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A Novel Anchor-Free Model With Salient Feature
Fusion Mechanism for Ship Detection in SAR Images

Yunlong Gao

Abstract—Ship detection in synthetic aperture radar (SAR) im-
ages has gained great attention in civil and military fields. Anchor-
based detection algorithms usually rely on preset candidate boxes,
and a large amount of anchor boxes with different sizes will result in
a large amount of computing resources being consumed. Recently,
anchor-free algorithms have found wide applications in ship de-
tection from SAR images. However, there are still some problems
which limit the ship detection performance to a certain extent,
such as how to effectively fuse salient features and unbalanced
distribution of positive samples. In order to tackle the above prob-
lems, we propose a novel anchor-free model named salient feature
fusion (SFF)-YOLOX with SFF mechanism. First, we redesign the
network of YOLOX to obtain the best balance between detection
accuracy and running speed. Second, a saliency region extraction
module is introduced to generate the corresponding salient guide
map of the input image. Besides, the SFF mechanism is proposed
by fusing deep features and salient features to better enhance the
discrimination of the multiscale targets. Finally, we improve the
SimOTA mechanism by combining the predicted intersection over
union (IoUs) and the anchor IoUs to the ground truth bounding
boxes to instruct label assignment. We evaluate the detection ac-
curacy and running speed of SFF-YOLOX on the public dataset
single shot detector and test the generalization ability on HRSID
and two complex large-scale SAR images, and the experimental
results prove the model’s effectiveness for ship detection task in
SAR images.

Index Terms—Label assignment, salient feature fusion (SFF),
ship detection, synthetic aperture radar (SAR), YOLOX.

I. INTRODUCTION

YNTHETIC aperture radar (SAR) [1] is an active mi-
S crowave remote sensing imaging sensor, which can obtain
massive high-resolution and wide-scale remote sensing images.
With the continuous improvement of SAR imaging technology,
it has been widely applied in all aspects of social and economic
life, such as maritime monitoring, traffic control, natural disaster
assessment, and environment management [2], [3], [4], [5], [6].
Among these applications, automatic ship detection in remote
sensing images has attracted more and more interests because
of its important practical value for both civil and military fields
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[7]1, [8], [9], [10]. Compared with optical sensors, SAR has
the all-day and all-weather surveillance capabilities, making it
possible to continuously monitor targets at sea. In recent years,
ship detection in SAR images has attracted the attention of
scholars, and many investigations that relate to this field have
been carried out. Therefore, it is very significant to study the
task of ship detection in SAR images.

In the field of object detection in SAR images, extensive
studies have been proposed over the years [11], [12], [13], [14],
which can be mainly divided into two categories: traditional
algorithms and deep-learning algorithms. Traditional algorithms
are usually based on statistical distribution analysis of image
pixels, and most of that are threshold-based methods [15], [16],
and these methods calculate the threshold which distinguishes
the ship targets from the backgrounds. The constant false alarm
rate (CFAR) [17] is the most classic threshold-based method and
it is widely applied in ship detection system nowadays. There
are kinds of variants of CFAR algorithm; however, CFAR-based
methods require high computational complexity to statically
model the ship targets and sea clutters, which is time-consuming
in the real-time ship detection [18], [19]. Besides, different
shapes, directions of targets, and complex scenarios also limit to
instruct a unified statistical model; thus, the generalization abil-
ity of these methods is unstable, and the detection performance
is barely satisfactory.

Compared with traditional algorithms, deep-learning algo-
rithms are data-driven and do not require prior knowledge,
such as the preset threshold and the distributions of sea clut-
ters, which make them more convenient and feasible to be
applied in ship detection systems. Nowadays, state-of-the-art
deep-learning-based ship detection algorithms consist of one-
stage and two-stage detectors. Generally speaking, the two-stage
detector is a coarse-to-fine architecture, which mainly focuses
on the improvement of detection accuracy, however, they may
ignore the importance of running speed. To solve the problem
of low detection accuracy, He et al. [20] studied a new approach
which applies the Gabor filter to the principle of selective search
in fast R-CNN, increasing the number of positive samples in
region proposal. Wang et al. [21] utilized the maximum stability
extremal region method as the threshold generating strategy to
reassess the proposals with high scores in the second stage of
faster R-CNN, which greatly reduce the detection errors. Ke
et al. [22] boosted the performance of faster R-CNN by using
the deformable convolution blocks to better model the geometric
transformation of shape changeable ships, achieving a 2.02%
accuracy improvement than the baseline network. Sun et al. [23]
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proposed a two-step detection algorithm based on the coarse-to-
fine architecture, which combines the gravitational field and im-
proved mean dichotomy methods to complete precise detection.
Kumar and Zhang [24] provided an anchor box optimization
method and uses ResNet-50 as the backbone of faster R-CNN to
obtain compatible experimental results. The two-stage detectors
overcome the shortcomings of traditional algorithms, and realize
the automation of ship detection at the same time.

The one-stage detectors pay more attention on how to
effectively balance the detection accuracy and the running
speed. Up to now, there have been some mainstream one-stage
detectors which have been applied in real-time detection
tasks. Single shot detector (SSD) [25] performs predictions
on multiscale feature maps, which has been the most popular
strategy to complete multiscale detection nowadays, and the
improvements increase the accuracy of real-time detection.
In the meantime, classical YOLO series [26], [27], [28] also
achieve a high level in object detection, and the latest YOLOv7
[29] outperforms mainstream real-time detectors in both speed
and accuracy on MS COCO [30] dataset. RetinaNet [31] designs
the focal loss to tackle the one-stage target detection scenario
in which there is an extreme imbalance of the foreground and
the background classes during model training, and it is the first
time to realize the comprehensive transcendence of one-stage
detectors over two-stage detectors. As a matter of fact, these
one-stage detectors would be taken as the first choice for
real-time detection applications since increasing the running
speed is as important as improving the detection accuracy and
becomes an important metric of the detection model.

Furthermore, according to whether the anchors are used,
deep-learning methods for object detection could be divided
into the anchor-based algorithms and the anchor-free algorithms.
Anchor-based algorithms first tile a large number of preset
anchors on the input image, then predict the category and refine
the coordinates of these anchors by one or several times, finally
output these refined anchors as detection results. However, these
algorithms have some shortcomings. First, all hyperparameters
of anchors are preset as prior knowledge, if the detection task
changes, the hyperparameters needs to be reset, so the gener-
alization ability is usually low. Second, most candidate boxes
are prone to contain backgrounds, only some candidate boxes
involve ship targets, which brings about the extremely imbalance
of positive and negative samples. Finally, dense candidate boxes
are redundant, thereby consuming lots of computing resources.
Recently, anchor-free algorithms have become popular because
of the proposal of feature pyramid networks (FPNs) [32] and
focal loss. Anchor-free algorithms consist of keypoint-based and
center-based algorithms. The keypoint-based algorithms, such
as CenterNet [33] and CornerNet [34], first detect the keypoints
and then combine the keypoints for object detection, while the
center-based algorithms, such as adaptive training sample selec-
tion [35] and fully convolutional one-stage object detection [36],
directly detect the center point and predict the four distances to
the target boundary. These anchor-free algorithms abandon or
bypass the concept of anchor, and use a more streamlined way to
determine positive and negative samples, which have achieved
similar performance with anchor-based algorithms.
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Despite the success of deep-learning-based algorithms in
ship detection, there are still some problems which need to
be coped with: 1) features still need to be effectively fused
to better enhance the discrimination of the multiscale targets,
and 2) imbalance positive and negative samples and how to
define positive and negative training samples have a signifi-
cant impact on the ship detection performance. In this article,
we propose a novel anchor-free model named salient feature
fusion (SFF)-YOLOX with SFF mechanism for accurate ship
detection in SAR images. First, we redesign the network of
anchor-free algorithm YOLOX [37] for the consideration of high
detection accuracy and high running speed. Secon, a saliency
region extraction (SRE) module is proposed to generate the
corresponding salient guide map of the input image, and the
backbone of SFF-YOLOX consists of two parallel pipelines.
The upstream pipeline extracts multiscale deep features from the
input images, while the downstream pipeline extracts multiscale
salient features from the corresponding salient guide maps by
SRE. Besides, we propose the SFF mechanism to perform mul-
tiscale feature fusion operations of the two parallel pipelines,
and we utilize the state-of-the-art BiFPN [38] with the input of
three-level multiscale feature maps to further fuse the features.
Finally, we improve the SimOTA mechanism [37] by introducing
the anchor IoUs to the ground truth bounding boxes to perform
label assignment. The comparison experiments are conducted
on public dataset, which prove that the proposed SFF-YOLOX
outperforms the mainstream deep-learning-based algorithms.

