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Abstract: The electric eel has an organ made up of hundreds of electrocytes, which is called the
electric organ. This organ is used to sense and detect weak electric field signals. By sensing electric
field signals, the electric eel can identify changes in their surroundings, detect potential prey or other
electric eels, and use it for navigation and orientation. Path-finding algorithms are currently facing
optimality challenges such as the shortest path, shortest time, and minimum memory overhead.
In order to improve the search performance of a traditional A* algorithm, this paper proposes a
bidirectional jump point search algorithm (BJPS+) based on the electricity-guided navigation behavior
of electric eels and map preprocessing. Firstly, a heuristic strategy based on the electrically induced
navigation behavior of electric eels is proposed to speed up the node search. Secondly, an improved
jump point search strategy is proposed to reduce the complexity of jump point screening. Then, a new
map preprocessing strategy is proposed to construct the relationship between map nodes. Finally,
path planning is performed based on the processed map information. In addition, a rewiring strategy
is proposed to reduce the number of path inflection points and path length. The simulation results
show that the proposed BJPS+ algorithm can generate optimal paths quickly and with less search
time when the map is known.

Keywords: electricity guided; grid map; inflection points; map preprocessing; path planning; rewiring

1. Introduction

Path planning is the search for a safe path without collision from start to target. It
needs to satisfy some optimal metrics (e.g., search time, path length, memory overhead,
etc.) [1], and there may be trade-offs between these metrics. Path planning is not only a
theoretical study, but it also plays an important role in many fields. This task is requisite
to artificial intelligence applications, such as service robots, medical robots, farm robots,
rescue robots, autonomous driving, unmanned ships, video games, etc. [2–5]. The success
of task completion by the robot is directly influenced by the outcome of its path planning. If
the path planning is not precise enough or if the path is not selected properly, it may result
in the robot malfunctioning or even causing an accident. The necessity of path planning for
robots is undeniable. However, the complexity of this problem requires a comprehensive
consideration of various metrics and conditions to derive an optimal path that not only
meets practical needs but also ensures safety.

Service robots, as the most common type of indoor mobile robots, have achieved great
commercial success in recent years. However, the development of technology requires
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robots to pursue a faster speed to find the path. The requirements that a service robot
should follow are shown below:

(1) The robot can run safely without collision from start to target.
(2) The robot is capable of real-time path planning.
(3) The robot should take the shortest and simplest path.
(4) The path-finding algorithm of the robot uses as little memory as possible.

However, it is difficult to satisfy all conditions in complex environments. The basic
path planning consists of the following steps. First, the robot scans the environment
boundaries and obstacles using sensors such as lidar and an odometer to construct a map
of the environment [6]. Next, the robot uses path-finding algorithms for path planning.
Finally, the robot works according to the planned path.

In order to perform path planning, it is necessary to create a map of the environment.
The most popular and widely used method for representing the path-finding environment
is the undirected uniform cost grid map, which distinguishes between movable space and
obstacles and represents them numerically [6]. This brings convenience to path planning
and has become an important research method adopted by many scholars.

The common mobile robot path-planning algorithms based on grid maps include
Dijkstra [7], A* [8], Rapidly-exploring Random Trees algorithm [9], D-star [10], the Ant
Colony Optimization Algorithm [11], Genetic Algorithm [12], Particle Swarm Optimization
Algorithm [13], and so on. These algorithms have the characteristics of simple implemen-
tations and wide applicability, and they are common solutions for robot path planning.
Different algorithms can be selected and optimized according to different task requirements
and environmental characteristics.

The A* is a classic path-planning algorithm that uses a heuristic search to find the
shortest path from the starting point to the target point in a quick and efficient manner
without requiring a complete traversal of the entire map. It applies an evaluation function
to rank the search frontier’s states, which takes into consideration the actual cost involved
in moving from the starting point to the current state as well as the estimated cost of
reaching the end point from the current state [8]. This heuristic technique allows the A* to
find the path faster than Dijkstra and makes the A* optimized in terms of computational
time consumption and space complexity.

A* is an effective path-planning algorithm. However, it has a drawback in that it
requires more memory space and takes a longer time to maintain and store open and
closed lists, especially in large-scale maps. This can cause the algorithm to slow down
even in situations where real-time navigation is required [14]. For the drawbacks of the
A*, the directions of its improvement are divided into heuristic functions and successor
node generation.

