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Abstract: Rapid disaster assessment is critical for public security and rescue. As a secondary dis‑
aster of large‑scale meteorological disasters, power outages cause severe outcomes and thus need
to be monitored efficiently and without being costly. Power outage detection from space‑borne re‑
mote sensing imagery offers a broader coverage and is more temporally sensitive than ground‑based
surveys are. However, it is challenging to determine the affected area accurately and quantitatively
evaluate its severity. Therefore, a new method is proposed to solve the above problems by build‑
ing a power outage detection model (PODM) and drawing a power outage spatial distribution map
(POSDM). This paper takes the winter storm Uri, of 2021, as the meteorological disaster background
andHarris County, Texas, whichwas seriously affected, as the research object. The proposedmethod
utilises the cloud‑free VIIRS DNB nadir and close nadir images (<60 degrees) collected during the
3 months before and 15 days after Uri. The core idea beneath the proposed method is to compare
the radiance difference in the affected area before and after the disaster, and a large difference in
radiance indicates the happening of power outages. The raw radiance of night light measurement
is first corrected to remove lunar and atmospheric effects to improve accuracy. Then, the maximum
andminimumpixels in the target area of the image are considered outliers and iteratively eliminated
until the standard deviation change before and after elimination is less than 1% to finalize the outlier
removals. The case study results in Harris show that the PODM detects 28% of outages (including
traffic area) compared to 17% of outages (living area only) reported by ground truth data, indicating
general agreement with the proposed method.

Keywords: night light remote sensing; VIIRS DNB; outage detection; outlier removing

1. Introduction
Large‑scale meteorological disasters have a serious impact on human life. After the

disaster, rapid and efficient disaster assessment in the affected areas guarantees the salva‑
tion of affected people and infrastructure reconstruction. There are two conventional disas‑
ter assessmentmethods: on‑site field investigation [1–3] and remote sensingdetection [4–6].
Remote sensing detection is preferred to assess the disaster situation in the face of major
disasters due to strong timeliness, wide detection range and being free of traffic isolation.

Based on the wavelength of the electromagnetic wave, traditional remote sensing de‑
tection is divided into daytime optical [7] and microwave remote sensing [8,9]. However,
these two methods can only detect changes in surface morphology and building form,
whichmeans it is difficult to evaluate the impact of disasters quantitatively. The night‑time
light images of human living areas can directly reflect human residential activities [10,11].
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Under the attack of disasters, the normal operation of infrastructure and electrical equip‑
ment in areas where people live is affected, resulting in light changes at night‑time. By
establishing a power outage detection model (PODM), the night light changes in cities and
towns before and after the disaster can be calculated. Meteorological disaster detection is
completed by assessing the power outages in the survey sites. The spatial distribution of
power outage caused by meteorological disaster is detected by drawing a power outage
spatial distribution map (POSDM).

Compared with traditional daytime remote sensing images, the signal of low‑light
remote sensing images is faint. In recent years, the improvement in photonics has wit‑
nessed significant progress in sensitivity on the space‑borne optical sensor, and remote
sensing at night‑time has become more feasible than decades ago. Additionally, such
tools are widely used in evaluating regional economic development [12–14], population
distribution [15–17], power consumption [18,19], carbon dioxide emissions [20], military
conflicts [21], urban scale [22–24], PM2.5 concentration [25,26], snow cover [27] and epi‑
demic impact [28,29] detection.

At this stage, the widely used low‑light remote sensing equipment includes the opera‑
tional line scanner (OLS) carriedby theDefenseMeteorological Satellite Program (DMSP) [30]
and visible infrared imaging radiometer suite (VIIRS), and the day/night band (DNB) [31]
carried by the Suomi National Polar‑orbiting Partnership(S‑NPP) and National Oceanic
and Atmospheric Administration −20(NOAA20). The VIIRS has 22 bands. Among them,
the DNB band is 0.5~0.9 µm, which has a broad observing capability range from day to
night. The DNBdetector with 14 bits adopts three gain ranges of the high gain stage (HGS),
medium gain stage (MGS) and low gain stage (LGS), realising the radiance detection range
of 3 × 10−9~0.02 W/(cm2·sr) spanning seven orders of magnitude. The VIIRS DNB is an
improvement of theOLS, inwhich pixel resolution can be stabilised at 750m. Thanks to the
onboard calibration ability, the VIIRS DNB has high radiometric accuracy. Based on the
success of the VIIRSDNB,NOAA launched theNOAA‑20 satellite carrying the VIIRSDNB
in November 2018 and entered the joint polar orbit of the S‑NPP satellite to achieve global
observation [32]. Comparedwith the OLS, the VIIRS DNB has improved spatial resolution
(GSD), an enlarged dynamic range of radiometric detection (3 × 10−9 to 0.02 W/(cm2·sr)),
restrained scanning edge image distortion and in‑orbit radiation calibration ability. Over‑
all, the VIIRS DNB has better observation ability at night, so VIIRS DNB data were selected
to build PODM and POSDM in this research.