The main contributions of this article are as follows:

1) For the consideration of both high detection accuracy and
high running speed in ship detection, we redesign the
network of the classic anchor-free algorithm YOLOX.

2) We introduce an SRE module to generate the salient
guide map and two parallel pipelines to extract multiscale
features.

3) We propose an SFF module based on attention mechanism
to obtain the fused features by deep feature maps and
salient feature maps, which highlight the salient regions
of ship targets.

4) We improve the SimOTA mechanism by introducing the
anchor IoUs, which will shield the adverse effect of the in-
accurate predictions of SFF—~YOLOX in the early stage of
training for the tasks of object classification and bounding
box regression.

II. RELATED WORKS

Due to the improvement brought by deep-learning-based al-
gorithms, there have been more and more studies in which the
deep networks are served as the solutions in the field of ship
detection in SAR images. Miao et al. [39] proposed an improved
lightweight RetinaNet for ship detection in SAR images by
replacing the shallow convolutional layers of the backbone into
ghost modules and reducing the number of the deep convolu-
tional layers, which can significantly decrease the floating-point
operations while maintaining the model’s robustness and the
ability to detect ship targets. Yang et al. [40] designed a one-stage
ship detector with strong robustness against scale changes and
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various interferences and introduces a coordinate attention mod-
ule to obtain more representative semantic features to accurately
locate and distinguish ship object. Li et al. [41] proposed an
improved YOLOvS SAR image ship target detection network
based on the lightweight ideas of GhostNet and DWConv, and
the proposed model with only one-half of original YOLOV5’s
model size do not have much loss in mean average precision
and recall metrics. Fu et al. [42] designed a detection method
named feature balancing and refinement network to eliminate
the effect of anchors by adopting a general anchor-free strategy
that directly learns the encoded bounding boxes. Guo et al.
[43] improved the CenterNet by introducing a feature pyramids
fusion module and a head enhancement module to reach a high
accuracy for small ship detection under complex background.
Min and Liu [44] improved the performance of SSD algorithm
by redesigning the shallow network structure and enlarging the
receptive field of features, which raises the accuracy about 7%
while reducing the model’s size. For the cases of overcoming
fewer training samples, Rai et al. [45] proposed a semisupervised
segmentation algorithm for ship SAR images, which requires
only a few labeled samples to outperform the current mainstream
semisupervised and supervised models. Chen et al. [46] devised
a semisupervised learning strategy, which makes full use of
unlabeled ship data and iteratively outputs higher quality labeled
samples, and the comprehensive results shows the superiority of
the proposed model.

Detectors tend to detect large and medium ship objects, and
the feature representation of small ships or weak ships still needs
further improvement. A lot of tricks are applied to enhance the
feature representation, and fusing salient feature has proved to
be the most effective trick. Li et al. [47] exploited the channel
attention and spatial attention mechanism to enable the FPN
to learn semantic and multilevel features, and the results for
multiscale ships are superior to the existing algorithms. Zhao
etal. [48] proposed an orientation-aware feature fusion network,
which fuses the global and local information in feature extraction
stage. Zhang et al. [49] proposed a multilevel feature fusion
module, which combines the location and semantic information
of different level features, and the proposed model achieves
a good detection performance in large-scale SAR images.
Wang and Chen [50] introduced an optimal window selection
mechanism by multiscale local contrast measure to distinguish
the similarity between the ship object and surrounding anchors.
Xie et al. [51] studied the fusion problem of two lightweight
models and proposed a novel end-to-end object detection frame-
work fused with a coordinate attention module and YOLOv5
detector, which show significant gains in both efficiency
and performance. Gao et al. [52] introduced an anchor-free
convolutional network with dense attention feature aggregation
mechanism by combining the multiscale features through dense
connections and iterative fusions, and the experimental results
demonstrate the effectiveness for multiscale ship detection.

Label assignment plays an important role in modern target
detection models and it samples positives and negatives while
training. Anchor-based detectors, like RetinaNet, preset anchors
of multiple scales and aspect ratios on each location and resort
to the intersection over union (IoU) for defining positive and
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negative samples among spatial-level and scale-level feature
maps. The positive samples are those anchors with greater
IoUs than the predefined threshold, while the negative samples
are those anchors with smaller IoUs than the threshold. There
are also some detection models, which utilize two thresholds,
one for positives and the other for negatives, those anchors
whose IoUs are between the two thresholds are ignored
during the training process. However, the strategies with
fixed threshold for label assignment do not take into account
the differences between objects due to their various shapes
and sizes. Anchor-free detectors, like YOLOX, sample a fixed
fraction of center area as positive candidates among spatial-level
feature maps, and select certain positives from candidates for
each object by scale constraints dynamically. SimOTA label
assignment strategy applied in YOLOX first determines the
parameter k for the number of positive samples of each object
by counting the prediction IoUs between predicted bounding
boxes and ground truth bounding boxes, and then calculates a
cost matrix in which the smaller the value is, the more suitable
for prediction of this anchor point, the k anchor points with the
smallest cost values are finally selected as positives for model
training. SimOTA completes the assignment for different scale
ship targets with different number of positive samples, and
the method succeeds in preventing the situation of assigning
the same number of positive samples for different targets in a
unified scenario in traditional label assignment strategies. In
this article, we try to improve the SimOTA by adding anchor
IoU to predicted IoU to calculate the threshold dynamically,
which could help for selecting more high-quality positives.

III. METHODOLOGY

In this section, we present the overall pipeline of SFF—
YOLOX at first, and then, the improvements which contribute
to the performance of ship detection will be introduced, respec-
tively.

A. Overall Pipeline of SFF-YOLOX

Fig. 1 gives the overall pipeline of the proposed SFF—YOLOX.
The model takes the SAR images as input with resized scale
of 640 x 640. Then, the proposed SRE module is utilized to
perform salient region extraction operation by which we can
obtain corresponding salient guide map of the original SAR
image, we call the SAR image and its salient guide map by
salient pair. Next, we redesign the backbone of YOLOX by
adopting CSPDarknet [28] and Swin-Transformer (Swin-T) [53]
as two parallel pipelines, and the network extracts multiscale
deep feature maps and salient feature maps from salient pairs
with feature sizes of 80 x 80, 40 x 40, and 20 x 20. Besides,
we introduce an SFF module based on attention mechanism
to complete SFF operation, the module replaces the global
feature fusion, such as elementwise summation or concatenation
with selective feature fusion. Specifically, the spatial attention
is applied to multiscale salient feature maps to generate the
weighted descriptor map, which will be then projected to the
multiscale deep feature maps. In BiFPN module, we adjust the
number of input and output into three-level which accelerates
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Fig. . End-to-end pipeline of SFF-YOLOX.

the running speed while maintaining the performance of the
original BiFPN. Finally, the improved SimOTA is used as label
assignment to select more high-quality positives.