The weighted heuristic search is a technique to improve the efficiency of the path
search, and it is also widely used in heuristic search algorithms [1]. One of the most
common is the weighted A*, which takes the heuristic function f = g + wh. It can balance
the search speed and the accuracy of the optimal path by adjusting the heuristic function
weight w [15]. In some scenarios where the solution time is tight, the map is large or the
robot does not need to take the optimal path, the heuristic function weight can be used to
obtain a faster search speed. The implementation of this strategy is relatively simple and
only requires the inclusion of the weights of the heuristic function in the calculation of f.
Pohl et al. proposed the weighted A* and experimentally obtained the best weight value
1 ≥ w ≥ 0.5 under the guaranteed shortest path [16]. Bulitko et al. proposed a learning
real-time A* with a weight value of 2 ≥ w ≥ 0 to explore paths autonomously, but the
drawback is that it over-explores and the paths are not necessarily optimal [17]. Wang
et al. used exponential decay to weight the heuristic function of the A* to improve the
computational efficiency of the algorithm [18].

The electricity-guided navigation behavior of electric eels brings ideas to the improve-
ment of heuristic functions. Electric eels are able to find others in murky waters by using
their electrical organs. Figure 1 shows electric eels guided by electric fields to find other
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companions. The electric organs of the electric eels can detect low-frequency electric signals
in the surrounding environment [19]. When two electric eels want to find each other, they
navigate by emitting electric field signals and sensing changes in the electric field around
them. One emits a low-frequency electric signal, which the other is able to perceive in order
to determine the direction and track the source of the signal. By constantly interacting
with each other in emitting and sensing the electric field signals, the two electric eels can
locate and find each other [20]. They use the high sensitivity and precision of their elec-
trosensory organs and their ability to perceive changes in the electric field to navigate and
communicate in the water. This ability to navigate by electric induction plays an important
role in activities such as reproduction and communication [21]. It also provides inspira-
tion for bionic research to develop novel sensory technologies and navigation systems to
improve the ability of robots to locate and navigate in specific environments. Specifically,
the behavior of sensing low-frequency electric signals is useful for improving the heuristic
function.
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For successor node generation, it has been discovered by some scholars that successor
nodes do not always select neighboring nodes in the eight cardinal directions during path
planning. In light of this, Harabor et al. introduced the JPS which selectively adds jump
points to the open list [22]. This approach helps to eliminate extraneous nodes, expedite
the path search, and minimize memory costs. Since the process of generating jump points
is time consuming, Harabor et al. proposed the JPS+, which speeds up the path search by
preprocessing the map [23]. Nonetheless, the search for jump points remains complicated.
Nobes et al. have applied the JPS to 3D environments [24]. Meanwhile, Su et al. have
developed an algorithm for artificial field-guided jump point research [25], which can
decrease the number of node searches but may incur local extrema. On the other hand,
Huang et al. have leveraged dynamic weighted optimization of the heuristic function to
enhance the speed performance of the JPS [26].

The JPS provides a novel technique for solving the single-body path-finding problem
with proven convergence and path minimization [22]. The aim of this study is to reduce
the search time, the search space and the complexity of the algorithm implementation. To
achieve these goals, this paper presents a bidirectional JPS based on map preprocessing and
an improved jump point screening strategy. The proposed algorithm is able to efficiently
reduce the path search time and algorithm implementation complexity within a known
static environment. The main innovations of this algorithm are as follows:

(1) An improved heuristic function is proposed, which can speed up the path search
efficiency and reduce the number of path search points while maintaining the short-
est path.

(2) To reduce algorithm implementation complexity in jump point screening, a new
jump point screening strategy is proposed. This involves converting jump points
into turning points at obstacles, thereby decreasing the number of unnecessary jump
points on the map and accelerating the jump point screening process.
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(3) In order to decrease the number of visited nodes, the neighborhood search principle is
modified to a five-domain search. This more compact approach to searching improves
the efficiency of the target point search.

(4) To further optimize the search efficiency, a bidirectional search strategy is introduced.
In this approach, JPS+ search is performed from both the starting point and the goal
point, and it is guided by the sequence of preprocessed jump points. This method
increases the search efficiency of the algorithm.