There are many research results on disaster monitoring based on night‑time images.
In 1999, Shin et al. applied DMSP‑OLS night light images before and after the earthquake
to speculate the areas affected by the earthquake of Marmara, Turkey [33]. However, due
to the poor performance of the OLS, disaster detection based on DMSP satellite images
could not achieve a satisfying result.

In 2013, Cao and Shao applied theVIIRSDNB images to detect the night light radiance
changes in the target area after the attack of the Derecho storm and hurricane Sandy, and
better outage assessment results were acquired [34]. In 2017, Cole et al. studied hurricane
Sandy [35], combining S‑NPP VIIRS DNB data with geographical information such as lo‑
cal infrastructure distribution and surrounding population distribution. A neural network
algorithm was also applied to evaluate power outages’ temporal and spatial distribution
quantitatively. In 2018, Fan analysed the VIIRS nearly constant contrast (NCC) environ‑
mental data record (EDR) data of the target area around the earthquake [36]. After elimi‑
nating the influence of clouds, moonlight, solar irradiance and low‑quality pixels, the stan‑
dard deviation change before and after the disaster was calculated to detect the affected
area of disasters. In 2021, Soma took the cyclone and storm that happened in India as the
research event [37]. By analysing the VIIRS DNB satellite image data, the degree of the
power outage was estimated according to the night‑time images. Additionally, the num‑
ber of people and crops affected by the disaster was estimated by combing through the
VIIRS DNB data with population and crop distribution data in the affected area. In remote
sensing images, outliers generally refer to pixels whose radiance values are significantly
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higher or lower than the normal range [38]. However, the impact of outliers in VIIRS DNB
images on power outage detection and disaster assessment is ignored in the work above,
which limits the accuracy.

Due to the tight schedule for post‑disaster reconstruction, it is necessary to use the
daily VIIRS DNB image data after the disaster. The occurrence of disasters is generally ac‑
companied by severe atmospheric and ground environment change, increasing the num‑
ber of outliers in the VIIRS DNB image at night. The detection accuracy will deteriorate
without removing outliers in VIIRS DNB images. Compared with the previous outage de‑
tection work, the core innovation of this paper is the establishment of PODM with outlier
removal, which improves outage detection accuracy. The POSDM is also drawn to detect
the spatial distribution of power failure in the meteorological‑disaster‑affected area.

This paper studies the 2021NorthAmericanwinter stormUri and selectsHarris County,
Texas, as the region of interest in detecting power outages [39]. The PODM is established
based on the daily night‑time VIIRS DNB images from three months before and 15 days
after the disaster. After filtering out the low‑quality images with large satellite zenith an‑
gles or those seriously affected by cloud, the outliers in the VIIRS DNB images were also
spotted and eliminated. We calculated the average radiance of pixels in the target area
profile of satellite images before and after the disaster. After the lunar and atmospheric
correction, the average radiance in the target area was compared with the daily radiance
after the disaster. The power outage affected by the disaster was quantitatively evaluated.
The result calculated by the establishedmodel was validated by the power supply data sur‑
veyed by the local power company, using it as reference truth data for this research, and
the data change trend and deviation degree met the expected requirements. This verifies
the feasibility of using the VIIRS DNB satellite image data to detect meteorological disas‑
ters through the established PODM. Finally, a method to draw the POSDM is proposed,
which intuitively monitors the night‑time light change in the affected area.

The structure of this paper is arranged as follows. Section 1 introduces the purpose,
significance and overall procedure of meteorological disaster detection based on DNB
night images. Section 2 introduces the selected meteorological disaster event, VIIRS DNB
images, ancillary data and software used in the paper. Section 3 discusses building the
PODM and drawing the POSDM based on the VIIRS DNB images. Section 4 removes and
analyses the outliers in the VIIRS DNB images and finishes the power outage detection
based on the PODM. The accuracy of the result is verified by comparing it with power
company surveyed outage data. The spatial distribution of power outages is also analysed
based on the POSDM. Section 5 summarises the overall work.

