique and graceful property is
also theoretically proved, where the epipolar line plays a critical role again. The proposed OptE3
method was demonstrated to have high efficiency, precision and convenience.
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Appendix A: The least squares solution of the 4-equation methods

For the 4-equation methods, there are 4 equations to solve 3 unknows and thus a least square
solution is sought. Rewriting Eqs. (33–36) in the matrix form, we have

AX = B, (A1)

where A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 a

0 1 b

c d f

e g h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
xw

yw

zw

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

m

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. The least squares solution can simply be

written as
X = (ATA)−1(ATB). (A2)

However, the derivation is rather complicated, especially for the matrix inverse. Thus, we
provide ATA and its inverse C = (ATA)−1 for reader’s reference:

ATA =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
c2 + f 2 + 1 cd + fg a + ce + fh

cd + fg d2 + g2 + 1 b + de + gh

a + ce + fh b + de + gh a2 + b2 + c2 + d2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (A3)

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (A4)

where the entries of this matrix C as,

C11 =
a2(d2 + g2 + 1) + (bd − e)2 + (bg − h)2 + (dh − eg)2

λ2 + λ3 + λ4 + λ5
, (A5)

C22 =
(c2 + f 2 + 1)b2 + (ac − e)2 + (af − h)2 + (ch − ef )2

λ2 + λ3 + λ4 + λ5
, (A6)

C33 =
(cg − df )2 + c2 + d2 + g2 + f 2 + 1

λ2 + λ3 + λ4 + λ5
, (A7)

C12 = C21 =
d[ae − (a2 + b2 + h2)c] + (a + ce)(b + gh) + f [(b + de)h − (a2 + b2 + e2)g]

λ2 + λ3 + λ4 + λ5
,

(A8)

C23 = C32 = −
b(1 + c2 + f 2) + d[e(1 + f 2) − c(a + fh)] + g[(c2 + 1)h − (a + ce)f ]

λ2 + λ3 + λ4 + λ5
, (A9)

C13 = C31 = −
a(1 + d2 + g2) + c[e(1 + g2) − d(b + gh)] + f [h(1 + d2) − g(b + de)]

λ2 + λ3 + λ4 + λ5
. (A10)

As a final result, we give the expression of zw below, which will be used in Sec. 4.3,

zw(up, vp) =

⎧⎪⎪⎨⎪⎪⎩
−m[ac − e + bd − e(f 2 + g2) + h(cf + dg) + (ag − bf )(cg − df )]

−n[af + bg − h − h(c2 + d2) + e(cf + dg) + (bc − ad)(cg − df )]

⎫⎪⎪⎬⎪⎪⎭⎧⎪⎪⎨⎪⎪⎩
(ac − e + bd)2 + (af + bg − h)2 + [a(cg − df ) + (dh − eg)]2

+[b(cg − df ) + (ef − ch)]2

⎫⎪⎪⎬⎪⎪⎭
. (A11)
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It is worth noting that, although Eq. (A11) looks complicated and primarily used for our
theoretical analysis, it is very efficient in computing and thus very useful in practice. We strongly
encourage the users to use Eqs. (3), (4) and (A11) for 3D reconstruction instead of using Eq. (A2).

Appendix B: Some numerical results of the parameters in a typical FPP system

In this Appendix, some numerical results of our system, which is pretty typical, are provide, to
facilitate the theoretical analysis in Sections 4.3 and 4.4. According to the calibration parameters
of the system in Sec. 5.1 and taking 1 ≤ uc ≤ 1280, 1 ≤ up ≤ 1920, we have

94.47 ≤ C1 + C2up ≤ 100.60, (B1)

and
C4 ≈

r33

f p
u
= −0.0003. (B2)

To estimate C3 + C4up, both uc, vc, up are involved. We consider the following calibration
depth range

800 = zmin ≤ z ≤ zmax = 1000. (B3)

This depth range is where the measured object should be positioned, which has been mentioned
in Sec. 5.1. Now, given uc, vc, the range of up can be obtained from Eqs. (9) and (14), and
consequently, we then have

C3 + C4up ≥ 0.124. (B4)

Next, according to Eq. (50), we have

σ2
up ≤

(︃
T
2π

)︃2
σ2
Φ. (B5)

In this paper, considering that the fringe periods T is 21 and the standard deviation of
phase is σΦ ∈ (0.02, 0.04)[25], we can calculate that the upper bound of σup is 0.13. We then
conservatively take a very large error of up as

δup = 5σup = 0.65. (B6)

Combing Eqs. (B2) and (B6) gives C4δup=0.0002, leading to

C4δup ≪ C3 + C4up. (B7)

Funding. Ministry of Education - Singapore (MOE-T2EP20220-0008); Youth Innovation Promotion Association
of the Chinese Academy of Sciences (2019221); National Natural Science Foundation of China (11903036, 1803037,
61805243, 62127901); Bureau of International Cooperation, Chinese Academy of Sciences (181722KYSB20180015);
Key Research Program of Frontier Science, Chinese Academy of Sciences (QYZDJ-SSW-JSC038).

Acknowledgment. We thank Xiaoyu He from Nanyang Technological University for participating in the discussion,
Yang Liu from University of Science and Technology of China for extracting subpixel position and Yuyuan Zhang from
Northeast Normal University for helping with the figures for this paper.

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request.

