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In this paper, a fuzzy logic nonzero-sum game-based distributed approximated optimal control scheme is
presented for modular robot manipulators (MRMs) with human-robot collaboration (HRC) tasks. The
MRM dynamic model is formulated by using joint torque feedback (JTF) technique. Based on the differ-
ential game strategy, the optimal control problem of HRC task-oriented MRM systems is transformed into
a nonzero-sum game problem of multiple robotic subsystems. By taking advantage of the adaptive
dynamic programming (ADP) algorithm, the distributed approximate optimal control policy under HRC
tasks is developed by a novel fuzzy logic nonzero-sum game manner for solving the coupled
Hamilton–Jacobian (HJ) equation. The trajectory tracking error under HRC task of the closed-loop MRM
system is proved to be ultimately uniformly bounded (UUB) using the Lyapunov theory. Finally, experi-
ment results have been presented, which demonstrate the advantage and effectiveness of the developed
method.

� 2023 Elsevier B.V. All rights reserved.
1. Introduction

The collaborative robots, also known as cobots, are a research
hotspot having a significant academic and application value in sev-
eral application domains such as the assisted industrial operation,
cooperative assembly, entertainment, rehabilitation and medical
treatment [1,2]. Although the existed robotic system is engaged
in physical human-robot interaction (pHRI) tasks, and it has a high
precision and safety, traditional cobots still have disadvantages
such as large size, difficult assembly and excessive degrees of free-
dom. Modular robot manipulator (MRM) is a kind of robots with
standard modules and interfaces. Its configuration can be recom-
bined and assembled, according to different task requirements.
Due to the fact that it is reconfigurable and adaptable, and it has
a flexible structure, MRM is especially suitable for human robot
collaboration (HRC) tasks in complex environment. Hence, it is
necessary to investigate the control method of modular cobot in
order to guarantee the robustness and security of the system.
The HRC task is performed by a couple of autonomous individ-
uals. Therefore, it is crucial to deal with the information exchange
between robot and human. As a branch of game theory, differential
game is used to describe and analyze the situation of interactive
behavior, which can formulate the information interaction
between participant and robot [3,4]. Several studies investigated
the differential game-based pHRI control issue. For instance, Li
et al. [5] solve the problem of stable interaction between human
and robot based on differential game combining with an observer,
and both sides successfully perform the interaction task with the
minimum cost. Based on the differential game theory, the interac-
tion behavior between the participant and the robot is analyzed,
then the interactive control strategy is obtained by the policy iter-
ation technique [6]. Based on the concept of differential game, each
module of the MRM system can be considered as a participant with
an individual policy, and operates in group with a general quadra-
tic performance index function [7]. However, in the human-MRM
interaction control issue, the control policy corresponding to each
module is not only related to its own state, but also referred to the
state of other modules and participants. In order to obtain the dif-
ferential game-based pHRI control strategy, it is necessary to
address the system’s coupled Nash equilibrium solution. Therefore,
the ideal method should obtain the analytical solutions of Nash
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equilibrium under differential game-based HRC task. Simultane-
ously, it should be possess with a low power consumption.

Adaptive dynamic programming (ADP), as a branch of reinforce-
ment learning, is a valid method to solve optimal control issues [8].
It interacts with the environment by imitating the learning ability
of organisms, and uses interactive data to continuously learn and
improve its own strategy until the system performance becomes
optimal. The ADP theory recently became a key method to address
the approximate optimal control system issues of discrete-time [9–
11], continuous-time [12–14], data-driven [15–17], robotic sys-
tems with input/output constraints [18–20], uncertainties distur-
bances [21–23] and multiple sensor failures [24,25]. For MRM
system with coupled model uncertainties, the HJB equation of
the system can be solved by the Weierstrass high-order approxi-
mation theorem [26,27] based on fuzzy logic, and the optimal con-
trol strategy can then be obtained. ADP method based on fuzzy
logic has gained attention in solving electromechanical systems
[28], network systems [29] and nonlinear large-scale systems
[30]. In the process of pHRI, human can perceive whether the inter-
acting force is massive, minor or moderate, rather than an exact
value. Therefore, using the fuzzy logic, the membership function
is introduced into the process of solving the force, and the human
subjected force is described by more states, which can increase the
security of the process of pHRI. However, few studies fully consider
fuzzy logic-based approximate optimal human-MRM interaction
control issue.

