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Abstract: To address the challenge of no-reference image quality assessment (NR-IQA) for au-
thentically and synthetically distorted images, we propose a novel network called the Combining
Convolution and Self-Attention for Image Quality Assessment network (Conv-Former). Our model
uses a multi-stage transformer architecture similar to that of ResNet-50 to represent appropriate per-
ceptual mechanisms in image quality assessment (IQA) to build an accurate IQA model. We employ
adaptive learnable position embedding to handle images with arbitrary resolution. We propose a new
transformer block (TB) by taking advantage of transformers to capture long-range dependencies, and
of local information perception (LIP) to model local features for enhanced representation learning.
The module increases the model’s understanding of the image content. Dual path pooling (DPP) is
used to keep more contextual image quality information in feature downsampling. Experimental
results verify that Conv-Former not only outperforms the state-of-the-art methods on authentic
image databases, but also achieves competing performances on synthetic image databases which
demonstrate the strong fitting performance and generalization capability of our proposed model.

Keywords: image quality assessment; vision transformer; self-attention; neural network; deep
model interation

1. Introduction

Image quality assessment (IQA) is a branch of computer vision research that aims
to give computers the same ability to judge image quality as humans. IQA is a crucial
research area since it can be applied to image restoration and used to distinguish between
distinct visual perception experiences [1]. These days, digital images captured by cameras
on cell phones, professional imaging equipment, and remote sensing satellites are widely
used [2]. Digital images introduce noise signals in the acquisition process, and they can
lose perceptual information during compression, storage, and transmission [3]. As a
result, IQA is becoming increasingly important and has numerous applications, such as
designing image restoration models to remove blur, noise, clouds, and other artifacts from
images using IQA algorithms. It can also assist image acquisition equipment in evaluating
and debugging the product’s imaging parameters and determining whether the imaging
system is degraded. Although subjective human assessment can truly reflect human
visual perception, and the assessment results are direct, accurate, and reliable, which is the
ultimate basis for judging image quality, the implementation process is time-consuming
and costly. It is also easily influenced by personal subjective emotions and preferences,
and it has many limitations in meeting practical application needs [4]. To promote the use
of IQA in real-world engineering, accurate and effective objective IQA algorithms must
be developed.
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The objective IQA method is an evaluation method that builds a mathematical model
based on the visual system of the human eye and scores the image to be measured. This
method is low-cost, has the advantages of batch processing and reproducible results, and
can be more easily applied to a variety of scenarios. Traditionally, objective IQA algorithms
are classified into three categories based on whether a reference image is required or not:
full reference IQA (FR-IQA) [5], reduced-reference IQA (RR-IQA) [6], and no reference IQA
(NR-IQA) [7]. The full-reference image quality evaluation method uses the image under
test to compare with the original reference image in an adequately defined image space;
the reduced-reference image quality evaluation does not use the original image directly
but uses some information of the original image such as structural features and distortion
types to evaluate the image quality, and the no-reference image quality evaluation does not
use any original reference image information in the evaluation process. The main goal of
all three image quality evaluation methods is to predict a quality score relevant to human
visual perception. NR-IQA has attracted a large number of researchers’ attention in recent
years because no reference information is available or may not even exist in many realistic
situations. NR-IQA has been a challenging problem that has not been well addressed by
many methods.

Early models for NR-IQA were based on manual feature extraction [8–10], which relied
heavily on our summarized knowledge of the probabilistic architecture of the visual world,
the mechanisms of image degradation, and the composition of the human visual system
(HVS). In recent years with the development of convolutional neural networks (CNN), more
and more vision tasks have benefited from this [11–13]. Current deep learning-based image
quality assessment methods have achieved remarkable success in extracting visual features
using CNN [4,14], which have the following advantages over manual feature extraction:

(1) By carefully designing a deep neural network with the problem to be solved and the
input data, it is possible to automatically learn the relationships implicit within the
data from the training dataset without the need for tedious manual feature extraction;

(2) Deep neural network models can contain thousands of parameters; thus, deep features
can have better differentiation and representation capabilities. Compared with manu-
ally extracted features, it has more prominent advantages in extracting multi-level
features and contextual information of images;

(3) Deep learning can change the model architecture by simply adjusting the parameters,
which enables the network to automatically model itself according to the specific
characteristics of the task, with good generalization and efficiency.