References
1. A. G. Marrugo, F. Gao, and S. Zhang, “State-of-the-art active optical techniques for three-dimensional surface

metrology: a review [Invited],” J. Opt. Soc. Am. A 37, 1 (2020).
2. Y. Liu, L. Blunt, Z. Zhang, H. A. Rahman, F. Gao, and X. Jiang, “In-situ areal inspection of powder bed for electron

beam fusion system based on fringe projection profilometry,” Addit. Manuf. 31, 100940 (2020).

https://doi.org/10.1364/JOSAA.398644
https://doi.org/10.1016/j.addma.2019.100940


Research Article Vol. 30, No. 19 / 12 Sep 2022 / Optics Express 33537

3. Y. Wang, J. I. Laughner, I. R. Efimov, and S. Zhang, “3D absolute shape measurement of live rabbit hearts with a
superfast two-frequency phase-shifting technique,” Opt. Express 21(5), 5822–5832 (2013).

4. Y. H. Liao, J. S. Hyun, M. Feller, T. Bell, I. Bortins, J. Wolfe, D. Baldwin, and S. Zhang, “Portable high-resolution
automated 3D imaging for footwear and tire impression capture,” J. Forensic Sci. 66(1), 112–128 (2021).

5. Z. Wang, D. A. Nguyen, and J. C. Barnes, “Some practical considerations in fringe projection profilometry,” Opt.
Laser. Eng. 48(2), 218–225 (2010).

6. S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006).
7. S. Zhang, High-Speed-3D-Imaging-with-Digital-Fringe-Projection-Techniques, 1st ed. (CRC Press, 2016).
8. S. Feng, C. Zuo, L. Zhang, T. Tao, Y. Hu, W. Yin, J. Qian, and Q. Chen, “Calibration of fringe projection profilometry:

A comparative review,” Opt. Laser Eng. 143, 106622 (2021).
9. C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection

profilometry: A comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
10. C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry:

A review,” Opt. Laser Eng. 109, 23–59 (2018).
11. S. Zhang, “Absolute phase retrieval methods for digital fringe projection profilometry: A review,” Opt. Laser Eng.

107, 28–37 (2018).
12. Q. Kemao, “Carrier fringe pattern analysis: Links between methods,” Opt. Laser Eng. 150, 1 (2022).
13. X. He and Q. Kemao, “A comparative study on temporal phase unwrapping methods in high-speed fringe projection

profilometry,” Opt. Laser Eng. 142, 1 (2021).
14. X. He and Q. Kemao, “A comparison of n-ary simple code and n-ary gray code phase unwrapping in high-speed

fringe projection profilometry,” Opt. Laser Eng. 128, 106046 (2020).
15. Y. Wang and S. Zhang, “Optimal fringe angle selection for digital fringe projection technique,” Appl. Opt. 52(29),

7094–7098 (2013).
16. P. Zhou, X. Liu, and T. Zhu, “Analysis of the relationship between fringe angle and three-dimensional profilometry

system sensitivity,” Appl. Opt. 53(13), 2929–2935 (2014).
17. R. Zhang, H. Guo, and A. K. Asundi, “Geometric analysis of influence of fringe directions on phase sensitivities in

fringe projection profilometry,” Appl. Opt. 55(27), 7675–7687 (2016).
18. B. Li and S. Zhang, “Structured light system calibration method with optimal fringe angle,” Appl. Opt. 53(33),

7942–7950 (2014).
19. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11),

1330–1334 (2000).
20. B. Li, N. Karpinsky, and S. Zhang, “Novel calibration method for structured-light system with an out-of-focus

projector,” Appl. Opt. 53(16), 3415–3426 (2014).
21. Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong, “A robust technique for matching two uncalibrated images

through the recovery of the unknown epipolar geometry,” Artificial Intelligence 78(1-2), 87–119 (1995).
22. H. C. Longuet-Higgins, “A computer algorithm for reconstructing a scene from two projections,” Nature 293(5828),

133–135 (1981).
23. Å Björck, “Least squares methods,” Handbook of Numerical Analysis 1, 465–652 (Elsevier, 1990).
24. Z. Zhang, C. E. Towers, and D. P. Towers, “Time efficient color fringe projection system for 3D shape and color using

optimum 3-frequency Selection,” Opt. Express 14(14), 6444–6455 (2006).
25. H. Wang, Q. Kemao, and S. H. Soon, “Valid point detection in fringe projection profilometry,” Opt. Express 23(6),

7535–7549 (2015).

https://doi.org/10.1364/OE.21.005822
https://doi.org/10.1111/1556-4029.14594
https://doi.org/10.1016/j.optlaseng.2009.06.005
https://doi.org/10.1016/j.optlaseng.2009.06.005
https://doi.org/10.1117/1.2336196
https://doi.org/10.1016/j.optlaseng.2021.106622
https://doi.org/10.1016/j.optlaseng.2016.04.022
https://doi.org/10.1016/j.optlaseng.2018.04.019
https://doi.org/10.1016/j.optlaseng.2018.03.003
https://doi.org/10.1016/j.optlaseng.2021.106874
https://doi.org/10.1016/j.optlaseng.2021.106613
https://doi.org/10.1016/j.optlaseng.2020.106046
https://doi.org/10.1364/AO.52.007094
https://doi.org/10.1364/AO.53.002929
https://doi.org/10.1364/AO.55.007675
https://doi.org/10.1364/AO.53.007942
https://doi.org/10.1109/34.888718
https://doi.org/10.1364/AO.53.003415
https://doi.org/10.1016/0004-3702(95)00022-4
https://doi.org/10.1038/293133a0
https://doi.org/10.1364/OE.14.006444
https://doi.org/10.1364/OE.23.007535