2. Materials and Methods
This section introduces the selected meteorological disaster events and the data used.

2.1. Event Selection
From 13th February to the 17th, 2021, the winter storm Uri, equivalent to a category

3 hurricane caused by an extra‑tropical cyclone, attacked northern Mexico, United States,
and some parts of Canada. At least 299 people were killed [40], causing USD 190 billion
losses [41], and more than 5 million households and other users lost power [42].

A massive power outage occurred in Harris County, Texas, caused by Uri [39]. With
a coordinate coverage of (29.50 ◦N~30.17 ◦N, −95.96 ◦W~ −94.91 ◦W), the geographical
location and regional shapefile of Harris county were as shown in Figure 1. According to
the census statistics surveyed in 2020, Harris County’s populationwas 4.7million, themost
populous county in Texas and the thirdmost populous county in theUnited States. Human
activities at night are relatively active in this county, which is conducive to this study.
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Figure 1. Geographic location map of Harris County. (a) Location of Harris County in the United
States; (b) schematic diagram of Harris County administrative district boundary. ArcGIS Pro drew
both figures.

2.2. VIIRS DNB Data
Carrying the VIIRS with 22 detection channels, the S‑NPP and NOAA‑20 satellites

launched in October 2011 and November 2017, respectively, can achieve image detection
with a bandwidth of 0.412~12.01µm. Among these detection channels, the day and night
band (DNB) ranges from 0.4~0.9µm, originally designed for all‑weather cloud detection
from day to night. With a solar diffuser, the VIIRS DNB can be radiometric calibrated near
the terminator onboard. The spatial resolution of VIIRS DNB is 750 m at the nadir. The
spatial resolution is relatively stable even at the swath edge owing to the on‑chip aggre‑
gation of the CCD detector. The radiance intensity range that the VIIRS DNB can observe
is from 3 × 10−9 to 0.02 W/(cm2·sr), which spans 7 magnitudes. To meet the required
illumination intensity range from the strongest direct sunlight in the day to the reflected
moonlight from a quarter moon at night, the VIIRS DNB adopts three gain stages ranging
from the high gain stage (HGS) to the medium gain stage (MGS) and the low gain stage
(LGS). The bit width of the HGS is 14, and it is 13 for the MGS and LGS. According to
the radiance change in the observed target area, the gain stage is automatically selected
by the onboard algorithm. While avoiding image saturation caused by strong sunlight
during the daytime, images with low illumination under the moonlight at night can be
observed. Overall, the VIIRS has the advantages of onboard calibration, large observation
dynamic range, restricted swath edge image distortion and high spatial coverage [43]. We
selected DNB images three months before the disaster and 15 days after the disaster for
power outage detection. Selecting the data of the first three months of the disaster could
ensure enough data and avoid errors caused by large changes in the accumulated ground
lighting infrastructure due to the long time span. DNB images in the 15 days after the dis‑
aster could fully reflect the trend of power outage recovery. After the above screening and
processing processes, there were a total of 54 VIIRS DNB images finally used for power
outage detection, including 29 NOAA‑20 and 25 S‑NPP images. The actual time range of
DNB images used is from 12 November 2020 to 8 March 2021.

The data source URL link is https://www.avl.class.noaa.gov/saa/products/welcome/
(available on 1 October 2022).

https://www.avl.class.noaa.gov/saa/products/welcome/
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2.3. AOD Data
In order to eliminate the influence of atmospheric conditions on power outage detec‑

tion, aerosol optical depth (AOD) was studied. AOD data were acquired through the sun
photometer applied by the AERONET ground station. According to the different process‑
ing levels, AOD data were divided into three levels: level 1.0, level 1.5 and level 2.0, which
corresponded to the original data of the sun photometer, the data after cloud removal and
preliminary correction and the data after complete correction, respectively. AOD data
from the AERONET station of the University of Houston in Harris County were selected,
whose longitude and latitude coordinates are (29.718◦Nand 95.342◦W). Since level 1.0 data
were seriously affected by clouds and level 2.0 data were unavailable, level 1.5 AOD data
from 15 November 2020 to 2 March 2021 were used [44,45].

The data sourceURL link is https://aeronet.gsfc.nasa.gov/ (available on 1October 2022).