Motivated by the existing studies and the developing chal-
lenges, in this paper, a fuzzy logic nonzero-sum game-based dis-
tributed approximated optimal control scheme of MRMs is
assessed for HRC tasks. The MRM dynamic model is considered
as an integration of joint subsystem models, associated with inter-
connected dynamic couplings (IDCs) between modules. Based on
the nonzero-sum differential game strategy, the optimal control
problem of closed-loop robotic systems is transformed into a
nonzero-sum game problem of multiple subsystems. By making
the full use of ADP, the cost function, which is estimated by the
fuzzy logic, is implemented to solve the coupled HJ equation of
the physical human-MRM interaction system, thus facilitating
the acquisition of the fuzzy logic-based nonzero-sum game
scheme. The trajectory tracking error under the HRC task of the
closed-loop MRM system is proved to be UUB. The experimental
results are then presented to demonstrate the advantage and effi-
ciency of the proposed method.

The main contributions of this paper are summarized as:

1. The original investigation introduces the nonzero-sum game
theory to address the coupled Nash equilibrium solution under
HRC tasks for the acquisition of the approximate optimal pHRI
control strategy of MRM systems. An experimental verification
of the efficiency and advantage of the control method is per-
formed, and the experimental results are analyzed.

2. The fuzzy logic-based nonzero-sum game scheme is introduced
into ADP to solve the coupled HJ equation of the physical
human-MRM interaction system, based on the principle of Bell-
man optimality. The human subjected force is formulated by the
hierarchy, which increases the comfort as well as security of the
process of pHRI by fuzzy logic. The effectiveness of the approx-
imated optimal control algorithm is proved by stability analysis.

2. Dynamic analysis and problem formulation

2.1. Dynamic model of MRM

By considering an MRM using the joint torque feedback (JTF)
technique [31], the ith subsystem dynamic model is:
2

Iimci€qi þ sis
ci

þ f ir qi; _qið Þ þ Iic q; _q; €qð Þ ¼ si þ JTi f ; ð1Þ

where subscript i is the ith joint module subsystem, ci repre-
sents the gear ratio, qi denotes the joint position, sis is the cou-
pled joint torque, f ir qi; _qið Þ represents the lumped joint friction,
Iic q; _q; €qð Þ denotes the IDC effect among subsystems, si is the
control torque, Ji denotes the Jacobi matrix, and f represents
the human force input that the interaction force exert on the
end-effector. The analysis of the properties is summarized as
follows:

(1) The lumped joint friction
The joint friction term f ir qi; _qið Þ is expressed as:
f ir qi; _qið Þ ¼ f̂ ib _qi þ f̂ ise
�f̂ is _q

2
ið Þ þ f̂ ic

� �
sgn _qið Þ þ f ip qi; _qið Þ

þ Yi _qið ÞeF ir ; ð2Þ
in which

Yi _qið Þ ¼ f ib � f̂ ib; f ic � f̂ ic; f is � f̂ is; f is � f̂ is
h iT

; ð3Þ

where f ip qi; _qið Þ is the position dependency friction term,
f ib; f is are viscous and Stribect friction effect, f is; f ic are static

and Coulomb friction parameters. Furthermore, f̂ ib; f̂ ic , f̂ is; f̂ is
are the estimated values of f ib; f ic; f is; f is.
Remark 1. f ib; f ic; f is; f is and estimations are bounded, so that eF ir is

bounded as eF ir

��� ��� 6 biFrm m ¼ 1;2;3;4ð Þ, and biFrm is a known posi-

tive constant. Accordingly, one can obtain Yi _qið ÞeF ir which is given

as Yi _qið ÞeF ir

��� ��� 6 Yi _qið ÞbiFrm. Besides, f ip qi; _qið Þ�� �� 6 biFp, in which biFp is

a known positive constant bound.

(2) The interconnected dynamic coupling

The nonlinear IDC term can be expressed as:
Iic q; _q; €qð Þ ¼ Iim
Xi�1

j¼1

vT
miv lj€qj þ Iim

Xi�1

j¼2

Xj�1

k¼1

vT
mi v lk � v lj

� �
_qk _qj

¼ Iim
Xi�1

j¼1

Di
j
€qj þ Iim

Xi�1

j¼2

Xj�1

k¼1

Hi
kj
_qk _qj

¼
Xi�1

j¼1

Iim bDi
j; Iim

h i
€qj; eDi

j
€qj

h iT
þ
Xi�1

j¼2

Xj�1

k¼1

IimĤi
kj; Iim

h i
€qj; ~Hi

kj
_qk _qj

h iT
;