(5) In order to reduce the number of inflection points and the path length in the path
nodes, a rewiring strategy is presented in this study. The initial path may contain a
large number of inflection points. Therefore, the parallelogram rewiring strategy is
utilized to prune the path nodes.

This paper consists of five sections. Section 1 serves as an introduction, providing a
brief overview of the research background and the importance of path-planning algorithms.
Section 2 discusses previous research results and problems in path-planning algorithms.
Section 3 presents the proposed improved algorithm and elaborates on the specific strategies
introduced in this paper, such as jump point screening, heuristic function, bidirectional
search and rewiring. Section 4 focuses on experimental simulations, where path-planning
experiments are performed using different environmental maps. The results are discussed
and analyzed in detail. The conclusions are summarized in Section 5.

2. Related Work

This section presents the standard model of the JPS: a path-planning algorithm for
grid maps based on the A* proposed by Harabo et al. in 2011. Compared to the traditional
A*, the JPS speeds up the search by skipping useless points [14].

2.1. Grid Map Building

The method of building grid maps based on sensor data was originally proposed by
Moravec and Elfes [27], which is widely used in the field of robotics. The method constructs
a grid map through the following steps, including acquiring sensor data, constructing
the original grid map, correcting the map, optimizing the map, and storing the map [28].
The method can effectively construct a grid map based on sensor data to support robot
navigation and autonomous control.

In commonly used grid maps, each grid cell is assigned either a free space state
(represented by 0) or an obstacle state (represented by 1). By partitioning the environment
into individual grid cells, the path-planning algorithm can effectively represent the complex
physical environment and provide critical information, such as the relative position and
distance between individual grid cells. This grid cell partitioning method is both simple
and intuitive, enabling it to effortlessly reflect diverse characteristics of different regions in
the map and the relationships between these regions. Due to its versatility, the approach
is widely used in the path planning of various mobile robots. In addition, the grid map
implementation can be adjusted to suit varying scales of physical environments by adapting
the grid cell size, allowing for flexible and efficient path-planning applications. Therefore,
the path-planning method based on grid maps holds significant value and importance in
addressing practical problems.

2.2. Original Algorithm Model

The center idea of the JPS is to use jump points to decrease the search space so as to
achieve efficient path planning. The jump point is used to skip some intermediate nodes
directly in the search process and directly search the key node where the target node is
located. During the search, if the current node is not a jump point, it can be directly skipped,
and only the jump point is searched. Alternatively, nodes that are not the jump points can be
searched if necessary. This method can greatly reduce the search complexity and improve
the search efficiency, especially for large and complex maps with good applicability.
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The path finding using JPS starts with the starting point as the root node. Then, the
search is extended by the jump points using heuristic search. If an obstacle or boundary
is encountered during the search, the next jump point needs to be found to continue the
search. Finally, when the search reaches the target point, a shortest path from the starting
point to the target point can be obtained by backtracking.

The JPS algorithm utilizes the heuristic function f = g + h inherited from A*, where f
represents the total cost, g represents the actual cost, and h represents the estimated cost.
Distance calculations are typically performed using Euclidean, Manhattan, or Chebyshev
distances. However, in contrast to A*, JPS extends nodes in the form of jump points with
specific rules governing the screening process for these points:

Definition of Forced Neighbor: Node n is said to be a forced neighbor of x if there are
obstacles among its eight neighbors and the distance cost of x’s parent node p arriving at n
via x is smaller than the distance cost of any path to n that does not arrive via x. Figure 2
shows the schematic diagram of forced neighbors for straight search and diagonal search.
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Definition of Jump Point: The jump point must be in the search direction. There are
three types of jump points for the JPS:

(1) Nodes with forced neighbors;
(2) Target points;
(3) Points in the diagonal direction of node x that satisfy conditions 1 and 2 for a diago-

nal search.

In the third point, assuming an oblique search to the upper right, the straight search
conducted by node x is limited to the right and up (vector decomposition of the diagonal
search vector), and no search is conducted in the left and down directions, which is called
expansion in the inherent straight direction during the diagonal search.

Figure 3 shows an example of path planning based on the JPS. Although the JPS speeds
up the search by filtering jump points, the process of generating jump points takes up a lot
of memory space and computing resources, which still costs a lot of time and space.
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3. Improved Algorithm

The results of the paper [14] show that the JPS spends about 90% of its time on the
generation of successor nodes. Therefore, improving the efficiency of the JPS depends on
how rapidly the successor nodes can be generated. A bidirectional JPS+ algorithm for map
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preprocessing is proposed, which is based on an improved jump point screening strategy
that accelerates the path search.