2.4. Cloud Mask Data
This work used the SNPP VIIRS incarnation of the Cloud Properties continuity prod‑

uct (CLDPROP) to eliminate the influence of clouds on meteorological disaster detection.
CLDPROP was installed in the VIIRS, which could provide the possibility of each pixel
being disturbed by clouds in the target area. The probability was divided into four levels:
confident cloudy “0”, probably cloudy “1”, probably clear “2” and confident clear “3”. To
synchronise with VIIRS DNB night‑time images, this work applied CLDPROP products
provided by the VIIRS on S‑NPP and NOAA‑20. Data and time of CLDPROP were also
synchronised with the DNB satellite images [46].

Thedata sourceURL link is https://ladsweb.modaps.eosdis.nasa.gov/search/ (available
on 1 October 2022).

2.5. Surface Reflectance Data
The surface reflectance of the target areawas required to calculate the straymoonlight

reflected into theVIIRS sensor. MOD09A1 surface reflectance product observed byMODIS
was selected. This product is level 2 data. After atmospheric correction, it could provide
8‑day average surface reflectancewith 1 km spatial resolution. Surface reflectance data cor‑
responding to the coordinate of Harris County and the study date were used. MOD09A1
contains a total of 7 band channels, and the surface reflectance data of 1 (620~670 nm),
2 (841~876 nm) and 4 (545~565 nm) channels that overlapped with the band range of DNB
(500~900 nm) were selected [47].

The data source URL link is https://ladsweb.modaps.eosdis.nasa.gov/search/ (avail‑
able on 1 October 2022).

2.6. Outages Data
Power outage data provided by Center Point Energy (CPE) were selected to verify the

result from established data. As the major power supplier in Harris county, CPE tracked
1.95 million users in Harris County and could provide an hourly outage percentage dur‑
ing the disaster. Since the number of users occupies the main part of Harris County, it
could embody the power outages caused by disasters. There were only sporadic small‑
scale power outages in Harris County before the disaster, which had little impact on the
whole. Power outage data from 9 February 2021 to 10 March 2021, near the disaster, were
mainly studied. The data source URL link is https://poweroutage.us/ (available on 1 Jan‑
uary 2023), and the historical data can be obtained by contacting customer service.

2.7. MODTRAN
The atmospheric transmittance was calculated using MODTRAN 5.3 software [48].

As the professional software used to analyse the atmospheric radiation transmission char‑
acteristic, MODTRAN can calculate the atmospheric radiation transmittance in the range
of 0.2~100 µm wavebands. This study calculated atmospheric transmittance in the DNB
(0.5~0.9 µm) band according to the given AOD atmospheric parameters.

https://aeronet.gsfc.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://poweroutage.us/
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2.8. MT2009
Miller and Turner established the MT2009 model to calculate the lunar irradiance at

the top of atmosphere (TOA), which can be further utilised to eliminate stray lunar light in
DNB images [34]. MT2009 calculates the irradiance spectral distributionwith 1 nm spectral
resolution in the range of 0.3–1.2 µm based on lunar surface albedo, the sun–moon–earth
geometric relationship and lunar phase angle for the given date and time. Lunar stray light
radiance at TOA can be acquired byMT2009 irradiance spectral and DNB satellite spectral
response function convolution [49].

3. Methodology
The PODMwas established, as shown in Figure 2. After the event, ROI and date range

selection, the following steps occurred which are described below.
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3.1. Low‑Quality DNB Satellite Image Screening
It was necessary to screen out some low‑quality satellite images to ensure the quality

of the final results. The data quality of the target area at the scanning image edge was
restricted. We screened out DNB images with a satellite zenith angle greater than 60◦ to
eliminate the influence of deformed pixels at the scanning edge [50]. CLDPROP synchro‑
nised with DNB images was used to restrain the influence of clouds. DNB satellite images
with more than 10% of absolute cloud pixels in the Harris County shapefile were removed.
Figure 3 shows the distribution diagram of the cloudmask in the DNB satellite image data.
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3.2. Outlier Removing
Severe meteorological and environmental variations in the target area before and af‑

ter the disaster will induce many outliers in the DNB satellite image, affecting the accu‑
racy of power outage detection. An iterative method was used to achieve the removal of
outliers. The maximum and minimum radiance values in Harris county were removed
simultaneously until the standard deviation difference in pixel radiance points before and
after removal was less than 1%. This method was proposed by Baugh and first applied to
the outlier removal of DMSP‑OLS images [51]. Then, it was also applied to the VIIRS DNB
satellite image by Elvidge [38] and Yuan [52] to realise outlier removal.