ð4Þ
in which vmi; v lj;v lk represent the unit vectors along with the
ith, jth and kth joint rotation axes, respectively. Accordingly,

one can define Di
j ¼ vT

miv lj and Hi
kj ¼ vT

mi v lk � v lj
� �

. Moreover,

we also have the relations that bDi
j ¼ Di

j � eDi
j and

Ĥi
kj ¼ Hi

kj � ~Hi
kj, in which bDi

j; Ĥ
i
kj denote the estimated values

of Di
j;H

i
kj as well as eDi

j;
~Hi

kj are alignment errors.
Remark 2. According to the definition of vmi; v lk;v lj in (4), we
obtain that the vector products are bounded by

Di
j

��� ��� ¼ vT
miv lj

�� �� < 1 and Hi
kj

��� ��� ¼ vT
mi v lk � v lj

� ��� �� < 1. Moreover, we

also conclude that Iic q; _q; €qð Þ is bounded and the up-bound is
given as Iic q; _q; €qð Þj j 6 biI.
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Define state vector xi ¼ xi1; xi2½ �T ¼ qi; _qi½ �T and the control input
ui ¼ si. One has the ith subsystem state space:

_xi1 ¼ xi2
_xi2 ¼ f i xð Þ þ giui þ-i xð Þ

8><>: ; ð5Þ

where

gi ¼ Iimcið Þ�1

f i xð Þ ¼ �gi

f̂ ise
�f̂ ir _x

2
i1ð Þ þ f̂ ic

� �
sgn xi2ð Þ þ f ip xi1; xi2ð Þ

þf̂ ibxi2 þ Yi xi2ð ÞeF ir þ sis
ci
þ Iic x; _x; €xð Þ

0BB@
1CCA

-i xð Þ ¼ �giJ
T
i f :

ð6Þ
2.2. Human limb model and motion intention estimation

In physical human robot interaction, the human force is consid-
ered as the only external force exerting on the robot end-effector
[32]. The HRC control transfers the human force input into the
motion commands of the robot:

� CH _zþ GH zHd � zð Þ ¼ f ; ð7Þ
where CH;GH are the dampers, spring unknown diagonal matrices of
the human, z is the robot actual position in Cartesian space which

can be calculated as z tð Þ ¼ n qð Þ; q tð Þ ¼ q1; � � � ; qi; � � � ; qn½ �T is the posi-
tion vector in the joint space, n �ð Þ is a mapping matrix from joint
space to Cartesian space, zHd denotes the trajectory planned in the
human which is referred to as the motion intention of the human
and the robot.

Remark 3. The up-bound of interaction force f is bf which guaran-
tees that, once a feasible HRC task is determined, it is possible to
guarantee that the MRM will converge to its goal. If the human
interaction force is without a finite bound, it is not possible to
guarantee the convergence that the trajectory tracking error is UUB.

The human motion intention while interacting with a robot zHd
can be expressed as [33]:

zHd ¼ K f ; z; _zð Þ; ð8Þ
where K �ð Þ is considered as an unknown nonlinear function.

Furthermore, it is known that zHd is difficult to obtain since the
human may change its limb during the collaboration task. Consid-
ering the concept of radial basis function NN, the human motion
intention while interacting with a robot and its estimation are
given by:

zHd ¼ WT
xS f ; z; _zð Þ þ e; ẑHd ¼ cWT

xS f ; z; _zð Þ; ð9Þ

where e is the estimation error, cWx is the estimated value of ideal
weight Wx and S represents the Gaussian function.

The gradient descent algorithm is used to obtain cWx in (9). In
order to make the MRM actively and easily move toward its

human’s intended position, cWx is adjusted online using the follow-

ing cost function respect to the interaction force E ¼ 1
2 f 2
��� ���.

Therefore:
3

_cWx ¼ �a0 @E

@cWx

¼ �a0f GHS ¼ �aAf S; ð10Þ

where a0 is a positive scalar, aA ¼ a0GH .

We can get cWx as:

cWx tð Þ ¼ cWx 0ð Þ � aA

Z t

0
f vð ÞS vð Þð Þdv : ð11Þ

Therefore, one can obtain ẑHd in (9).
The control object consists in optimally ensuring that the con-

sidered tracking error of MRM systems under pHRI is UUB. In the
next section, a distributed approximate optimal control of MRMs
for HRC using fuzzy logic nonzero-sum game, is presented.

3. Fuzzy logic nonzero-sum game-based distributed
approximated optimal control

3.1. Problem transformation

In this paper, a fuzzy logic nonzero-sum game-based dis-
tributed approximated optimal control scheme is developed to
guarantee that the end-effector of MRM can actively move toward
human’s planned intention under HRC task. In addition, in the
nonzero-sum differential game, the object consists in ensuring
the minimization of each performance index for all the modules
as well as the cost between the human and the robot, as the Nash
equilibrium. Therefore, in order to facilitate the design of the con-
troller, n modules can be deemed as n players.