B. Saliency Region Extraction

SRE is one of the research hotspots in the field of computer
vision and image processing, whose goal is to quickly detect
the salient region in an image, and it has been widely utilized in
objectrecognition and object detection over the years. Therefore,
we introduce the SRE into the detection model as one of the
means to raise the detection accuracy.

The image consists of a low-frequency part and a high-
frequency part in the frequency domain. The low-frequency
part reflects the overall information of the image, such as the
texture of the object and the basic composition area, while high-
frequency part reflects the detailed information of the image,
such as the outline of the objects. SRE uses more information of
the low-frequency part. The proposed SRE algorithm analyzes
the image from the angle of frequency and divides the process
into five subtasks, including Gaussian smoothing, obtaining
six-scale pyramid features, converting the color space, saliency
calculation, and constructing salient guide map. The lightweight
SRE algorithm highlights the salient regions of ship targets
which will be used to optimize the feature representation.

Algorithm 1 presents the steps of the SRE algorithm in detail.
In SRE algorithm, the upsampling and downsampling operations
by the factor of 2 is used to obtain multiscale features, the /
and L represent the six-scale pyramid feature set in RGB and
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LAB space, and the feature sizes are 640 x 640, 320 x 320,
160 x 160, 80 x 80, 40 x 40, and 20 x 20, respectively. The
SF indicates the six-scale saliency feature set, which is used
for constructing salient guide map in step 5. It is worth noting
that the input SAR images follow a batch-normalization layer
to conform to the same distribution, which accelerates the rapid
convergence of the detection model.

C. Salient Feature Fusion

Feature fusion, the integration of features from different scales
or branches, is often implemented by simple operations like
elementwise summation or concatenation, but this might not
be the best choice. Recently, attention mechanism has been
widely introduced in multiscale feature fusion methods and
FPN structure due to the ability of dynamically capturing the
spatialwise and channelwise dependencies, providing new ideas
for solving the fusion problems.

As depicted in Fig. 2, SFF module can be divided into three
subnets, including feature encoding, feature refining, and feature
decoding. Feature encoding based on spatial attention mecha-
nism imposes average pooling and max pooling on the salient
feature map to generate two intermediate tensors with size of
1 x H x W, and then we complete the encoding operation via
elementwise summation. Feature refining is a network which is
made up by two fully connected layers (FC) and a sigmoid layer,
the number of the activation units for the first FC layer reduces to
1 x H x W/r, while for the second FC layer, it goes back to 1 x H
x W. The scaled weighted descriptor map s is then obtained by



GAO et al.: NOVEL ANCHOR-FREE MODEL WITH SALIENT FEATURE FUSION MECHANISM FOR SHIP DETECTION IN SAR IMAGES 9093

Deep feature map

Salient feature map

Feature decoding

Conv 3x3

!

Conv 1x1

I
I
I
1
MaxPool .
I
I
I

I
69 Feature encoding

)

Structure of SFF module.

Fig. 2.

Algorithm 1: SRE Algorithm.

Input: Resized SAR image X with size of 640 x 640;

Output: The salient guide map Y of the input;

STEP 1: Gaussian smoothing is applied to X to filter
high-frequency information: Xy = G3 « 3®X, where
G3s « 3 is a Gaussian operation with the kernel size of 3 x
3, and ® is a convolution operator;

STEP 2: Down-sample X; to obtain the six-scale pyramid
feature set I, I = {Iy, I1, Is, I3, 14, I5 };

STEP 3: Convert the color space from RGB to LAB, and
the feature set turn L, L = {Lo, L1, Lo, L3, L4, L5 };

STEP 4: for each i € [0,5] do

Calculate the mean image of each channel in LAB
space: T; = mean(L;);

Calculate the sum of Euclidean distance in three
channels, which represents the saliency feature of
the image: SF; = || T:-L; ||2, where || ¢ |2 is the L2
norm;

SF; = ReLU(SF;), where ReL.U is the leaky rectified
linear operator;

end for
STEP 5: Y5 = SF5;
for i =5;i>0; i—do

Y;.1 = ReLU [SF;.1+ up-sampling (¥;)];

end for
STEP 6: Salient guide map ¥ = Yj.

the refining network via the sigmoid operation. The tensor s
positions the salient area of the feature map and could be used
to optimize the multiscale deep features in the feature decoding
stage. The deep feature map is forward to the feature decoding
network and is first processed by convolution operations with
kernel size of 3 x 3 and 1 x 1, respectively, which is then
optimized by the map s via elementwise multiplication and
summation. These processes can be summarized as

K;1 = ReLU(Convsy3(X;)),i = 3,4,5 (1)
Kig = ReLU(Conlel(Kﬂ)),i = 3, 4, 5 (2)
P=Kp @& Kip®s,1=3,4,5 3

where Xi represents the multiscale deep features and Pi denotes
the fused feature maps of SFF module. Conv3 x 3 isthe 3 x 3
convolutional layer and Convl x 1 represents the convolutional
layer with kernel size of 1 x 1. @ represents elementwise sum-
mation and ® represents elementwise multiplication operation,
respectively.

D. Label Assignment

SimOTA utilizes the predicted IoUs to dynamically allocate
k positives for different targets. We improve the SimOTA mech-
anism by introducing the anchor IoUs as priors, and the process
of the improved SimOTA is summarized as follows:

1) Consistent to SimOTA, the improved SimOTA identifies
the positive sample candidate area based on each ground
truth and the distance to the center of the target.

2) Compute the predicted IoUs and the anchor IoUs of each
anchor in candidate area, and the final integrated loUs are
calculated via the summation operation.

3) Calculate the cost in candidate area.

4) Determine the number of positive samples k for
each ground truth by ceiling the sum of maximum
n_candidate_k (set to 10) integrated IoUs.

5) The k anchors with the lowest cost are served as positive
samples for the ground truth, while the others are deemed
negative.

6) Calculate the loss for training using the positive and neg-
ative samples.

IV. DATASET AND IMPLEMENTATION CONFIGURATIONS
A. Dataset and Evaluation Metrics

In this section, we first introduce three public datasets that are
used in this article to evaluate the proposed model SFF—YOLOX,
then we briefly explain some popular evaluation metrics, respec-
tively.

We use the SSD [54] which contains 43 819 ship images and
a total of 59 535 ship objects as the dataset to train and test the
models for the detection accuracy and the running speed, and
the HRSID [55] dataset including 5604 images and 16 951 ship
objects to evaluate the generalization ability of models. For the
detection task in complex and large-scale SAR images, we crop
image slices with 800 x 800 pixels under the overlapped ratio
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TABLE I
DETAILED INFORMATION OF DATASETS

Datasets Size (pixel) Ship number Imaging mode Polarization Image sensor Resolution (m)
SSD 256 x 256 59 535 URSIESQPST yvmmvarmy Gaofen-3/Sentinel-1 3-10
HRSID 800 x 800 16951 SISWST. yvmmvimy  SentinellTemaSARX) 115
Two complex large-scale 16746 24919 984 UFS/FS VV/HH/VH/HV Gaofen-3 3-10

SAR images 16374 x 21953

(O] ® ()

Fig. 3. Some image samples. The first row comes from SSD and the second
row comes from HRSID.

of 30% from two complex large-scale SAR images to further
evaluate the generalization ability of the proposed model. The
detailed information of the datasets are presented in Table I.
The images in the datasets are in gray-level image format which
is same with the single-channel bitmap optical images, and the
ship annotations are marked in a similar format to Pascal VOC,
and according to the distribution information of ship widths and
heights, the small ships belong to the targets whose scales do
not exceed 32 x 32 pixels, the medium ships whose scales are
between 32 x 32 and 96 x 96 pixels, and the large ships are the
targets whose scales exceed 96 x 96 pixels. Besides, we also
display some typical images of the datasets in Fig. 3, which
vividly demonstrate the difficulty of multiscale ship detection
and the importance of feature representation enhancement.