3.3. Average Radiance Calculation
After removing outliers, we calculated the average radiance of DNB images in Harris

County as shown in Formula (1).

RDNB−ROI =

∑
N

RDNB

N
(1)

where RDNB is the radiance value of each pixel inside the shapefile of the target area, and
N is the total amount of all of the pixels in the shapefile.

3.4. Atmospheric Correction
During the transmission of reflected lunar light and night‑time city light in the atmo‑

sphere, it will be scattered and absorbed by gas molecules, aerosols and water particles.
Therefore, it was necessary to carry out an atmospheric correction to obtain target radi‑
ance more accurately. Many parameters affect atmospheric transmittance, including CO2
and water vapour concentration, among which the key variable is AOD [53]. AOD data
in 1020 nm, 870 nm, 675 nm and 440 nm bands during the study disaster period were
used [44]. The AOD data of four bands at the imaging time of the DNB images at night
were obtained using linear interpolation between data at the nearest morning and dusk
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time [54]. The AOD data of 550 nm required byMODTRANwere acquired by least square
regression of AOD data in 4 bands [55]. With the lunar and satellite zenith angles pro‑
vided by the VIIRS DNB images, MODTRAN was applied to obtain the upwelling and
downwelling atmospheric transmittance.

3.5. Lunar Correction
The stray lunar light had a serious impact on the DNB satellite image. The lunar cor‑

rection was realised by establishing a nocturnal atmospheric radiation model, as shown
in Figure 4. Lunar stray light is mainly sunlight reflected from the lunar surface to the
VIIRS DNB sensor. In order to calculate the stray lunar light, it was necessary to consider
the effects of the earth’s surface reflectance, atmospheric transmittance, lunar phase an‑
gle, the spectral response curve of the VIIRS DNB sensor and the geometric path of the
sun/moon/earth. The MT2009 model proposed by Miller and Turner et al., as shown in
Formula (2), was used to calculate the lunar irradiance TOA [49].

ETOA =

∫
λDNB

IMT(λ)SRFDNB(λ)dλ∫
λDNB

SRFDNB(λ)dλ
(2)

where ETOA is the lunar irradiance at TOA obtained by convolution of the DNB sensor
spectral response function and lunar radiation spectral response function, IMT(λ) is the
spectral distribution function of lunar irradiance calculated by the MT2009 model, λDNB
is the VIIRSDNB sensor spectral range, which is 0.5~0.9 µm, and SRFDNB(λ) is the spectral
response function of the VIIRS DNB sensor. Based on the lunar radiance model proposed
by Cao [34], Formula (3) is established to calculate the stray lunar radiance using the VIIRS
DNB sensor Lm. The influence of atmospheric transmittance is added to the model.

Lm =
ETOA

π
· ρDNB · T↓ · T↑ · cos(θm) (3)

where θm is the zenith angle of themoon,which can be obtained from theVIIRSDNB image.
T↑ and T↓ are upwelling and downwelling atmospheric transmittance, respectively.
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ρsur f ace is the surface reflectance weighted with DNB spectral response function, cal‑
culated as (4).

ρDNB =

∫
Band1 ρ1 · SRFDNB(λ) · dλ +

∫
Band2 ρ2 · SRFDNB(λ) · dλ+

∫
Band4 ρ4 · SRFDNB(λ) · dλ∫

Band1,2,4 SRFDNB(λ) · dλ
(4)

where ρ2 and ρ4 were the average values of surface reflectance of channel 1 (620~670 nm),
2 (841~876 nm) and 4 (545~565 nm) in MOD09A1. The correspondence between the se‑
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lected MOD09A1 surface reflectance area and the VIIRS DNB image is shown and illus‑
trated in Figure 5.
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Figure 5. MOD09A1 surface reflectance average area coordinate correspondence. (a) Night time
image of VIIRSDNB inHarris County; (b)MOD09A1 surface reflectance of 8‑day 1‑, 2‑ and 4‑channel
stacked RGB images. The corresponding relationship is as follows: A. (−95.97,29.80) to (1653,0);
B. (−94.91,30.00) to (1873,0); C. (−95.97,29.50) to (1553,120); D. (−94.91,29.50) to (1774,120).