3.1. Improved Heuristic Function

A* and JPS both use traditional heuristic function.

f (s) = g(s) + h(s) (1)

where g(s) is the cost value incurred to reach s, g(s) = g(s− 1) + d(s− 1,s), h(s) is the heuristic
cost of reaching the target node T from s, and h(s) = d(s,T), d using Euclidean distance. The
heuristic function h satisfies h(s) ≤ d(s,s′) + h(s′), and s′ is a node in the subsequent path.

The biological model for the heuristic function is shown in Figure 4. The biological
model of the original algorithm can be described as two electric eels looking for each other’s
initial position, as shown in Figure 4a. However, this ignores the heuristic function of the
other’s current position and does not offer the greatest advantage of bidirectional search.
By constantly emitting and perceiving weak electric field signals, the two eels can locate
each other and find each other quickly. Referencing the electric eel model, in order to
expand the advantages of bidirectional search, the design of the heuristic function should
consider the current position of the other in the path search process. Formula (2) shows the
improved heuristic function.

f = g1 + g2 + h′ (2)

where g1 is the forward actual cost of the current point s, g2 is the real cost corresponding
to the point with the minimum value of f when searching in reverse, and h′ is the distance
between point s and point s′.
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3.2. Improved Jump Points Screening Strategy

In most cases, the JPS algorithm operates in pairs of jump points. For instance, as
shown in Figure 5, when searching in direction 1, node a is identified as a jump point
whereas node b is considered a forced neighbor. Conversely, when searching in direction
2, node b is a jump point while node a is regarded as a forced neighbor. While increasing
the number of jump point types can potentially shorten the path length, it also results in a
more complex algorithm implementation, greater path danger, and increased search time.
Jump points are replaced with inflection points in this study, resulting in a reduced number
of jump points and a faster path search.

(1) In straight search, the JPS replaces jump points with inflection points. Inflection
points refer to locations where two paths intersect horizontally and vertically, which
is accompanied by obstacles. As shown in Figure 6a, node x represents an inflection
point.
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(2) In diagonal search, if there is an inflection point in the intrinsic straight line direction
of node x, node x is the jump point on the current search path.

This improved jump point screening strategy reduces the number of jump points in general.

3.3. Map Preprocessing

The inflection points on the map are first filtered, and path planning is performed based
on the relationship between the step lengths of each node’s eight directional extensions to
reach the inflection points. Figure 7 shows an example of map preprocessing. The flowchart
of map preprocessing is shown in Algorithm 1. Firstly, all the inflection points of the map
are calculated, which are the yellow nodes. Next, the straight-line reachability of each node
is evaluated, and the required step length to reach the jump point is recorded.
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a. A positive number n indicates a jump point that moves n steps in that direction to
reach the inflection point or to search diagonally.

b. A negative number −n indicates that moving n + 1 steps in that direction will hit an
obstacle or boundary.

c. A value of 0 means that the obstacle or boundary is encountered after moving 1 step
in that direction.

At this point, the preprocessing process of the map is completed.
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Algorithm 1: Map Preprocessing

Input: grid map
Output: map information data
1 Function map_preprocessing(map):
2 for free node n in map:
3 for direction do //One of eight standard directions
4 if reachable_jump_point then
5 n.direction = step; //Return the distance to the jump point
6 else if reachable_diagonal_special_point then
7 n.direction = step; //Return the distance to the diagonal special point
8 else
9 n.direction = -step; //Return the step to obstacle or map boundary
10 end if
11 end for
12 Processed_map←n;
13 end for
14 return Processed_map;

3.4. Improved Node Expansion

Node expansion is the process of generating new nodes in a path search based on
preprocessed map information. The node expansion of the JPS algorithm takes eight-
neighborhood node expansion. However, the eight-neighborhood search is not used in
the actual path search, which wastes the search memory as well as the search time. An
eight-neighborhood search is proposed for the initial position, and a five-neighborhood
search is recommended for the remaining intermediate nodes. Figure 8 shows the process
of node expansion, where node a is obtained by expanding S in the upper-right direction,
so node a will only expand in five directions: upper-left, upper-right, upper-right, right,
and lower-right, and it will not expand to node x.
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3.5. Bidirectional Path Search