As for evaluation metrics, the precision, recall, F;, AP, and
FPS are selected to quantify the models, and the metrics are
defined as follows:

.. TP @
recision = ————
P TP + FP

recall = L (5)
TP + FN

where TP and FP express the amounts of true positives and false
positives, respectively, and FN is the number of false negatives

F1 _ o 5 Precision x recall ©)

precision + recall

1
AP:/ p(r)dr. 7
0

© @

Fig. 4. Data augmentation effect on the input image. (a) is the original input
image, and (b)—(d), respectively, present the RandomAffine, ColorJitter, and
RandomFlip operations.

B. Implementation Configurations

We design and implement the models on the base of the
framework of Pytorch and a computer with TITAN XP GPU.
All models utilize the GPU platform to train in batch size of
16. We first use the data augmentation mechanisms to enhance
the diversity of the SAR images, and then feed the transformed
images to the trained model. Fig. 4 illustrates the data augmen-
tation effect on the input image. The images of training datasets
are randomly processed by the data augmentation mechanisms,
where the ColorJitter operation changes the brightness of
the input images, and the RandomAffine and RandomFlip
operations change the geometry or position information of ship
targets. Once the geometry or position information changed, we
will update the corresponding annotation data. The parameter
r in SFF module is set to 8 and the parameter n_candidate_k
in improved SimOTA is set to 10. Label smoothing strategy is
used for classification to prevent SFF-YOLOX from overfitting.
We use the cosine annealing optimization method to adjust the
learning rate during training, and the momentum and weight
decay are, respectively, set to 0.9 and 0.0005. SFF—-YOLOX is
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input ships SRE FT

Fig. 5.

trained for 2000 iterations, and the IoU threshold for NMS is 0.5
and 0.75, respectively. The SSD dataset is randomly divided into
train, validation, and test subsets on a proportion of 7:2:1, while
the whole HRSID and two complex large-scale SAR images
are served as test sets to evaluate the generalization ability.

V. EXPERIMENTS

A. Performance of SRE

In this section, we verify the performance of SRE by com-
paring with six salient map extraction algorithms, and the al-
gorithms consist of frequency-tuned [56], histogram-based con-
trast (HC) [57], spectral residual [58], Itti [59], graph-regularized
[60], and context-aware [61]. We first examine the visual com-
parison between the algorithms. We select four typical sam-
ple images from the dataset, which have the characteristics of
complex noises, inshore backgrounds, strong backscatters, and
multiple ship targets, then we forward the images into the salient
map extraction modules and obtain the comparison results. As
we can see from Fig. 5, SRE reduces the adverse impact of noises
and backscatters to a certain extent, and distinguishes the ship
objects well from the background at the same time compared
with other algorithms, which will be beneficial for the following
extraction of features. Besides, we transform the processing
results of the algorithms in terms of heatmap and visualize the
heatmaps in Fig. 6. The heatmaps will help us to estimate which
part of the image has the most impact on the final results. As
it is seen in Fig. 6, salient regions are marked with different
degrees of red color according to the processing results. And
SRE perfectly reserves the whole information of ship objects, in
addition, more distinct outlines of the salient regions can also be
captured by our proposed SRE algorithm over the others which
will be validated effective for locating the ship targets.

To wvalidate the effectiveness of SRE in objective
metrics, the compared performance between YOLOX,
SFF-YOLOX without SRE module (DeSRE-SFF-YOLOX),

Visual comparison between salient map extraction algorithms. The rectangle with green color denotes the ships.

and SFF-YOLOX is presented in Table II. As we can conclude
from Table II that DeSRE-SFF-YOLOX slightly outmatches
the baseline YOLOX due to the other proposed improvements,
with the results of 2.11%, 0.85%, 0.02, and 0.21% growth
in precision, recall, F1, and AP5q, and 0.58%, 2.28%, 0.01,
and 0.09% growth in precision, recall, F;, and AP75. SRE
significantly lifts the performance up by almost 2% in overall
metrics versus DeSRE-SFF-YOLOX, by which the proposed
SFF-YOLOX enriches the feature representation of ship objects.
Besides, we also test the performance of the six salient map
extraction algorithms to further prove the effectiveness of SRE
in Table II. The SRE is replaced by other algorithms while we
keep other submodules in accordance with SFF—~YOLOX. From
Table II, introducing some salient map extraction algorithms to
detection network could achieve better results than the DeSRE—
SFF-YOLOX, which can help extract salient guide maps to opti-
mize the position locating. Furthermore, according to the statis-
tical results, our proposed SRE can be verified to perform better
than the other algorithms since the active areas predicted by these
algorithms are blurry or incomplete, resulting in errors of miss-
ing ships or false alarms. Overall, the experiment results demon-
strate that the SRE is conductive to SAR ship detection task.

B. Performance of Salient Feature Net

The experiments are also conducted to delve into the perfor-
mance of salient feature net with variant backbones. For select-
ing the backbone of salient feature net, we leverage some main-
stream networks, including ResNet-50, ResNet-101, ResNet-
152[62], CSPDarknet, and Swin-T to test our method. Generally
speaking, increasing the network depth reasonably can enrich
multiscale features, which helps to accelerate the detector’s
performance, however, this could also easily trigger the prob-
lems of gradient explosion and gradient dispersion. ResNet-X
is introduced to deal with the shortcomings by applying convo-
lutional residual units which use cross-layer connections, and
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Fig. 6.  Visualization of the heatmaps.

TABLE II
COMPARISON RESULTS WITH SALIENT MAP EXTRACTION ALGORITHMS

TIoU=0.5 IoU=0.75
Method
APso Precision Recall Fi AP7s Precision Recall Fi

YOLOX 91.56% 90.43% 85.26% 0.88 56.69% 65.44% 60.08% 0.63
DeSRE-SFF-YOLOX 91.77% 92.54% 88.11% 0.90 56.78% 66.02% 62.36% 0.64
SFF-YOLOX 95.41% 94.04% 90.53% 0.92 60.85% 66.94% 63.11% 0.65
DeSRE-SFF-YOLOX + FT 93.86% 92.68% 89.37% 0.91 59.28% 66.13% 62.54% 0.64
DeSRE-SFF-YOLOX + HC 94.24% 93.56% 90.06% 0.92 59.48% 66.50% 62.37% 0.64
DeSRE-SFF-YOLOX + SR 92.00% 90.62% 87.43% 0.89 57.24% 65.10% 61.49% 0.63
DeSRE-SFF-YOLOX + Itti 89.22% 88.42% 85.54% 0.87 52.15% 61.29% 56.12% 0.59
DeSRE-SFF-YOLOX + GR  90.35% 88.47% 86.13% 0.87 55.07% 63.86% 57.18% 0.60