The average radiance ofHarrisCountywith lunar correctionwas calculated as Formula (5).
The influence of BRDF and path radiation was ignored. Since the satellite zenith angle of
the DNB images used was less than 60, the variance in artificial light source caused by
anisotropy was relatively stable [56,57]. So, the anisotropic characteristic of artificial light
in the ROI area was ignored.

RNTL =
RDNB−ROI − Lm

T↑
(5)

3.6. Power Outage Detection
The power outage rate Ratiooutages in the affected area was calculated as Formula (6).

Ratiooutages =
RNTL−post

RNTL−pre−mean
× 100% (6)

where RNTL−post is the daily average radiance in the Harris County shapefile with atmo‑
spheric and lunar correction being post‑disaster. RNTL−pre−mean is the average value of
RNTL in the three months before the disaster.

3.7. Bias Calculation
Finally, the bias of the detected power outage ratewas estimated as shown in Formula (7).

Bias =|Outagescal − OutagesSur|×100% (7)

where OutagesSur is the surveyed power outage percentage. OutagesCal is the calculated
power outage rate based on VIIRS DNB images.
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3.8. Power Outage Spatial Distribution Detection
A POSDM can guide post‑disaster reconstruction work intuitively. A method to de‑

tect the spatial distribution of power outages based on VIIRS DNB images was introduced.
However, the difficulty was that the longitude and latitude positions of the pixel points in
each VIIRS DNB image did not correspond, so the arithmetic operation could not be per‑
formed directly. This paper solves this problem according to the steps shown in Figure 6.
It is generally divided into five steps: (1) Select the region of interest (ROI), and determine
the latitude and longitude range for spatial detection. (2) Stack the VIIRS DNB satellite
images before the disaster. (3) Extract the longitude and latitude of each pixel in the ROI
of the post‑disaster VIIRS DNB images in sequence. Calculate the average radiance of the
stacked image within the set distance of the corresponding extracted post‑disaster points
so that random noise, such as atmospheric variation, stray lunar light, biomass burning
and lightning, can be restrained. Take the average result as the value of each pixel, and
acquire the averaged VIIRS DNB image before the disaster. (4) Calculate the radiance dif‑
ference in the corresponding pixel points before and after the disaster. Additionally, take
the value greater than zero to obtain the difference map. Set the pixel value smaller than
zero in the difference calculation as zero to reduce the interference to power failure detec‑
tion. (5) Adjust the dynamic display range of the difference map, and obtain the POSDM.
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Figure 6. POSDM flow chart.

According to Figure 6, the process of drawing the Harris County POSDM is shown
in Figure 7. First, set the ROI centre as (−95.5◦W, 29.86◦N) and the longitude and lati‑
tude ranges as 0.75◦. Then, stack 41 VIIRS DNB satellite images containing ROI before
the disaster. In order to ensure the integrity of ROI data, the longitude and latitude range
of the image margin must be appropriately increased before stacking. According to the
longitude and latitude position of each pixel in the post‑disaster image, calculate the aver‑
age value of all pixels within 0.001◦ in longitude and latitude in the stacked image at the
corresponding coordinates to obtain the averaged image before the disaster. Acquire the
difference map by subtracting the values of the pixel points at the corresponding positions
of the averaged image before the disaster and the daily image after the disaster. Finally,
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set the display range of the difference map to 1× 10−7(W× sr−1 × cm−2), and acquire the
POSDM. The greater the difference in the map, the more severe the power failure caused
by meteorological disasters.
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Figure 7. The process of drawing the POSDM. Ways to make (a) stacked image, (b) averaged image
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4. Results and Discussion
4.1. Outlier Discussion

The number of outliers removed in each VIIRS DNB image according to the above
method is shown in Figure 8. The blue dotted line corresponds to the date of the meteo‑
rological disaster. The number of outliers increased sharply after the occurrence of meteo‑
rology and then showed a downward trend.
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A total of six groups of DNB images before and after the disaster were selected for
the research to study the impact of meteorological disasters on outliers. The numbers and
values of outliers are shown in Table 1.

Table 1. Summary table of outliers removed in six VIIRS DNB images before and after the disaster.