In recent years, Self-Attention based transformer architecture has achieved great
success in the field of natural language processing (NLP) by establishing a long-range inter-
action in a scalable manner [15–18] and continues to make constant and ground-breaking
progress in building on this foundation. Researchers have applied the transformer directly
to computer vision by slicing images into patches, such as ViT [19] and DETR [20]. The
transformer has shown great promise in the field of computer vision, outperforming CNN
in various mainstream tasks such as image classification [11] and target detection [12], and
is likely to replace CNN as the new backbone in the future, mainly due to the transformer’s
ability to capture long-range pixel interactions and aggregate global information from the
entire input sequence.

Transformer mainly uses Multi-Headed Self-Attention (MHSA) to model long-range
interactions, as shown in Figure 1a below is the schematic architecture of MHSA. The input
image Ximage ∈ RH×W×C is cropped into N = HW/P2 image blocks of size P× P× C, and

each image block is expanded into a one-dimensional vector to finally obtain X ∈ RN×p2c,
where H, and W represent the length and width of the image, respectively, N represents
the number of image blocks, i.e., the number of tokens, and d = P2C represents the feature
dimension of each token. As in Equation (1) X is linearly transformed, and together with
the class token a new vector is formed as the input to the transformer encoder.

Xinput = [Xclass; X1W; X2W; · · ·XNW] + Epos (1)
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where Xclass is the class token added to implement the classification task, W is the matrix
that implements the linear mapping, and Epos is the position embedding.

Figure 1. Three key architectures in transformers are depicted schematically. (a) Self-Attention;
(b) Multi-head Self-Attention; (c) Transformer encoder.

Implementing Self-Attention requires defining three key elements. The query
Q = XWQ, the key K = XWK, and the value V = XWV . Where WQ, WK, WV ∈ Rd×d is the
weight matrix that implements the linear mapping. The output Z can be formulated as:

Z = softmax(QKT/
√

d)V = Attention(Q, K, V) (2)

where
√

d represents approximate normalization and the matrix product of QKT calculates
the similarity between each pair of tokens to achieve Self-Attention. As shown in Figure 1b,
the input X is i-quantized, i.e., X = [x1, x2, · · ·, xi], and xi ∈ RN× d

i is entered separately into
the Self-Attention module to obtain the multi-headed attention values by the connected
single attention values Z = [z1, z2, · · ·, zi]. The formulation can be further rewritten as:

Z = [Attention(xiw
Q
i , xiwK

i , xiwV
i )]1:iW

o (3)

where Attention(·) is the standard self-attentive function based on QKV, [·]1:i indicating
that the results obtained are concatenated.

Although the transformer has made breakthroughs in computer vision tasks, there is
still a significant performance and computational cost gap between the simple multilayer
transformer encoder architecture and the previous convolutional neural network, making
the transformer unavailable on limited hardware resources. Figure 2 shows an overview of
the ResNet50 [21], the vision transformer [19], and the multi-stage transformer [22]. The
main idea of ResNet50 is to divide the feature map extraction into different stages, so that,
given an input image, we can generate feature maps at different scales, which has proved
to be very useful in many intensive prediction tasks [21,23]. The image is split directly
into non-overlapping patches in the vision transformer and then fed into the transformer
encoder after linear projection. Inspired by the two architectures mentioned above, The
researchers designed a novel transformer network architecture to generate hierarchical
feature representations like ResNet50, which usually apply a pooling layer before each
stage to reduce the size of intermediate features by 2x downsampling, and stack several
encoder blocks in each stage. Compared to traditional vision transformer architecture,
this multi-stage transformer network can significantly reduce the number of parameters,
allowing us to train and extract multi-scale feature representations that have been shown
to be beneficial for many vision tasks. We can obtain four hierarchical feature maps at
different resolutions, similar to a typical convolutional neural network. Our proposed
Conv-Former network also exploits the advantages of this hierarchical architecture and
improves upon it.
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Figure 2. Comparison of three different neural network architectures (a) ResNet-50 [21] (b) Vision
transformer [19] (c) Multi-stage transformer [22].