DeSRE-SFF-YOLOX + CA  91.46% 91.72% 86.84% 0.89 56.93% 64.41% 60.58% 0.62
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TABLE III
PERFORMANCE OF SALIENT FEATURE NET WITH DIFFERENT BACKBONES

TIoU=0.5

IoU=0.75

Backbone of salient feature net

APso Precision Recall

Fi AP7s Precision Recall

ResNet-50 92.12% 91.79% 88.04%

ResNet-101 93.76% 92.87% 88.89%

ResNet-152 93.57% 92.85% 88.70%

CSPDarknet 94.19% 93.65% 90.44%

Swin-T 95.41% 94.04% 90.53%

0.90 55.80% 62.67% 60.14% 0.61

091 58.57% 63.35% 60.81% 0.62

091 58.32% 63.11% 60.39% 0.62

0.92 60.16% 65.48% 63.14% 0.64

0.92 60.85% 66.94% 63.11% 0.65

since then the design has been widely used in many structures.
CSPDarknet uses the split and merge strategy across stages
to achieve a richer gradient combination while reducing the
amount of computation. Swin-T does duty for a general-purpose
pipeline in image processing which produces more efficiency
by bounding self-attention operations to nonoverlapping local
windows while taking into the cross-window connections. The
comparison accuracies of backbones are listed in Table III. From
Table III, Swin-T exhibits the best results for AP5y, AP75, Fq,
precision, and recall. ResNet-50 has relatively fewer parameters
compared with others, which tends to miss the detections when
forward the features lack semantic information. The location
information of small-scale objects extracted by ResNet-101 or
ResNet-152 is seriously lost and the accuracy will turn saturated
or even decrease when increasing the network depth. CSPDark-
net achieves better results than the ResNet series, indicating the
enhancement of learning capability by CNNs. CNN network
has great advantages in extracting the basic image elements and
low-level features, while Swin-T pays more attention to how
these elements are related together to form an object, and how the
spatial relationship between objects forms a scene. The design of
deep feature net and salient feature net aims to combine the ad-
vantage of CSPDarknet and Swin-T, and the experiment results
prove that the combination can raise the detection performance.

C. Performance of SFF

In this part of experiments, we test the performance of SFF
module and make comparison to several methods which are
widely used to integrate the salient features to the deep CNN
features. The concatenation method integrates the features by
expanding dimensions which will augment the parameters and
spatial complexity of the detectors. The elementwise summation
method is easy to implement by adding tensors element by
element; however, the fusion also easily triggers the feature
disappearance in some cases which would ruin the distribution of
features. Fig. 7 displays the fusion results of the concatenation
method, the elementwise summation fusion method, and our
proposed SFF method, deep feature map, and salient feature
map are part of outputs of the two-stream network, respectively.
The concatenation method keeps both features by expanding
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Fig. 7. Feature fusion results.

dimensions, and the fused feature may disappear by the elemen-
twise summation fusion method, for example, the sum of two
features “—0.824” and “4-0.824” is “0.” The purpose of SFF
is to project the salient features to the multiscale deep feature,
enhancing the diversity of deep CNN features.

The comparison results of detection performance between
the feature fusion methods are presented in Table IV. We can
conclude that the SFF method achieves much better performance
than the other two methods since that the attention mechanism
is introduced to SFF to favor the assignment of available pro-
cessing resources to the most salient parts of the deep feature
maps, which can greatly help to highlight the objects of interest
from backgrounds. Besides, the ablation experiments for the pa-
rameter r is also conducted and the results are listed in Table I'V.
As we can see from the results, adding the parameter brings the
improvements in all metrics compared with condition when r =
1. And the condition when r is set to 8 obtains the best detection
precision. In a word, the performance benefits from the better
feature representation for ship targets.

D. Performance of BiFPN

In SFF-YOLOX, the applied BiFPN further integrates the
three-level feature maps {P3, P4, PS5}, producing balanced rich
semantic and spatial location information for the fused feature
maps. We design some relative experiments to test and compare
with common FPNs and list the results in Table V. FPN [27]



9098

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE IV
PERFORMANCE OF FEATURE FUSION METHODS

ToU=0.5 ToU=0.75
Feature fusion method

APso Precision Recall F, AP7s Precision Recall Fi
Concatenation 92.91% 92.32% 88.72% 0.90 57.60% 64.02% 59.63% 0.62
Element-wise summation 90.18% 88.39% 87.07% 0.88 55.23% 60.95% 56.48% 0.59

SFF (r=1) 93.53% 92.54% 88.98% 0.90 58.85% 64.11% 58.30% 0.61

SFF (r=2) 93.86% 93.25% 89.39% 0.91 58.96% 64.78% 59.43% 0.61

SFF (r=4) 94.47% 93.56% 89.84% 0.91 59.53% 65.66% 62.38% 0.63
SFF (r=38) 95.41% 94.04% 90.53% 0.92 60.85% 66.94% 63.11% 0.65
SFF (r=16) 94.93% 93.70% 89.81% 0.91 60.06% 66.49% 62.17% 0.64

TABLE V
PERFORMANCE OF FPNS
ToU=0.5 ToU=0.75
Method FPS
APso Precision Recall F APs Precision Recall Fi

SFF-YOLOX + FPN 93.78% 92.42% 87.06% 0.90 55.93% 63.57% 59.49% 0.61 68
SFF-YOLOX + PAN 94.50% 93.71% 87.62% 0.91 57.44% 63.87% 60.00% 0.62 65
SFF-YOLOX + five-level BiFPN 95.05% 93.85% 89.96% 0.92 60.02% 66.56% 63.09% 0.65 57
SFF-YOLOX + three -level BiFPN  95.41% 94.04% 90.53% 0.92 60.85% 66.94% 63.11% 0.65 62

constructs a top-down structure with lateral connections for gen-
erating high-level semantic feature maps at all scales. PAN [28]
increases the architecture hierarchy with accurate localization
features in lower layers by bottom-up path augmentation, which
enhances the fusion results between low-level and high-level
features. However, these works treat the features of different
resolutions with no distinction, ignoring the fact that they usually
contribute to the fused features unequally. Five-level BiFPN
is a simple but highly effective weighted bidirectional FPN,
which introduces learnable weights for attaching the importance
to different input features, repeatedly applying top-down and
bottom-up multiscale feature fusion. Based on the five-level
BiFPN, we adjust the number of input and output into three-
level, which accelerates the running speed while maintaining
the performance of the original BiFPN. As it is seen in Table V,
the original FPN is inherently subjected to the one-directional
feature information flow and therefore achieves the lowest accu-
racy, however, it has the fastest running speed. PAN has slightly
better accuracy than the FPN owing to adding a bottom-up
pathway on the top of the original FPN. Five-level BiFPN and
our BiFPN achieve the best performance for multiscale feature

fusion, but our BiFPN achieves better accuracy and efficiency
tradeoffs.