Since the estimation of human intention in Cartesian spa-ce zHd
is obtained in the previous section, the estimated human motion
intention q̂ can be defined in the joint space as q̂ tð Þ ¼ n�1 zHdð Þ. By
augmenting the subsystem dynamics, the state space can be
expressed as:

_x1 ¼ x2

_x2 ¼ f D xð Þ þ
Xn
m¼1

Gmum þ- xð Þ

8>><>>: ; ð12Þ

where x ¼ xT1; x
T
2

� 	T 2 R2n is the global state of the MRM system, in

which the vectors x1; x2 are given by x1 ¼ x11; . . . ; xi1; . . . ; xn1½ �T 2 Rn

and x2 ¼ x12; . . . ; xi2; . . . ; xn2½ �T 2 Rn. Moreover, we have f D xð Þ ¼
f 1 xð Þ; . . . ; f i xð Þ; . . . ; f n xð Þ½ �T ;Gm ¼ 0; . . . ;0; gm;0; . . . ;0½ �T ; - xð Þ ¼
-1 xð Þ; . . . ;-i xð Þ; . . . ;-n xð Þ½ �T , where gm ¼ Immcmð Þ�1

; m ¼ 1; . . . ;n.
Define the cost fuction:

Ji _e;u1; . . . ;un; fð Þ ¼ R1
t

_eTQi _eþ
Xn
m¼1

uT
mRimum þ-T-

 !
ds

¼ R1
t Ui _e;u1; . . . ;un; fð Þds;

ð13Þ

where position error is e ¼ e1; e2; � � � ; en½ �T ¼ x1 � xd and velocity

error vector is _e ¼ _e1; _e2; � � � ; _en½ �T ¼ x2 � _xd; xd ¼ q̂ tð Þ denotes the
estimated human motion vectors in joint space, Qi;Rim are deter-
mined positive definite matrices and Ui _e;u1; . . . ;un; fð Þ represents
the utility function.

Definition 1. The control policy ui is denoted as admissible with
regard to the cost function (13), if ui stabilizes the manipulator
system (12) on compact set w, and Ji _e;u1; � � �un; fð Þ is finite for
arbitrary x 2 w.
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Using the infinitesimal version of (13), the Hamiltonian func-
tion is expressed as:

Hi _e;u1; . . . ;un; f ;rJið Þ ¼ Ui _e;u1; . . . ; un; fð Þ

þ rJið ÞT f D xð Þ þ
Xn
m¼1

Gmum þ- xð Þ � €xd

 !
;

ð14Þ
where rJi _eð Þ ¼ @Ji _eð Þ

@ _e is the partial derivative of Ji _eð Þ. Moreover, the
optimal cost function can be defined as:

J�i _e;u1; . . . ;un; fð Þ ¼ min
ui

Z 1

t
Ui _e;u1; . . . ;un; fð Þds: ð15Þ

According to the stationary condition @Hi
@ui

¼ 0, the local distributed

approximated optimal control policy u�
i is:

u�
i ¼ �1

2
R�1
ii GT

i rJ�i : ð16Þ

Similarly, based on @Hi
@f ¼ 0, the local approximated optimal interac-

tion force is given by:

-� ¼ �1
2
rJ�n: ð17Þ

Afterwards, by substituting (13), (16) and (17) into the Hamiltonian
function (14), the coupled HJ equation can be expressed as:

rJ�i
� �T f D xð Þ � 1

2

Xn
m¼1

GmR
�1
mmG

T
mrJ�m � 1

2
rJ�n � €xd

 !
þ _eTQi _e

þ 1
4

Xn
m¼1

rJ�i
� �TGmR

�1
mmRimR

�1
mmG

T
m rJ�m
� �þ 1

4
rJ�n
� �TrJ�n

¼ 0: ð18Þ

Remark 4. The developed distributed approximated optimal con-
trol policy u�

i among MRM systems affords superior expandability
as well as handlability than the centralized mechanism, which is
not suitable for computation and transmission manner. The
applied distributed control mechanism averts MRM systems’
majorization of high dimensionality that only utilizes each module
subsystem’s local and neighborhood information. As a conse-
quence, the cost function of each player can be optimized
accompanying fewer cost.
3.2. Derivation of fuzzy logic

Since in the process of pHRI, the participant cannot accurately
perceive the exact force that is acting on the robot’s end-effector,
human can only feel the comfort level in the interaction process,
whether it is compliance or strenuous. Therefore, using the concept
of fuzzy logic, the following IF-THEN rules are provided:

Rk
i : If xi1 is Fk

i1; xi2 is Fk
i2, . . ., xim is Fk

im.