In this paper, we aim to design an IQA model (Conv-Former) using the long-range
interaction capabilities of a transformer and the local feature extraction capabilities of
CNN. The network can give predictions that are more consistent with human visual system
perception. Therefore, we introduce a multi-stage transformer network architecture to our
IQA model. Using a local information perception module and a transformer to capture
local information-aware features and global semantic features in an image, the network
is able to collect fine-grained detail and global information using both local and global
features. The dual-path pooling allows the multi-stage transformer to capture as much
contextual information as possible, and the Conv-Former has experimentally proven to be
highly capable of local feature perception and image content understanding, both of which
are quite important in IQA tasks. The main contributions of this paper are as follows:

(1) We designed an end-to-end neural network model called Conv-Former for no-reference
image quality assessment. The overall architecture uses a multi-stage architecture
similar to that of ResNet-50 to obtain multi-scale features, which can significantly
reduce the number of parameters compared to the traditional transformer architecture.
At the same time, multi-scale features are more conducive to the extraction of image
quality features. This architecture enables the generation of appropriate perceptual
mechanisms in image quality assessment to build an accurate IQA model;

(2) In this work, we introduce an effective hybrid architecture for image quality as-
sessment networks that utilize local information from CNNs and global semantic
information captured by the transformer to further improve the accuracy of IQA,
implemented by replacing the linear layer that generates the qkv matrix with a local
information-aware module that is able to further obtain local information in image
quality, acquire fine-grained features and obtain detailed and overall information
representation in the image. Network analysis experiments also demonstrate that
the network outperforms other models for understanding the content of the input
images. This enables the neural network to focus better on the subtle differences
between images and thus obtain a more accurate image quality score. In order to
reduce the image quality information loss in the feature downsampling process under
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multi-stage architecture, we designed the dual path pooling module to keep more
contextual information;

(3) The position embedding of traditional transformer networks cannot adapt to the input
of different resolution images and the use of local information perception modules.
Therefore, this paper proposes an adaptive 2D position embedding module, which
solves the problem that traditional CNN networks cannot input images with different
resolutions, and at the same time, the 2D position embedding is more in line with
the characteristics of images. It can effectively represent the position information
between tokens;

(4) We experimented with Conv-Former on two different authentic image quality as-
sessment datasets, LIVE Challenge (LIVEC) and KonIQ-10k, as well as on synthetic
datasets LIVE, TID2013, and CSIQ, and compared the performance of the algorithm
on different distortion types. The extensive experimental results show that Conv-
Former has competitive results, which demonstrate the strong fitting performance and
generalization capability of our proposed model. As shown in Figure 3, we can find
that the results of Conv-Former are more in line with the Mean Opinion Score (MOS).

Figure 3. Representative traditional IQA methods and deep learning-based methods are compared
with our proposed method on dataset TID2013. Higher correlation means better performance of the
IQA method. (a) BRISQUE (b) NIQE (c) DBCNN (d) ours.

2. Related Work
2.1. Attention Mechanism in CNN

The attention mechanism is an important feature of the human visual system, which
means that only a portion of all visible information is noticed by humans. The attention
mechanism is introduced in CNNs by simulating the human visual perception process,
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which can ignore the interference of irrelevant information and thus improve the gener-
alization performance of the network. This has enabled CNNs to make breakthroughs in
areas such as object detection, image generation, and target tracking.