E. Performance of Improved SimOTA

For proving the validity of the improved SimOTA, we test the
performance difference between the original SimOTA and our
improved SimOTA. We design an ablation experiment to study
the ratios between the predicted IoUs and the anchor IoUs of
each anchor, and the ratios preset are 0:1, 1:0, 0.5:1, 1:0.5,
and 1: 1, respectively. The results are listed in Table VI, and we
can conclude from Table VI that simply adding them with the
ratio between the two IoUs being 1:1 could achieve the best per-
formance and the improvements happen in all metrics. Itis worth
noting that the improved SimOTA with the ratio of the anchor
IoUs being 0 would turn into the original SimOTA. Besides, we
give the training loss curve comparison of SFF—-YOLOX with the
original SimOTA and the improved SimOTA in Fig. 8, the loss
does not have too much difference for both label assignments
at the beginning of training due to the anchors dominating the
integrated IoUs, gradually, the improved SimOTA presents a
bigger decline in the training loss values verses the original
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TABLE VI
ABLATION STUDY ON BALANCING THE IoUS

IoU=0.5 IoU=0.75
Predicted ToUs Anchor ToUs
APso Precision Recall Fi AP7s Precision Recall Fi
0 1 86.98% 83.17% 84.03% 0.84 54.31% 59.31% 55.66% 0.57
1 0 93.77% 92.89% 88.34% 0.91 59.36% 62.21% 60.09% 0.61
0.5 1 92.98% 92.07% 87.26% 0.90 58.20% 60.92% 58.12% 0.59
1 0.5 94.20% 93.34% 88.75% 091 59.76% 64.32% 60.69% 0.62
1 1 95.41% 94.04% 90.53% 0.92 60.85% 66.94% 63.11% 0.65
TABLE VII
DETECTION RESULTS OF DETECTORS ON SSD
TIoU=0.5 IoU=0.75
Method FPS Parameters
APs APL APwy APs AP7s APL APy APs
RetinaNet 85.70% 81.27% 96.20% 85.58% 41.52% 39.59% 64.18% 40.25% 39 60.0M
CenterNet 84.19% 15.68% 89.46% 79.74% 32.91% 4.23% 44.77% 26.14% 78 32.6M
Faster-RCNN 83.80% 63.53% 94.57% 69.23% 21.83% 40.01% 42.06% 5.59% 16 61.8M
YOLOV3 90.98% 61.79% 95.96% 90.72% 48.15% 21.18% 62.65% 39.25% 61 62.0M
YOLOv4 93.69% 74.80% 96.42% 91.28% 50.42% 25.64% 64.67% 40.00% 50 64.0M
YOLOX 91.56% 63.95% 94.03% 88.78% 56.69% 38.39% 65.49% 48.78% 95 54.2M
YOLOvV7 89.07% 60.90% 92.19% 70.13% 55.67% 35.64% 51.89% 35.94% 43 37.6M
SFF-YOLOX 95.41% 85.25% 96.57% 94.62% 60.85% 45.36% 74.97% 51.29% 62 86.4M

Training
Loss

06 -

The original SimOTA

The improved SimOTA

Fig. 8.

T
1000

Iteration

Training loss comparison.

T
2000

SimOTA, which further proves the effectiveness of the improved
SimOTA for ship detection task.

F. Comparison With State-of-the-Art Methods

In this part of experiments, we implement comparisons
between the proposed SFF-YOLOX and other seven deep-
learning-based detectors and list the results in Table VII, from
which we can clearly draw a conclusion that SFF—YOLOX
obtains the uppermost overall performance among the detectors.
Apart from AP5g and AP75, the metrics APy, APy1, and APg
are also included to specifically present the detection ability of
large-scale, medium-scale, and small-scale ships, respectively.
And the metrics are significantly improved by SFF—YOLOX,
especially for small-scale ship targets, this may benefit from
the SFF and BiFPN for fusing the features, which guarantees
the diversity and richness of the features extracted. Besides,
we measure and count the FPS and parameters of the detectors
and our proposed method achieves 62 FPS which is lower than
CenterNet and YOLOZX, but faster than the others even though
the amount of parameters is largest among the detectors, that
is, SFF—-YOLOX obtains the best balance between detection
accuracy and running speed.
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Fig. 9. P-R curves of detectors on SSD.
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Fig. 10.  Detection results on SSD.

Besides, we compare our SFF-YOLOX  with
CenterNet++ [43] and MGF [13] for ship detection on
SSD. The best detection accuracies are cited and introduced to
make fair comparisons. The precision, recall, 1, and AP35, for
CenterNet-++ are, respectively, 83.50%, 97.60%, 0.90%, and
95.40%, while for MGF, the figures are, respectively, 8§1.98%,
92.35%, 0.87%, and 92.35%. By contrast, our model achieves
relatively competitive detection performance.

Further, Fig. 9 displays the P-R curves of all the detectors and
Fig. 10 illustrates the comparative detection results. The green,
red, yellow, and blue rectangle boxes represent ground truths,
detection outputs, missing targets, and false alarms, respectively.
By comparing the detection results on five images, especially the

Faster-RCNN
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second image, SFF-YOLOX produces one false alarm and two
missing targets, while others misdetect the most of the ground
truths due to the complex backgrounds. On the contrary, SFF-
YOLOX is insusceptible to the influence of detection conditions,
thus the method can cope with the detection task under different
scenarios.

G. Generalization Ability Testing

Figs. 11 and 12, respectively, show the inshore and off-
shore detection results, and Table VIII presents the detection
accuracies of these methods on HRSID. It can be observed
from Figs. 11 and 12 that SFF—-YOLOX misses a few prominent
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Ground Truth SFF-YOLOX

YOLOv3

Ground Truth

Fig. 11.  Detection results for inshore scenes on HRSID.

ships with small sizes and produces false alarms by detecting
two close ships into a big ship. However, RetinaNet, Center-
Net, faster-RCNN, YOLOv3, YOLOv4, YOLOX, and YOLOv7
perform worse whether it is the inshore scene or not. As for
multiscale ship detection in the last row of Fig. 12, SFF-YOLOX
outperforms state-of-the-art methods and is least affected by
the extreme aspect ratio of ships. Besides, when we compare
the accuracy in Table VIII, we can figure out that anchor-free
methods, such as SFF-YOLOX and YOLOX, obtain high figures
even though the detection dataset changes, while anchor-based
methods usually have relatively poor detection results owing to
the preset hyperparameters of anchors. The comparison results
indicate that the SFF-YOLOX possesses strong generalization
ability and robustness.

H. Validation on Complex and Large-Scale SAR Images

In this section, we further validate the proposed model on
two complex and large-scale SAR images, and the images
are generated from Gaofen-3 satellite and contain multiscale
ship targets under complex sea conditions. Figs. 13 and 14

RetinaNet

YOLOv4

Faster-RCNN

YOLOX YOLOv7

are the detection results of two corresponding cropped slices
from the large-scale images and the typical areas marked by
bold green rectangles are enlarged and displayed on the right
side of the detection results. From the results, we can conclude
that SFF—-YOLOX has excellent detection performance in both
offshore and inshore scenes, there are only two false positives
(marked by blue rectangle) and one false positive in Figs. 13 and
14, respectively, which means our proposed model is unlikely
prone to the influence of the complex backgrounds. However,
the detection results also reflect that SFF—YOLOX is not good
for detecting small ships, especially for weak targets with small
sizes, and there are two false negatives (marked by yellow
rectangle) and six false negatives in Figs. 13 and 14, respectively.
This may be due to the ships are too small so that the model
lose the discernible features of ships after a certain number of
convolution operations.

VI. CONCLUSION

An anchor-free ship detector named SFF-YOLOX is pro-
posed for both accurate and fast-running ship detection task in
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Ground Truth YOLOv3

Fig. 12.  Detection results for offshore scenes on HRSID.

SAR images. First, the SRE module is introduced to highlight the
salient regions, which helps detector extract more discriminative
features. Then, we redesign the one-stream feature extraction
network of YOLOX into a two-stream network, which is applied
to extract deep features and salient features, respectively. In
addition, we propose the SFF module based on spatial attention

YOLOv4

mechanism which projects the salient feature maps to the deep
feature maps. Finally, the improved SimOTA is served as label
assignment to define positive and negative training samples
dynamically. The comparison experiments are conducted on
SSD and HRSID datasets to test the accuracy and generalization
ability of detectors, and we also validate the proposed model on
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Fig. 13.  Detection results on complex large-scale image (image 1).