Then yi is G
k
i ; k ¼ 1;2; � � � ;Mwhere xi� and yi respectively denote

the fuzzy logic’s input and output, Fk
i� and Gk

i represent the fuzzy
set, dFki� and dGk

i
are respectively the fuzzy membership functions

and M is the quantity of the rules.
Based on the fuzzy rules, the fuzzy logic is as follows:

yi ¼

XM
k¼1

�yk
Ym
�¼1

dFki�XM
k¼1

Ym
�¼1

dFki�

 ! ; ð19Þ
4

where �yk ¼ max dGk
i
.

The definition of the fuzzy basis function is then given as
follows:

dk ¼

Ym
�¼1

dFki�XM
k¼1

Ym
�¼1

dFki�

 ! : ð20Þ

Hence, (19) is expressed as:

yi ¼ WT
i d: ð21Þ

Lemma 1 [34]. yi is considered as a finite continuous function, then:

sup
xi

yi �WT
i d

��� ��� 6 wi; ð22Þ

where wi is an arbitrary small constant.
Remark 5. Since the position tracking error generating from
human motion while interacting with the robot is time-varying,
it is with great significance for controller design to consider the
mentioned information. Besides, participants are affected by com-
fort level during pHRI instead of precise value. Motivating by above
comments, the fuzzy logic-based distributed approximated opti-
mal control strategies are adapted according to the position as well
as velocity errors to further improve the comfort of interaction and
accuracy of calculation.
3.3. Approximate solution of the nonzero-sum game by the fuzzy logic

Dynamic compensation is a significant part in robotic control. In
this study, a compensator controller which comprises dynamic
information-based model and fuzzy logic no-nzero-sum game-
based optimal control is designed.

u�
i ¼ ui1 þ u�

i2; ð23Þ
where ui1 is dealt with the dynamic model f i xð Þ and u�

i2 is the opti-
mal compensation issue of the uncertainties as well as HRC tasks.

According to (6), ui1 can be designed as:

ui1 ¼ �
� f̂ ise

�f̂ isx
2
i2ð Þ þ f̂ ic

� �
sgn xi2ð Þ

�f̂ ibxi2 � g�1
i
€xid � sis

ci

0BB@
1CCA: ð24Þ

The optimal compensation control problem is then transformed
into a nonzero-sum game issue.

The fuzzy logic is developed to approximate the cost function
(13) as follows:

J�i _eð Þ ¼ WT
ic/ic _eð Þ þ eic; ð25Þ

whereWic is the fuzzy logic ideal vector, eic is the finite approximate
error and /ic _eð Þ represents fuzzy basis function.

The gradient of the approximated cost function can be obtained
as:

rJ�i _eð Þ ¼ r/T
ic _eð ÞWic þreic; ð26Þ

where r/ic _eð Þ ¼ @/ic _eð Þ=@ _e is the gradient of the fuzzy basis func-
tion and reic is the gradient error.

By substituting (26) into (16), the optimal control policy is
given by:
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u�
i2 ¼ �1

2
R�1
ii GT

i r/T
ic _eð ÞWic þreic

� �
: ð27Þ

Substituting (26) into (27), one yields:

Hi _e;u1; . . . ;un; f ;Wcð Þ ¼ _eTQi _eþ
Xn
m¼1

uT
mRimum þ-T-

þ rJið ÞT f D xð Þ þ
Xn
m¼1

Gmum þ- xð Þ � €xd

 !
� eicH

¼ 0;

ð28Þ
where eicH denotes the residual error.

The estimated optimal cost function is given by:bJ�i _eð Þ ¼ cWT
ic/ic _eð Þ: ð29Þ

Based on (27) and (29), the approximate optimal control is
expressed as:

û�
i2 ¼ �1

2
R�1
ii GT

i r/T
ic

_eð ÞcWic: ð30Þ

According to (28), the approximated Hamiltonian function is given
by:

bHi _e; û1; . . . ; ûn; f̂ ;cWc

� �
¼ _eTQi _eþ

Xn
m¼1

uT
mRimum þ-T-

þ cWT
icr/ic _eð Þ€e

¼ 0: ð31Þ
The approximated Hamiltonian error function eic is defined as
follows:

eic ¼ bHi � Hi; ð32Þ

where eic ¼ bHi is obtained using (28), (32).