The attention mechanism was originally used to encode long input sentences as part
of the encoder-decoder framework in recurrent neural networks (RNN) and has since
been widely used in RNN [24]. Attention is widely used to enhance the representation
of features. For example, Hu et al. [25] propose that SENet uses channel attention to
explicitly model the interdependencies between feature maps and adaptively acquire the
importance of each feature map by learning and then updating the original data based
on this importance. In this way, SENet increases the importance of features that are more
useful for the task and decreases the importance of useless features to achieve better results.
By embedding this module into other networks, the computational resources of the neural
network can be more rationally allocated with a small increase in the cost of the number of
parameters, resulting in a significant improvement in network performance. Wang et al. [26]
proposed efficient channel attention by improving the SENet, which is a local cross-channel
interaction strategy without dimensionality reduction and an adaptive selection of the
one-dimensional convolutional kernel size to obtain more accurate attention information
by aggregating cross-channel information through a one-dimensional convolutional layer.
Convolutional Block Attention Module (CBAM) [27] is constructed by combining the spatial
attention module (SAM) and the channel. The CBAM is built by combining the spatial
attention module (SAM) and the channel attention module (CAM), aggregating attention
information from both spatial and channel aspects respectively, and fusing the information
to a certain extent to obtain more comprehensive and reliable attention information and
provide more appropriate guidance on the allocation of computational resources. Based
on CBAM, fu et al. [28] proposed DA-Net, which also integrates channel attention and
spatial attention. Unlike CBAM, where the acquisition of attention information in both
directions is parallel, DA-Net captures global feature dependencies in the spatial and
channel dimensions, using a spatial attention module to learn spatial interdependencies of
features and a channel attention module to model channel interdependencies.

2.2. No-Reference Image Quality Assessment

No-reference image quality assessment means that no reference image is required, and
the quality is assessed only based on the distorted image’s characteristics, which is also
more in line with practical needs, as reference images are difficult to obtain or do not exist in
practical applications. NR-IQA methods can be divided into two categories, distortion type
specific IQA methods [29–31] and generic IQA methods [8–10]. Distortion type specific IQA
methods are designed based on specific distortion types, such as noise, JPEG compression
artifacts, blurred artifacts, and other distortion types, and these methods design specific
feature extraction methods by looking at the histogram of the pixel distribution of the
image after distortion, after which the quality prediction score of the image is obtained.
However, this method is limited in that it can only detect quality losses caused by specific
distortions and is therefore not widely used. The generic NR-IQA method is more effective
because the image distortion type is usually unknown in advance.

As shown in Figure 4, most of the traditional NR-IQA methods are based on natural
scene statistics (NSS) methods, which first manually extract features from distorted images
and then use probabilistic or regression models for quality prediction of distorted images.
In early NSS-based NR-IQA methods, features are extracted from transform domains such
as wavelet or cosine transform domains.
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Figure 4. The general process of traditional no-reference image quality assessment methods.

Moorth et al. [32,33] proposed a class of image quality evaluation methods divided
into two stages, first identifying distortion types and then performing the distortion-
specific quality assessment. For example, Blind Image Quality Index (BIQI) [32], an image
authenticity and integrity image quality evaluation algorithm based on distortion type
identification (DIIVINE) [33], both of which are based on training a support vector machine
(SVM) to obtain a classifier for the image distortion type, then extracting the image features
and relying on a support vector regressor to regress the quality prediction scores for each
DIIVINE improves the process of extracting image features based on BIQI, uses NSS to
estimate the coefficient distribution of wavelets, and extracts global features to determine
the image quality score. Saad et al. proposed a blind image integrity labeling algorithm
based on discrete cosine transform statistics (BLIINDS) [34], which extracts features from
the DCT domain and then uses a multivariate Gaussian model to obtain the quality scores
of distorted images. Saad et al. later proposed an optimized BLIINDS (BLIINDS-II) [35] by
extracting more complex DCT features, using a generalized Gaussian mixture model to fit
different multiscale discrete cosine transform coefficient distributions as frequency domain
statistics and a Bayesian which wasmore time-consuming because of the transformation of
the image domain. To avoid the transformation of the domain, methods based on spatial
domain features have emerged. Mittal et al. [8] proposed a spatial domain non-reference
image quality assessment algorithm (BRISQUE), which uses the local mean and variance
of the image to calculate the local normalized brightness of the image, and then uses a
generalized Gaussian model to model the local normalized brightness distribution as its
spatial domain natural statistical features to obtain the prediction score. Ye et al. [36]
proposed a codebook-based manual feature extraction NR-IQA algorithm, which uses a
K-mean clustering method to learn codebooks directly from training image blocks, then
codebooks are used to encode on test images to obtain features of the images, and finally,
SVR is used to predict the quality scores of distorted images. Zhang et al. [37] used these
features to extract salient regions of semantic objects for quality estimation. Xu et al. [9]
improved the feature set and predicted the quality score by merging the higher-order
statistical information of the images. However, these manual feature extraction methods
require specialized design and are very time-consuming. In addition, scene statistical
features characterize image quality from a global perspective and thus cannot measure
local distortions common in real distorted images.