Fig. 14. Detection results on complex large-scale image (image 2).
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TABLE VIII
DETECTION RESULTS OF DETECTORS ON HRSID

IoU=0.5 IoU=0.75
Method FPS
APso APL APwm APs AP7s APL APwm APs
RetinaNet 54.68% 32.16% 43.70% 40.63% 30.54% 23.51% 26.74% 25.88% 39
CenterNet 54.59% 31.54% 43.38% 40.91% 11.51% 2.26% 6.92% 4.88% 78
Faster-RCNN 21.15% 13.15% 17.44% 15.05% 0.69% 0.05% 0.57% 0.51% 16
YOLOV3 67.35% 42.69% 60.05% 51.62% 23.46% 17.73% 22.43% 20.17% 61
YOLOv4 68.45% 44.71% 60.13% 52.22% 25.42% 19.06% 24.27% 20.48% 50
YOLOX 72.53% 50.59% 62.43% 57.66% 38.01% 30.50% 35.39% 31.81% 95
YOLOvV7 66.88% 43.57% 59.93% 52.42% 30.99% 22.94% 26.83% 25.20% 43
SFF-YOLOX 79.10% 57.15% 64.24% 62.29% 43.12% 33.69% 40.60% 36.21% 62

two complex and large-scale SAR images. The results show that
our SFF-YOLOX outperforms other mainstream deep-learning-
based methods by a large margin, which can be applied in current
ship detection and other vision tasks.

(1

[2]

[3]

(4]

(3]
(6]

(71

(8]

(91

[10]

[11]

REFERENCES

C. Mao, L. Huang, Y. Xiao, F. He, and Y. Liu, “Target recognition of
SAR image based on CN-GAN and CNN in complex environment,” JEEE
Access, vol. 9, pp. 39608-39617, 2021.

R. Chen, X. Li, and S. Li, “A lightweight CNN model for refining
moving vehicle detection from satellite videos,” IEEE Access, vol. 8,
pp. 221897-221917, 2020.

A.M.Johansson, M. M. Espeseth, C. Brekke, and B. Holt, “Can mineral oil
slicks be distinguished from newly formed sea ice using synthetic aperture
radar?,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13,
pp. 4996-5010, Aug. 2020.

B. Brisco, M. Mahdianpari, and F. Mohammadimanesh, “Hybrid compact
polarimetric SAR for environmental monitoring with the RADARSAT
constellation mission,” Remote Sens., vol. 12, no. 20, 2020, Art. no. 3283.
T. Luti et al., “Land consumption monitoring with SAR data and multi-
spectral indices,” Remote Sens., vol. 13, no. 8, 2021, Art. no. 1586.

C. Wang, F. Bi, W. Zhang, and L. Chen, “An intensity-space domain CFAR
method for ship detection in HR SAR images,” IEEE Geosci. Remote Sens.
Lett., vol. 14, no. 4, pp. 529-533, Apr. 2017.

S. Wang, M. Wang, S. Yang, and L. Jiao, “New hierarchical saliency
filtering for fast ship detection in high-resolution SAR images,” IEEE
Trans. Geosci. Remote Sens., vol. 55, no. 1, pp. 351-362, Jan. 2017.

X. Leng, K. Ji, X. Xing, S. Zhou, and H. Zou, “Area ratio invariant feature
group for ship detection in SAR imagery,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 11, no. 7, pp. 2376-2388, Jul. 2018.

K. Sun, Y. Liang, X.-R. Ma, Y.-Y. Huai, and M.-D. Xing, “DSDet: A
lightweight densely connected sparsely activated detector for ship target
detection in high-resolution SAR images,” Remote Sens., vol. 13, 2021,
Art. no. 2743.

R. Yang, Z. Pan, X. Jia, L. Zhang, and Y. Deng, “A novel CNN-based
detector for ship detection based on rotatable bounding box in SAR
images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14,
pp. 1938-1958, Jan. 2021.

M. Zhu et al., “ROS-Det: Arbitrary-oriented ship detection in high resolu-
tion optical remote sensing images via rotated one-stage detector,” IEEE
Access, vol. 9, pp. 50209-50221, 2021.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

F. Ma, F. Gao, J. Wang, A. Hussain, and H. Zhou, “A novel biologically-
inspired target detection method based on saliency analysis for synthetic
aperture radar (SAR) imagery,” Neurocomputing, vol. 402, pp. 6679,
2020.

H. Qu, L. Shen, W. Guo, and J. Wang, “Ships detection in SAR im-
ages based on anchor-free model with mask guidance features,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15, pp. 666-675,
Dec. 2022.

F. Gao, J. You, J. Wang, J. Sun, E. Yang, and H. Zhou, “A novel target
detection method for SAR images based on shadow proposal and saliency
analysis,” Neurocomputing, vol. 267, pp. 220-231, 2017.

K. Eldhuset, “An automatic ship and ship wake detection system for
spaceborne SAR images in coastal regions,” IEEE Trans. Geosci. Remote
Sens., vol. 34, no. 4, pp. 1010-1019, Jul. 1996.

C. Wackerman, K. Friedman, W. Pichel, P. Clemente-Colén, and X. Li,
“Automatic detection of ships in RADARSAT-1 SAR imagery,” Remote
Sens., vol. 27, pp. 568-577, 2001.

S. Gao and H. Liu, “Performance comparison of statistical models for
characterizing sea clutter and ship CFAR detection in SAR images,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15, pp. 7414-7430,
Aug. 2022.

G. Gao, Y. Luo, K. Ouyang, and S. Zhou, “Statistical modeling of PMA
detector for ship detection in high-resolution dual-polarization SAR im-
ages,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 7, pp. 4302-4313,
Jul. 2016.

G. Gao, K. Ouyang, Y. Luo, S. Liang, and S. Zhou, “Scheme of parameter
estimation for generalized Gamma distribution and its application to ship
detection in SAR images,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 3, pp. 1812-1832, Mar. 2017.

L. He, S. Yi, X. Mu, and L. Zhang, “Ship detection method based on Gabor
filter and fast RCNN model in satellite images of sea,” in Proc. 3rd Int.
Conf. Comput. Sci. Appl. Eng., 2019, pp. 1-7.

R. Wang et al., “An improved faster R-CNN based on MSER decision
criterion for SAR image ship detection in harbor,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp., 2019, pp. 1322-1325.

X. Ke, X. Zhang, T. Zhang, J. Shi, and S. Wei, “SAR ship detection based
on an improved faster R-CNN using deformable convolution,” in Proc.
IEEE Int. Geosci. Remote Sens. Symp., 2021, pp. 3565-3568.

K. Sun, Y. Li, C. Li, Y. Liang, and M. Xing, “A two-step ship target
detection method in high-resolution SAR image based on coarse-to-fine
mechanism,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2020,
pp. 2811-2814.

D. Kumar and X. Zhang, “Ship detection based on faster R-CNN in SAR
imagery by anchor box optimization,” in Proc. Int. Conf. Control, Automat.
Inf. Sci., 2019, pp. 1-6.



GAO et al.: NOVEL ANCHOR-FREE MODEL WITH SALIENT FEATURE FUSION MECHANISM FOR SHIP DETECTION IN SAR IMAGES

[25]
[26]
[27]
[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

(501

W. Liu, D. Anguelov, and D. Erhan, “SSD: Single shot multibox detector,”
in Proc. Eur. Conf. Comput. Vis., 2016, pp. 21-37.