When defines the vector estimate error fWic ¼ Wic �cWic , it can

be deduced that eic ¼ eicH �fWT
icr/ic _eð Þ€e, by combining (28), (31)

with (32).
The update law is designed as:

_cWic ¼ �aieicr/ic _eð Þ€e; ð33Þ
where ai is the updated rate of the fuzzy logic.

ti is denoted as r/ic _eð Þ€e, and a positive constant tiL that
tik k 6 tiL is assumed. Thus, we have:

_fWic ¼ � _cWic ¼ aieicr/ic _eð Þ€e ¼ ai eicH � fWT
icti

� �
ti: ð34Þ

Remark 6. The fuzzy logic is leveraged to decompose the compli-
cated MRM system into quantity of fuzzy subsystems as players in
the nonzero-sum differential game, which are corresponding to IF-
THEN rules. Then, the unknown cost function (13), which is
estimated by the fuzzy logic, is implemented to solve the coupled
HJ equation of the physical human-MRM interaction system.
Unlike the conventional critic NN to deal with cost function in
the nonzero-sum game that tough to determine the center location
or quantities of the radial basis function NNs, which increase the
computation space and communication protocol. By utilizing the
promising fuzzy logic technique, the solution of nonzero-sum
differential game can be predigested. Afterwards, one can obtain
the proposed fuzzy logic nonzero-sum game-based distributed
approximated optimal control scheme.
5

Theorem 1. Considered the cost function which is approximated by
(25), with an ideal weight Wic, and the estimated cost function given

by (29) that is built with approximated weight cWic, if the weight of the
fuzzy logic is updated by (33), then the weight approximation error is
guaranteed to be UUB.

Proof. Select the Lyapunov function:

Vic tð Þ ¼ 1
2ai

fWT
ic
fWic: ð35Þ

The time derivative of Vic tð Þ is obtained as:

_Vic tð Þ ¼ 1
ai
fWT

ic
_fWic ¼ 1

ai
fWT

icai eicH � fWT
icti

� �
ti

¼ fWT
ic eicH � fWT

icti
� �

ti ¼ fWT
iceicHti � fWT

icti
��� ���2

6 1
2 eicHk k2 � 1

2
fWT

icti
��� ���2;

ð36Þ

where _Vic tð Þ 6 0 when _e lies outside Xi1 ¼ fWic : fWic

��� ��� 6 eicH
tiL

n o
. This

completes the proof.
Based on the compensation-based control policy (24) and the

optimal control policy (30), û�
i is given by:

û�
i ¼ ui1 þ û�

i2

¼ �
� f̂ ise

�f̂ isx
2
i2ð Þ þ f̂ ic

� �
sgn xi2ð Þ

�f̂ ibxi2 � g�1
i
€xid � sis

ci

0BB@
1CCA� 1

2R
�1
ii GT

i r/T
ic _eð ÞcWic:

ð37Þ
The structural diagram of the proposed fuzzy logic nonze-ro-sum
game-based distributed approximated optimal control is illustrated
in Fig. 1.

Theorem 2. Given an MRM system with the dynamic model of
each joint subsystem represented in (1), and the state space
formulated in (12), the trajectory tracking error of the closed-loop
robotic system is UUB under the HRC task, by the presented fuzzy
logic nonzero-sum game-based distributed approximated optimal
control derived in (37).

Proof. Select J�i _eð Þ as Lyapunov function, and derivative it as
follows:

_V tð Þ ¼ rJ�i
� �T f D xð Þ þ

Xn
m¼1

Gmum þ- xð Þ � €xd

 !
: ð38Þ

By considering the coupled HJ equation formulated in (18), it yields:

rJ�i
� �T f D xð Þ � €xdð Þ ¼ � _eTQi _e�

1
4

rJ�n
� �TrJ�n

� 1
4

Xn
m¼1

rJ�m
� �TGmR

�1
mmRimR

�1
mmG

T
m rJ�m
� �

þ 1
2

Xn
m¼1

rJ�m
� �TGmR

�1
mmG

T
mrJ�m: ð39Þ

Combining (39) into (38), we obtain:

_V tð Þ ¼ � _eTQi _e�
Xn
m¼1

Gm u�
m � ûm

� � !
� 1
4

rJ�n
� �TrJ�n

� 1
4

Xn
m¼1

rJ�m
� �TGmR

�1
mmRimR

�1
mmG

T
m rJ�m
� �

þ 1
2

Xn
m¼1

rJ�m
� �TGmR

�1
mmG

T
mrJ�m: ð40Þ



Fig. 1. Structural diagram of the fuzzy logic nonzero-sum game-based distributed approximated optimal control.
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Combining (38) and (40), one obtains:

_V tð Þ ¼ � _eTQi _e� 1
4 rJ�n
� �TrJ�n þ 1

2 r/T
ic

_eð ÞWic þreic
� �T

Xn
m¼1

GmR
�1
mm GT

mr/T
mc

_eð ÞfWmc þ GT
mremc

� � !