Inspired by the breakthroughs in deep learning for other vision tasks [11–13,21],
researchers have proposed several learning-based methods for image quality assessment
that extract quality-related image features and automatically learn correction parameters
through deep learning. Thus, better results than traditional manual feature extraction
are obtained.
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3. Proposed Method

In this section, we describe in detail the architecture of our proposed Conv-Former
model and outline the specific roles each block plays. First, we describe the overview of the
Conv-Former block. On this basis, the key modules of the algorithm are described, such as
the local information-awareness module and the adaptive position embedding.

3.1. Overview

An overview of the model is depicted in Figure 5. The processing of the input image
can be divided into three stages and let the output features of each stage be F1, F2 and F3
respectively. Each feature consists of spatial tokens [X1

spatial , · · ·, X3
spatial ] and classification

token [X1
class, · · ·, X3

class] and can be expressed by Equation (4). In this paper, the feature
channel numbers D1, D2, and D3 are taken to be 192, 384, and 512 respectively.

F1 = [X1
class; X1

spatial ], X1
class ∈ R1×D1 , X1

spatial
F2 = [X2

class; X2
spatial ], X2

class ∈ R1×D2 , X2
spatial

F3 = [X3
class; X3

spatial ], X3
class ∈ R1×D3 , X3

spatial

(4)

Figure 5. The overview of the network architecture of the proposed Conv-Former.

First, we reshape the input image X ∈ RH×W×C to the feature map F1 ∈ R
H
p ×

W
p ×D1 by

convolutional feature extraction, where (H, W) is the resolution of the original image, C is
the number of channels, p is the resolution decay after the convolution operation, D1 is the
dimension of the feature map F1, and N = HW/P2 is the resulting number of tokens, which
serves as the effective input sequence length for the Transformer. The Adaptive Position
Embedding described in Section 3.2 is added to the patch embeddings to retain positional
information. As shown in Equation (6), The process from feature F1 to F2 is similar to the
process from F2 to F3, with three layers of transformer modules and a layer of Dual path
pooling(DDP) modules for 2x down adoption in between, reducing the resolution of the
features while increasing the number of feature channels, and after obtaining feature F3,
the classification token containing the image quality information is fed alone into the MLP
to obtain the final image quality assessment score.

X → F1 = [X1
class; Conv(X) + Epos], Epos ∈ RFH

1 ×FW
1 , X1

class ∈ R1×D1

F1 → F2 = DPP(TB(TB(TB(F1))))
F2 → F3 = DPP(TB(TB(TB(F2))))
F3 → Score = MLP(X3

class), X3
class ∈ R1×D3

(5)
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3.2. Adaptive 2D Position Embedding

In CNN-based image quality evaluation models, the input images need to be resized
or cropped to a fixed shape for batch training. However, this pre-processing changes the
aspect ratio and composition of the image, which affects the image quality. However, by
processing the position encoding part of the transformer-based network, it is possible to
input images of any resolution into the network. No pre-processing of the input image is
required, in line with the human visual system.

Position encoding is an integral part of the transformer architecture, through which
the position encoding can be determined to explicitly model the position of the token
and improve the representational power of the model. Its effectiveness has been well
demonstrated in the field of natural language processing [15,16,18]. Since images can be
considered as two-dimensional sequences, there is a need to extend the one-dimensional
position encoding to two-dimensional position encoding, regardless of the input image
size. The method mentioned in this section can effectively provide the position information
required for object localization.