Date
(UTC)

Time
(UTC)

Outliers’
Number

Min. Outlier Range
(W·cm−2·sr−1)

Max. Outlier Range
(W·cm−2·sr−1)

16 January 2021 07:34:18 2 6.48 × 10−10 5.52 × 10−7
16 January 2021 08:25:30 0 / /
31 January 2021 07:56:18 0 / /
16 February 2021 07:55:06 42 5.45 × 10−10~6.45 × 10−10 6.27 × 10−7~2.94 × 10−5
19 February 2021 08:39:19 28 4.35 × 10−10~6.29 × 10−10 5.96 × 10−7~4.28 × 10−6
20 February 2021 08:21:50 24 3.24 × 10−10~4.20 × 10−10 5.39 × 10−7~2.32 × 10−6

Due to the drastic environmental variation in the atmosphere and surface caused by
the disaster, the number of outliers increased sharply. With the recovery of the affected
environment, the number of outliers gradually decreased after the disaster. In the DNB
image on 16 February 2021, the first day after the disaster, there were 42 outliers detected
in total. The minimum outliers are within 10−10 orders of magnitude, and the maximum
outliers arewithin the range of 10−7~10−5. Themagnitude of themaximumoutliers differs
from the average value of 10−8, so outliers will seriously affect the accuracy of power out‑
age detection. Removing outliers from DNB images is of great significance to the accuracy
of meteorological disaster detection.

The maximum and minimum outliers’ positions in the DNB images are shown in
Figure 9. The cyan plus sign in the figure represents the minimum outliers, and the yel‑
low plus sign represents the maximum outliers. Except for the 31 January 2021 satellite
image, the minimum outliers of each image are mainly located in the northwest corner
of Harris County. It may be that the human activities in this area are sparse, the light
intensity at night is low and the signal to noise ratio of the data measured by the DNB
sensor in this area is low, leading to the generation of minimum outliers. The maximum
outliers are mainly distributed in the eastern part of Harris County. After the disaster, the
number of maximum outliers in the image increased, partly due to the frequent human ac‑
tivities at night and the high‑intensity urban lights at night. After meteorological disasters,
the atmospheric and surface environment changed dramatically, increasing the number of
maximum outliers in this area. Although the number of outliers is negligible compared
to the total number of pixels in the target area, their value differs greatly from the normal
value range, which has a certain impact on the calculation result of the average radiance.
Therefore, each image’s maximum and minimum outliers should be removed to obtain an
accurate result.

4.2. Harris County Outages Degree
According to the power outage detection map set up in the previous section, power

outage detection was carried out in the target area. The schematic diagram of radiance
results is shown in Figure 10a. The solid black line in Figure 10a shows the average value
of night image radiance within the target profile. The solid purple line indicates the stray
lunar radiance. The solid blue line is the average radiance curve after lunar correction.
The green line corresponds to the average radiance after lunar and atmospheric correction,
that is, the final result of the PODM radiance. The solid red line in Figure 10a shows the
average value of night image radiancewithin the target profile. The change trends of black,
green and blue curves are the same. They all show a significant attenuation trend after
meteorological disasters, which can effectively reflect the power outage in the disaster area.
A 550 nmAOD data curve obtained from 4‑band AOD data of the ground station is shown
in Figure 10b. The changing trend of 550 nm AOD data is consistent with the change in
radiance before and after atmospheric correction in the study area. The lunar phase angle
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and lunar zenith angle obtained from the DNB dataset are shown in Figure 10c. The solid
yellow line is the lunar phase angle, and the solid light blue line indicates the lunar zenith
angle. The changing trend of the lunar phase angle is the same as that of the lunar zenith
angle. With the decrease in the two values, the amount of lunar stray light becomes larger,
which is consistent with the actual change regularity.
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observation dates are as follows: (a) 15 January 2021; (b) 16 January 2021; (c) 31 January 2021; (d) 16
February 2021; (e) 19 February 2021; (f) 20 February 2021.

The average radiance values of the six individual VIIRS DNB images in the target
area closest to the disaster are summarised in Table 2. The table includes three pre‑disaster
and three post‑disaster data. The first row of the table shows the relative time difference
between the observation time of each image and the occurrence time of meteorological
disasters in days. Corrected rad., Outages Cal. and Outages Sur. in the first column of
the table represent the atmospheric corrected ROI mean radiance, the PODM calculated
outage percentage and the surveyed outage percentage, respectively. The percentage of
power outages calculated by PODM one day after the disaster was 28.48%. Additionally,
the percentage of residents’ power outages one day after the disaster was 17.34%, accord‑
ing to the data provided by the power company. The deviation was 11.14% according
to Formula (1).