J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 7263-7271.

J. Redmon and A. Farhadi, “YOLOvV3: An incremental improvement,”
2018, arXiv:1804.02767.

A. Bochkovskiy, C. Wang, and H. Liao, “YOLOv4: Optimal speed and
accuracy of object detection,” 2020, arXiv:2004.10934.

C. Wang, A. Bochkovskiy, and H. Liao, “YOLOv7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2023, pp. 7464-7475.
T. Lin et al., “Microsoft COCO: Common objects in context,” in Proc. Eur.
Conf. Comput. Vis., 2014, pp. 740-755.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for
dense object detection,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 2980-2988.

T. Lin, P. Dolldr, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 936-944.

K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “CenterNet:
Keypoint triplets for object detection,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2019, pp. 6568—6577.

H. Law and J. Deng, “CornerNet: Detecting objects as paired keypoints,”
Int. J. Comput. Vis., vol. 128, no. 3, pp. 642-656, 2019.

S. Zhang, C. Chi, Y. Yao, Z. Lei, and S. Li, “Bridging the gap between
anchor-based and anchor-free detection via adaptive training sample se-
lection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020,
pp- 9759-9768.

Z.Tian, C. Shen, H. Chen, and T. He, “FCOS: Fully convolutional onestage
object detection,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019,
pp- 9627-9636.

Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding YOLO
series in 2021, 2021, arXiv:2107.08430.

M. Tan, R. Pang, and Q. Le, “EfficientDet: Scalable and efficient object
detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020,
pp. 10778-10787.

T. Miao et al., “An improved lightweight RetinaNet for ship detection
in SAR images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 15, pp. 4667-4679, Jun. 2022.

X. Yang, X. Zhang, N. Wang, and X. Gao, “A robust one-stage detec-
tor for multiscale ship detection with complex background in massive
SAR images,” IEEE Trans. Geosci. Remote Sens., vol. 60, Nov. 2022,
Art. no. 5217712.

Y. Li, X. Lv, P. Huang, W. Xu, W. Tan, and Y. Dong, “SAR ship target
detection based on improved YOLOVSs,” in Proc. Int. Conf. Control,
Automat. Inf. Sci., 2021, pp. 354-358.

J.Fu, X. Sun, Z. Wang, and K. Fu, “An anchor-free method based on feature
balancing and refinement network for multiscale ship detection in SAR
images,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 2, pp. 1331-1344,
Feb. 2021.

H.-Y. Guo, X. Yang, N.-N. Wang, and X.-B. Gao, “A CenterNet++ model
for ship detection in SAR images,” Pattern Recognit., vol. 112, 2021,
Art. no. 107787.

F. Min and P. Liu, “Research on ship detection in the SAR image Algorithm
based on improved SSD,” in Proc. 4th Int. Conf. Artif. Intell. Pattern
Recognit., 2021, pp. 205-211.

M. C. E. Rai, J.-H. Giraldo, M. Al-Saad, M. Darweech, and T. Bouw-
mans, “SemiSegSAR: A semi-supervised segmentation algorithm for ship
SAR images,” IEEE Geosci. Remote Sens. Lett., vol. 19, Jun. 2022,
Art. no. 4510205.

S. Chen, R. Zhan, W. Wang, and J. Zhang, “Domain adaptation for semi-
supervised ship detection in SAR images,” IEEE Geosci. Remote Sens.
Lett., vol. 19, May 2022, Art. no. 4507405.

X.-Q.Li, D. Li, H.-Q. Liu, J. Wan, Z.-Y. Chen, and Q.-H. Liu, “A-BFPN:
An attention-guided balanced feature pyramid network for SAR ship
detection,” Remote Sens., vol. 14, 2022, Art. no. 3829.

M. Zhao, J. Shi, and Y. Wang, “Orientation-aware feature fusion network
for ship detection in SAR images,” IEEE Geosci. Remote Sens. Lett.,
vol. 19, Jan. 2022, Art. no. 4504705.

L.-M. Zhang, Y.-J. Liu, Q.-X. Guo, H.-Y. Yin, Y. Li, and P.-T. Du, “Ship
detection in large-scale SAR images based on dense spatial attention and
multi-level feature fusion,” in Proc. Assoc. Comput. Mach. Turing Award
Celebration Conf.—China, 2021, pp. 77-81.

X. Wang and C. Chen, “Ship detection for complex background
SAR images based on a multiscale variance weighted image entropy
method,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 2, pp. 184-187,
Feb. 2017.

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

9105

F. Xie, B. Lin, and Y. Liu, “Research on the coordinate attention mechanism
fuse in a YOLOVS5 deep learning detector for the SAR ship detection task,”
Sensors, vol. 22, no. 9, Apr. 2022, Art. no. 3370.

F. Gao, Y. He, J. Wang, A. Hussain, and H. Zhou, “Anchor-free
convolutional network with dense attention feature aggregation for
ship detection in SAR images,” Remote Sens., vol. 12, no. 16, 2020,
Art. no. 2619.

Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021,
pp- 10012-10022.

Y.-Y. Wang, C. Wang, H. Zhang, Y.-B. Dong, and S.-S. Wei, “A SAR
dataset of ship detection for deep learning under complex backgrounds,”
Remote Sens., vol. 11, no. 7, 2019, Art. no. 765.

S. Wei, X. Zeng, Q. Qu, M. Wang, H. Su, and J. Shi, “HRSID: A
high-resolution SAR images dataset for ship detection and instance seg-
mentation,” IEEE Access, vol. 8, pp. 120234-120254, 2020.

R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk, “Frequency-tuned
salient region detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2009, pp. 1597-1604.

M.-M. Cheng, N.-J. Mitra, X. Huang, and S.-M. Hu, “Salient shape:
Group saliency in image collections,” Vis. Comput., vol. 30, pp. 443-453,
2014.

X. Hou and L. Zhang, “Saliency detection: A spectral residual approach,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2007, pp. 1-8.

L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention
for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20,
no. 11, pp. 12541259, Nov. 1998.

C. Yang, L. Zhang, and H. Lu, “Graph-regularized saliency detection with
convex-hull-based center prior,” IEEE Signal Process. Lett., vol. 20, no. 7,
pp. 637-640, Jul. 2013.

S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware saliency
detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 10,
pp- 1915-1926, Oct. 2012.

Q. Li, N. Miao, and X. Zhang, “Image recognition of maize disease
based on asymmetric convolutional attention residual network and transfer
learning,” Sci. Technol. Eng., vol. 21, pp. 6249-6256, 2021.

Yunlong Gao received the B.S. degree in computer
science and technology and the M.S. degree in com-
puter software and theory from the Jilin University,
Changchun, China, in 2015 and 2018, respectively,
and the Ph.D. degree in circuits and systems from the
Changchun Institute of Optics, Fine Mechanics and
Physics, Chinese Academy of Sciences, Changchun,
China, in 2023.

His research interests include object detection and
image processing technology.

Chuan Wu received the Ph.D. degree in mechatronic
engineering from the Chinese Academy of Sciences,
Beijing, China, in 2003.

He is currently a Research Fellow with the
Changchun Institute of Optics, Fine Mechanics and
Physics, Chinese Academy of Sciences. His research
interests include target tracking and image processing
technology.

Ming Ren received the B.S. and M.S. degrees in
mechanical engineering from the Harbin Engineering
University, Harbin, China, in 2017 and 2020, respec-
tively.

His research interests include object detection and
computational imaging technology.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