A bidirectional search performs a path search from both the start point and the target
point. When the forward search reaches a node in the reverse search and the reverse search
also reaches a node in the forward search at the same time, the path search will end and the
forward and reverse paths will be combined to generate the final path. The bidirectional
search process is shown in Algorithm 2. This strategy can effectively reduce the round-trip
search for unnecessary nodes and improve the efficiency of the path [29].
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Algorithm 2: Bidirectional Path Search

Input: start node S, target node T, processed map
Output: a set of path nodes
1 Function bidirectional_path_search (S, T, map):
2 open1←S;
3 open2←T;
4 n1←S;
5 n2←T;
6 while n1 not in closed2 or n2 not in closed1 do
7 n1←min_f in open1; //set current node;
8 n2←min_f in open2; //set current node;
9 open1.delete(n1);
10 open2.delete(n2);
11 closed1←n1;
12 closed2←n2;
13 if n is reachable jump point form n1 then //forward path finding
14 open1←{n}; //Expand node n based on preprocessed map
15 end if
16 if n is reachable jump point form n2 then //backward path finding
17 open2←{n}; //Expand node n based on preprocessed map
18 end if
19 end while
20 path←backtracking(closed1, closed2);
21 return path;

The process of bidirectional path planning is shown in Figure 9a, with S as the start
point and T as the target point, and forward and reverse searching alternately. Firstly, the
preprocessed map information is shown in Figure 7.
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Step 1: Put S in Open List 1 for forward search and T in Open List 2 for reverse search.
Step 2: When searching forward, move 1 step up to the right because the parameter

upper-right is +1, which can obtain node a and put a into Open List 1. When searching in
the reverse direction, move up five steps because the parameter up is +5, which can obtain
node A and put A into Open List 2.

Repeat the above operation until the sixth step, node e in the forward search is the
point in the Closed List 2 of the reverse search, and node D is the point in the Closed List 1
of the forward search.

So far, the shortest path is found. We only need to fuse the positive and negative paths
to obtain the final path, i.e., S-a-b-c-d(D)-e(C)-B-A-T. As in Figure 9b, in the special case
of bidirectional search, if the path target point is searched first in one direction, the path
search ends and the path is returned.

3.6. Rewiring Strategy

Because the algorithm is set to only an eight-neighborhood search, the initially planned
path contains redundant nodes. It not only increases the path length but also increases the
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number of turns between path nodes. Removing redundant nodes not only reduces the path
length but also benefits the robot motion. The rewiring strategy is shown in Algorithm 3.
In Figure 10, since the JPS takes a diagonal search-first strategy, the path-finding process
will give priority to the inflection at node a, thus forming the inflection phenomenon of
S-a-b-c-T.

Algorithm 3: Rewiring Strategy

Input: path, map
Output: optimized path
1 Function path_optimization (path, map):
2 path←delect_same_direction_point(path); //Update path
3 for i←1 to path.number-3 do
4 A.B.C.D.E←path(i): path(i + 4);
5 if AB||CD and

→
BC ·

→
DE > 0 then

6 N←chose_new_node(B, C, D); //BCDN is a parallelogram
7 if safe(BN, DN) then
8 if BC||DE then //case 1
9 path.delect(B, C, D);
10 else //case 2: BC∩DE 6= null
11 path.delect(B, C);
12 end if
13 path.insert(N); //Insert node N after node A
14 i←1;
15 end if
16 end if
17 end for //Complete the Parallelogram Strategy
18 path←path_discrete(path); //Update path
19 path←path_prune(path); //Update path
20 return path
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4. Simulation Studies and Discussion

In order to confirm the effectiveness of the algorithm in this paper, we simulate and
compare the improved algorithm with four other representative algorithms in different
sizes of grid maps, respectively. In addition, the improved algorithm is applied to the
public dataset to confirm the effectiveness of the algorithm. Test machine is a 2.80 GHz
Intel Core Duo processor with 8 GB of RAM running Windows 10.

4.1. Simulation of Different Algorithms

In this subsection, the A* [8], Bi-A* [29], JPS [22], JPS+ [23], and improved algorithms
(without rewiring strategy) are simulated and compared to verify the effectiveness of the
improved algorithms. The four algorithms are briefly described below. A* is the original
algorithm. Bi-A*, JPS and JPS+ are variants of A*.