� 1
4

Xn
m¼1

rJ�m _eð Þ� �TGmR
�1
mmRimR

�1
mmG

T
mrJ�m _eð Þ

¼ � _eTQi _eþPJ ;

ð41Þ

in which PJ has up-bound:

PJ 6

� 1
4

Xn
m¼1

rJ�m _eð Þ� �TGmR
�1
mmRimR

�1
mmG

T
mrJ�m _eð Þ

þ 1
2 r/T

ic _eð ÞWic þreic
� �T
Xn
m¼1

GmR
�1
mm GT

mr/T
mc _eð ÞfWmc þ GT

mremc

� � !

��������������

��������������
6 pJ ;

ð42Þ

where pJ is a computable constant.

Combining (42), _V tð Þ has upper bound by:

_V tð Þ 6 � _eTQi _eþ pJ 6 �kmin Qið Þ _ek k2 þ pJ : ð43Þ
If _e lies outside:

X ¼ _e : _ek k 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pJ

kmin Qið Þ
r� �

; ð44Þ
6

(38) is negative. Therefore, one obtains _V tð Þ < 0 for any _e– 0
when (44) is satisfied. The trajectory tracking error under HRC task
is proved to be UUB under (37). This completes the proof.
4. Experiments

4.1. Experiment setup

The proposed control methods are verified by two degrees of
freedom MRM experimental platform. The detailed experimental
device can be seen from Fig. 2. The measured joint control torque
can be delivered by the joint torque sensor. Furthermore, the joint
position information can be acquired by the absolute as well as
incremental encoder. The data acquisition board serves as the
medium through which the software environment (Simulink)
interacts with hardware information (robotic module). The pro-
posed fuzzy logic nonz-ero-sum game-based distributed approxi-
mated optimal control algorithm, which is with continuous time
condition, and needs to be implemented discretely. The control
system is built via Simulink environment, which can realize the
discrete implementation automatically. The situation of pHRI that
is handshaking task with MRM is considered (cf. Fig. 2c). According
to the requirements of human robot collaboration tasks, the first
major principle is always to ensure the safety of the participant.
An emergency stop is used to ensure the safety in the case of an
accident in the interaction process. In trajectory planning, interac-
tive tasks are relatively slow to guarantee the human security.

An experiment is performed to determine if the requirements of
position tracking performance and control torque optimization are



Fig. 2. Experimental situation (a) Experimental platform setup (b) Experimental joint module (c) Experimental with HRC.

Table 1
Fuzzy logic-based controller rule base.

Fuzzy logic input Velocity tracking error

Positive Zero Negative

Position tracking error Positive Positive big Positive small Zero
Zero Positive small Zero Negative small
Negative Zero Negative small Negative big
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Fig. 3. Motion intention estimation and position tracking curves in joint space
under handshaking tasks via the proposed optimal control method.
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met. Furthermore, humans should feel as comfortable as possible
when shaking hands with the robot. The related dynamic model
and control design are given by:

f̂ ib ¼ 12mNm=rad; f̂ ic ¼ 30mNm; f̂ is ¼ 40mNm; f̂ is ¼ 20s2=rad2
;

Iim ¼ 120gcm2; ci ¼ ai ¼ 0:9;Qi ¼ Rim ¼ I;a0 ¼ 3:72; bf ¼ 2:6.
For the fuzzy logic nonzero-sum game-based distributed

approximated optimal control in this paper, the position as well
as velocity tracking error e; _e mean the input of the fuzzy logic
and the cost function Ji represents the output, thus derivation of
the local distributed approximated optimal control policy as well

as the optimal interaction force. The defined fuzzy sets Fk
i� consists

of positive, zero as well as negative, and Gk
i includes positive big,

positive small, zero, negative small as well as negative big. The
membership functions dFki� and dGk

i
are selected as triangle member-

ship function. On the premise of ensuring system performance, the
quantity of fuzzy rules should be minimized for simplifying con-
troller design and reducing computation burden. Therefore, 3m

fuzzy rules are adopted in the rule base, which is shown in Table 1.