Table 2. Summary table of six VIIRSDNB image results from the PODMbefore and after the disaster.

Relative Time Point
of Disaster

Prior
30 Days

Prior
30 Days

Prior
15 Days

Post
1 Day

Post
4 Days

Post
5 Days

Date (UTC) 16 January 2021 16 January 2021 31 January 2021 16 February 2021 19 February 2021 20 February 2021
Time (UTC) 07:34:18 08:25:30 07:56:18 07:55:06 08:39:19 08:21:50
Corrected rad.

(10−8·W·sr−1·cm−2) 4.20692 4.45718 3.75163 3.16993 4.15621 3.71420

Outages Cal. (%) \ \ \ 28.48% \ \
Outages Sur. (%) \ \ \ 17.34% 0.10% 0.01%
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Figure 10. (a) The PODM results from the plot, (b) AOD (550 nm) data derived from the AERONET
station AOD data of the University of Houston and (c) lunar phase angle and lunar zenith angle
obtained fromVIIRSDNB dataset. All of the above plots range from threemonths before the disaster
to 15 days after.

4.3. Outage Spatial Distribution Analyses
In Figure 11, in addition to the serious power outage in the urban residential areas,

the roads connecting the city centre also suffered serious power outages. There were four
roads seriously affected, including Katy Fwy, Northwest Fwy, Tomball Pkwy and North
Fwy. There were two main reasons for road power failure. (1) The street lamps were
extinguished due to line damage. (2) Road traffic was detained by bad weather, so the
number of vehicles running at night was reduced and, as a result, the illumination from
vehicles was reduced. However, the power outage on the road was not counted by the
power supply company, which also explainswhy the power outage detected by the PODM
was higher than the referenced surveyed power outage by the local company. However,
with the current spatial resolution (750 m), it was impossible to exclude the power outage
of roads using the current methods.
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Figure 11. (a) Power outage spatial distribution map. Radiance difference between average VIIRS
DNB images before the disaster (12th November 2020–31 January 2021, contains 19 NOAA‑20 and 22
S‑NPPVIIRSDNB images) and daily VIIRSDNB image post‑disaster (16th February 2022, 1‑day post‑
disaster). (b) ArcGIS Pro draws a distribution map of main roads and urban areas in Harris County.
Where “休斯顿”, “伍德兰”, and “帕萨迪纳” stands for “Houston”, “Woodlands”, and “Pasadena”.

5. Conclusions
This paper takes thewinter stormUri inHarris County, Texas, on February 15th, 2021,

as the research object. Affected by the disaster, the urban power facilities were damaged.
By analysing the low‑illuminance remote sensing images at night, power outage detection
in the disaster area could be realised. A meteorological disaster spatiotemporal detection
method based on VIIRS DNB night‑time images was proposed. The power outage de‑
gree and spatial detection were realised by building the power outage detection model
(PODM) and drawing the power outage spatial distribution map (POSDM). The PODM
was established as follows. First, the low‑quality images with the target area having a
large satellite zenith angle (SZA) or being affected by clouds were filtered. Second, out‑
liers in the DNB images were detected and removed. Then, atmospheric and lunar correc‑
tion were achieved based on the atmospheric radiation transfer model at night. Finally,
the difference in radiance before and post‑disaster were analysed. By iteratively eliminat‑
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ing the maximum and minimum values in the image until the standard deviation change
was less than 1%, a total of 42 outliers were eliminated after the disaster, and the power
outage detection accuracy was improved. The PODM calculated power outage one day
after the disaster was 28.48%, and the power outage truth rate was 17.34%, surveyed by
the power company, so the deviation was 11.14%. This can effectively reflect the extent of
the power outages and realise the degree of detection of meteorological disasters. Spatial
detection of meteorological disasters was realised by drawing the POSDM. The POSDM
shows the difference between the VIIRS DNB images before and after the disaster through
two‑dimensional images. The greater the difference in the POSDM, the more obvious the
change in urban light intensity at night, and the resulting power outages are serious. Ac‑
cording to the POSDM detection, in addition to serious power outages in residential areas,
power outages on roads were also serious. However, road power outages generally re‑
ferred to the power outages of street lamps and a reduction in traffic flow. The power com‑
pany did not count road outages in their on‑site investigation, so this also explains why
the detection value of PODM is higher than the result surveyed by the power company.
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