(1) A* is a heuristic search-based path-planning algorithm that selects the optimal path
by taking into account heuristic functions and actual costs. It has a wide range of
applications and is used in many areas to solve the shortest path problems.
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(2) Bi-A* is an extension of the A* algorithm that simultaneously searches from both
the start and end points to improve efficiency by simultaneously searching in both
directions to find the shortest path.

(3) JPS is an improvement of the A* algorithm. It accelerates the search process by
skipping unrelated intermediate nodes and considering only important nodes (called
“jump points”). It leverages the continuous nature of the map to jump through
path extensions, reducing unnecessary node extensions and improving the search
efficiency.

(4) JPS+ is an improvement of the JPS algorithm. It includes preprocessing steps on the
basis of the JPS algorithm to speed up the path search process by calculating and
storing additional information beforehand. This preprocessing can be performed
before the search, making the search process faster.

Referring to the map sizes and obstacle distribution used in paper [30,31], the sim-
ulation uses map sizes of 15 × 15, 30 × 30, 50 × 50, and 100 × 100, and each size map
takes a different obstacle distribution. The cost of moving in the straight direction is 1,
and the cost of moving in the diagonal direction is

√
2. The simulation parameters are

set in Table 1. Referencing article [1,31], we select three evaluation indicators. It include
the path-planning time, the number of search nodes and the path length. Each group of
experiments tests 20 times, and the path search time takes an average. Table 2 presents the
simulation results data for different maps in our simulation group. We compare the time of
path planning and the number of expanded nodes in the simulation group in Figure 11.
Finally, the simulation results are shown in Figure 12.

Table 1. Parameter settings of algorithm simulation.

Map Sizes Map Types Simulation Groups Start Target

15 × 15 simple map1_1 (15, 1) (1, 15)
map1_2 (1, 1) (14, 8)

30 × 30 promenade map2_1 (1, 1) (30, 30)
map2_2 (11, 11) (1, 30)

50 × 50 complex map3_1 (10, 37) (45, 48)
map3_2 (15, 28) (17, 36)

100 × 100 complex map4_1 (2, 99) (95, 15)
map4_2 (1, 1) (55, 90)

Based on the simulation results and the taxonomy of the paper [32], the BJPS+ al-
gorithm plans a definite path for a known map and a given start and target point. This
behavior is deterministic and reproducible. According to the simulation results, it can be
seen that the path search time of traditional A* is relatively short and the number of path
search nodes is less in the small-size map. However, with the increase in map size, the
search time and the number of path search nodes of A* will increase sharply. Bi-A* shows
better search time performance in large-scale maps and has advantages over traditional
A*. However, the process of generating jump points by JPS requires a large amount of
memory space and computational resources, and its performance is slightly lower than
that of A* in small size maps, and it may have the problem of over-searching. The BJPS+
proposed in this paper shows better performance than the other four algorithms in terms
of the search time and number of search nodes, and the algorithm is not affected by the
map size or obstacle complexity. In terms of path length, the BJPS+ plans a path that is
approximately 4.37% longer than variants of A*. The increased path cost is due to the
improved jump point screening strategy used in the map preprocessing process. It can
avoid diagonals which graze corners of obstacles. This improvement is good for driving
safety. Meanwhile, BPS+ has about 43.31% less path planning time than the best of the
other four algorithms. And BPS+ has about 51.70% fewer path search nodes than the best
of the other four algorithms. Therefore, a small increase in path length is acceptable.
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Table 2. Simulation results of different algorithms.

Simulation Groups Algorithm Evaluation map1_1 map1_2 map2_1 map2_2 map3_1 map3_2 map4_1 map4_2