4.2. Experiment results

The experimental results demonstrate the performance of posi-
tion tracking, tracking error, control torque and fuzzy logic weight.
Two types of control methods are used to verify the validity of the
proposed method: the existed learning-based tracking control
without fuzzy logic nonzero-sum game method, such as actor-
critic-based optimal control, (e.g. [35,36]), and the proposed fuzzy
logic nonzero-sum game-based distributed approximate optimal
control method. The two control methods are used in handshaking
HRC tasks. Note that in the figures, (a) represents joint one, and (b)
denotes joint two.

(1) Position tracking performance
Figs. 3 and 4 present the position tracking and tracking error
curves in joint space under handshaking tasks, obtained by
7

the existed learning-based tracking control and proposed
fuzzy logic nonzero-sum game-based approximate optimal
control methods, respectively. As the optimal compensation
of the model uncertainties and coupling effects is not imple-
mented in the existed learning-based optimal control
method, the error curves are featured with obvious chatter-
ing and noise effects. The amplitude of tracking error tends
to become larger in some time and can be restored to an
acceptable range in a short period via the proposed fuzzy
logic nonzero-sum game-based distributed approximate
optimal control method due to effective friction compensa-
tion. Unlike the conventional stabilization control method,
the proposed optimal control method can guarantee track-
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ing error restraint in a limited scope, which experimentally
demonstrates the ultimately uniformly bounded
performance.

(2) Control torque
Fig. 5 shows the control torque curves under handshaking
tasks using the existed learning-based tracking control
method and the proposed fuzzy logic nonzero-sum game-
based distributed approximate optimal control method. It
can be observed that, when the trajectory sharply changes,
the control torque is instantaneously increased, which may
affect the durability of the DC motors. Furthermore, the con-
trol torque curves show serious chattering effects under the
existed control method, which may reduce the precision of
the trajectory tracking. Using the fuzzy logic nonzero-sum
game-based distributed approximate optimal control
method, the output torques use the output power of motors,
and the instant increase of control torque is restrained
within safe limits that no more than 4Nm.
8

(3) Interaction force
Fig. 6 shows the interaction force curves under handshaking
tasks by the existed learning-based tracking control method
and the proposed fuzzy logic nonzero-sum game-based dis-
tributed approximate optimal control method. In the process
of pHRI, the interaction force acts on the contact part of the
participant with the robot that is the direct factor affecting
the degree of comfort. The contact force curves appear in a
two-dimensional space, due to the fact that the MRM has
2-DoF and the joint axis is assembled in parallel. It can be
seen that the interaction force is gentle and mild less than
or equal to 0.1 N, under the fuzzy logic-based nonzero-sum
game scheme, and without strong chattering phenomenon.
This facilitates the accurate implementation of the fuzzy
logic technique, which guarantees the comfort and security
of the human.
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(4) Fuzzy logic weight
Fig. 7 shows the fuzzy logic weight curves under handshak-
ing tasks obtained by the proposed fuzzy logic nonzero-sum
game-based distributed approximate optimal control me-
thod. The fuzzy logic nonzero-sum game-based distributed
approximate optimal control policies can be obtained using
the converged weights (cf. Fig. 5). Thus, the weight can
reflect the human intention in real time according to the
position tracking error (cf. Fig. 4).

Based on the experimental results, the closed-loop MRM sys-
tems under the HRC task have better performance than the existed
methods in terms of position tracking, control torque, and interac-
tion force under the proposed fuzzy logic nonzero-sum game-
based distributed approximate optimal control method.

5. Conclusion

This paper proposed a fuzzy logic nonzero-sum game-based
distributed approximate optimal control scheme for MRMs under
HRC tasks. The MRM dynamic model is considered as an integra-
tion of joint subsystem models associated with interconnected
dynamic coupling effects. Based on the differential game strategy,
the optimal control problem of closed-loop robotic systems is
transformed into a nonz-ero-sum game issue of multiple subsys-
tems. Using the ADP algorithm, the cost function is developed by
fuzzy logic and implemented to solve the coupled HJ equation,
which facilitates the acquisition of Nash equilibrium solutions.
The trajectory tracking error of the closed-loop MRM system is
UUB under the HRC task using the Lyapunov theory. Finally, the
performed experiments demonstrate the efficiency of the proposed
method.

Security remains a major barrier to the widespread utilize of
adaptive dynamic programming algorithms in the real world, espe-
cially for MRM system under pHRI tasks. How to guarantee the task
performance and safety characteristic of MRM system is a bottle-
neck problem that demands to be solved urgently.
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