Search time/ms

A*
Mean 17.661 20.227 80.303 81.209 236.757 147.636 1114.769 1727.761
Error

margin 1.432 1.757 7.218 4.465 13.039 10.794 108.897 105.054

Bi-A*
Mean 13.066 12.884 68.743 60.863 233.935 93.002 682.682 1390.325
Error

margin 0.927 0.717 3.474 3.571 20.420 7.622 51.807 113.319

JPS Mean 177.847 241.429 275.955 305.164 380.089 352.896 819.817 773.141
Error

margin 11.449 11.869 21.608 23.582 34.621 34.247 81.846 76.790

JPS+ Mean 12.036 8.036 32.056 44.06 109.986 67.17 272.64 220.888
Error

margin 0.891 0.579 1.925 3.963 6.035 5.227 13.230 9.794

BJPS+ Mean 1.929 2.805 26.795 38.751 39.825 35.174 152.852 190.88
Error

margin 0.345 0.334 2.642 2.075 1.434 2.283 4.928 6.803

Number of Search
nodes

A* / 90 134 446 491 1075 471 2927 3549
Bi-A* / 108 136 520 396 1205 616 2918 4031
JPS / 34 63 104 137 265 167 854 834

JPS+ / 34 63 104 137 265 167 854 834
BJPS+ / 17 21 34 26 136 134 491 520

Path length
A*,Bi-A* / 21.556 22.728 53.314 74.556 102.569 75.113 155.711 141.51
JPS, JPS+ / 21.556 22.728 53.314 75.971 102.569 75.113 155.711 141.51

BJPS+ / 23.314 23.9 55.071 78.9 106.856 77.456 158.642 146.197

The search time is averaged over 20 experiments. The comparison of path search times for each experiment can be
got from Supplementary Materials. Error margin represents range with a confidence level of 95%. Those can also
be got from Supplementary Materials.

To further prove the effectiveness of the BJPS+ algorithm, maps with different obstacle
densities are taken for experiments. All map sizes are 50 × 50. Each obstacle density
map generates 20 maps by randomization. Two sets, each including a start point and
target point, were used for each map. Each set of experiments was repeated 20 times. The
experimental results of the same obstacle density maps are summarized and processed.
The path planning length, path search time and map preprocessing time are averaged. And
the number of expansion nodes is rounded to the nearest whole number after averaging.
The experimental results are shown in Table 3.

Table 3. Summary of map experiments with different obstacle densities.

Obstacles
(%) Algorithm Search

Time/ms
*

(%)
Number of

Search Nodes
*

(%)
Path

Length
*

(%)
Map Preprocessing

Time/s
*

(%)

5 A* 45.966
(0.572) −71.78 360 −66.94 70.117 7.84 / /

5 Bi-A* 44.927
(2.371) −71.13 356 −66.57 70.117 7.84 / /

5 JPS 55.940
(3.002) −76.81 153 −22.22 70.117 7.84 / /

5 JPS+ 15.201
(1.666) −14.67 153 −22.22 70.117 7.84 9.798 −97.07

5 BJPS+ 12.971
(1.806) / 119 / 75.614 / 0.287 /

10 A* 49.383
(0.859) −39.40 488 −50.00 70.864 11.25 / /

10 Bi-A* 46.826
(3.783) −36.09 485 −49.69 70.864 11.25 / /

10 JPS 86.280
(2.395) −65.31 254 −3.94 70.864 11.25 / /

10 JPS+ 37.232
(1.519) −19.62 254 −3.94 70.864 11.25 8.264 −97.12

10 BJPS+ 29.927
(2.085) / 244 / 78.835 / 0.238 /
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Table 3. Cont.

Obstacles
(%) Algorithm Search

Time/ms
*

(%)
Number of

Search Nodes
*

(%)
Path

Length
*

(%)
Map Preprocessing

Time/s
*

(%)

20 A* 77.826
(1.615) −7.04 684 −39.33 73.008 12.95 / /

20 Bi-A* 78.832
(3.919) −8.23 747 −44.44 73.008 12.95 / /

20 JPS 196.747
(3.889) −63.23 446 −6.95 73.008 12.95 / /

20 JPS+ 87.594
(2.548) −17.41 446 −6.95 73.008 12.95 5.354 −96.25

20 BJPS+ 72.348
(1.755) / 415 / 82.464 / 0.201 /

30 A* 97.593
(2.118) −11.96 779 −36.33 75.914 11.29 / /

30 Bi-A* 95.360
(3.757) −9.90 741 −33.06 75.914 11.29 / /

30 JPS 229.829
(4.857) −62.62 517 −4.06 75.914 11.29 / /

30 JPS+ 89.223
(2.145) −3.71 517 −4.06 75.914 11.29 3.758 −95.32

30 BJPS+ 85.917
(1.432) / 496 / 84.481 / 0.176 /

40 A* 64.435
(1.535) −4.31 800 −50.00 82.560 12.61 / /

40 Bi-A* 107.793
(3.154) −42.80 680 −41.18 82.560 12.61 / /

40 JPS 219.032
(4.471) −71.85 478 −16.32 82.560 12.61 / /

40 JPS+ 78.156
(1.333) −21.11 478 −16.32 82.560 12.61 2.691 −94.35

40 BJPS+ 61.656
(1.098) / 400 / 92.968 / 0.152 /

It indicates the percentage increase in BJPS+ metrics over the corresponding algorithms. In the search time column,
such as A (B), A represents the mean, and B represents the mean of error margins for 20 sets of experiments
(confidence level of 95%). The error margins of the path search time for each set of experiments can be got from
Supplementary Materials (not include a certain confidence value).

The experimental results show that as the density of obstacles increases, BJPS+ has
a significant disadvantage in path planning in maps with a large distribution of small
obstacles (consisting of 1–3 grid cells). When the density of obstacles increases, the BJPS+
algorithm will plan about 10% more path lengths than the other four algorithms, but the
time may decrease very little (5–10%). Even in a small number of map experiments, the
path search time of the BJPS+ may be longer than that of A*. This is due to the presence
of many grid-cell sized individual obstacles in the map. But in real maps, an obstacle
occupies dozens or even more grid cells. And the map is inflated with obstacles before
the actual path planning. This removes a large number of tiny obstacles. Therefore, the
advantage of the BJPS+ is magnified when used in practice. In addition, the improved map
preprocessing algorithm is about 95% faster than the original algorithm. In general, the
BJPS+ algorithm performs quite well.

4.2. Simulation of Public Data Sets

The improved algorithm is applied to the game <Dragon Age II>. The dataset takes
dr_slavers map, which Sturtevant [33] provides free of charge. The map size is 1073 × 1073,
and the simulation results are shown in Figure 13.

To evaluate the performance of the improved algorithm for path planning in structured
occasions, we used an experimental floor daheng3 map with a map size of 2000 × 2000.
The simulation results are shown in Figure 14, and the results show that the improved
algorithm has a huge advantage in the two evaluation metrics of the search time and the
number of search nodes in structured occasion search. In addition, the optimized path
using the parallelogram rewiring strategy ensures a maximum straight-line travel distance.
It ensures a faster travel speed for the robot. The reduction in inflection points ensures that
the robot travels safely.
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Figure 14. The improved algorithm is applied to dr daheng3 map. The red path is obtained without a
rewiring strategy, and the blue path is obtained using a rewiring strategy. The map origin is in the
lower left corner, the starting point is (1900,100), and the target point is (1850,1900). The path search
time is 170.616 ms, the path length is 4746.830, and the number of search nodes is 371.

5. Conclusions

An improved bidirectional JPS algorithm is proposed in this study based on the
electricity-guided navigation behavior of electric eels and map preprocessing. By drawing
on the electric eel’s ability to use electric fields in water to quickly find its companions,
this study has successfully improved the robot’s ability to locate and navigate in specific
environments. The aim of this study is to reduce the path search time and storage memory
by introducing an improved heuristic function, a new jump point screening strategy, a
anode expansion strategy, and a bidirectional search strategy. Additionally, a rewiring
algorithm is developed to reduce the number of inflection points. The combination of
these five improvements has resulted in significant performance enhancements for the
path search algorithm. Furthermore, experimental results on a public dataset demonstrate
the effectiveness of the improved algorithm. Overall, the findings indicate that the pro-
posed algorithm can be successfully applied in complex situations, particularly in practical
structured scenarios.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomimetics8050387/s1, Figure S1: comparison of path search
times for each experiment in Table 2; Table S1: error margins of 95% of the path search time for each
set of experiments in Table 2; Table S2: SD1.xlsx, SD2.xlsx, SD3.xlsx, SD4.xlsx, SD5.xlsx contains the
experimental results (standard deviation) of A *, Bi-A *, JPS, JPS +, BJPS + algorithms respectively.
Sheet1, Sheet2, Sheet3, Sheet4, Sheet5 corresponding barrier coverage 5%, 10%, 20%, 30%, 40%. The
data was not subjected to the calculation of error margins of confidence for specific values.
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