The specific implementation steps are as follows. Suppose the size of the input feature
map is Rh×w×c, then we define a learnable parameter matrix L ∈ Rs×s, where the size of
the matrix s is a hyperparameter, set to 10 in this paper, and we obtain the position code
A ∈ Rh×w by adaptively deflating the learnable matrix, the size of the position code is
consistent with the feature map, as shown in Figure 6, let (hi, wj) be a point on the position
code matrix A, then the corresponding position code at that point can be determined by
the following equation.

A(hi, wj) = L(Round(
s
h
× hi), Round(

s
w
× wi)) (6)

where Round(·) stands for rounding the floating point number inside the brackets and
A(· , ·), L(· , ·), represent the coded values at the corresponding positions respectively.

Figure 6. Schematic drawing of the implementation of adaptive 2D position embedding.

3.3. Transformer Block

Local features can be captured in CNN by convolutional operations, and although
global features can be captured by continuously deepening the neural network, the global
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features suffer a significant loss in the process. With the advent of transformer, the long-
range dependencies of token are captured by Self-Attention and multi-layer perceptron
(MLP) architecture, but such architectures ignore local detail features. As shown in Figure 7,
in order to combine the advantages of local features and global representations and thus
improve the performance of the transformer network, we designed a novel local informa-
tion perception (LIP) module to generate QKV that improves the discriminability between
background and foreground. As shown in Equation (7), Let the input tensor X ∈ Rh×w×d

be projected into the query vector Q ∈ RL×d, key vector K ∈ RL×d, and value tensor
V ∈ RL×d, where d is the dimension size of each token and L = h× w + 1 is the number
of tokens. 

Q = concate[ f latten(LIPQ(X)), Tcls]
K = concate[ f latten(LIPK(X)), Tcls]
V = concate[ f latten(LIPV(X)), Tcls]

(7)

where Tcls stands for classification token.

LIP(X) = Conv(Conv(x) + DWConv(x)) (8)

Figure 7. The architecture of the proposed Transformer Block.

3.4. Dual Path Pooling

For the feature downsampling at the end of each stage, we designed a dual-path pool-
ing (DPP) layer, as shown in Figure 5. It consists of two branches: one is a 3 × 3 depthwise
convolution with a step size of two; the other is a pooling layer and a
1 × 1 convolution. It is possible to achieve twice as much downsampling. During feature
downsampling, the features on both paths are fused together by channel stacking to retain
more contextual information. Experimental results show that DPP performs better than a
direct maximum pooling layer. In equation terms, this can be described as follows.

I ↓= concat(DWconv(x, 3× 3) + conv(maxpooling(x), 1× 1)) (9)

4. Experiments
4.1. Datasets

In this work, five widely used datasets in the field of image quality assessment were
used, which can be split into authentic datasets and synthetic datasets based on the method
of obtaining distorted images. The synthetic datasets include LIVE [38], TID2013 [39], and
CSIQ [40]. The authentic distortion image dataset includes the LIVE Challenge (LIVEC) [41]
and KonIQ-10k [42] datasets. A detailed description of them is given in Table 1.

The University of Texas at Austin’s Image and Video Engineering Laboratory estab-
lished the LIVE image quality assessment dataset [38] in 2006. It consists of 779 distorted
images developed from 29 source images using a total of five different forms of distortion
(JP2K compression, JPEG compression, additive white Gaussian noise, Gaussian blur, and
Simulated fast-fading Rayleigh channel). The scores are expressed by the Differential
Mean Opinion Score (DMOS), the difference between the human eye’s evaluation score of
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the reference image and the distorted image, with lower values indicating higher image
visual quality.

Table 1. IQA datasets for performance evaluation and model training.

Database Reference
Image

Distorted
Image

Distorted
Type Score Type Score Range

LIVE 29 779 5 DMOS * [0, 100]
TID2013 25 3000 24 MOS [0, 9]

CSIQ 30 866 6 DMOS [0, 1]
LIVE

Challenge - 1162 - MOS [0, 100]

KonIQ-10k - 10,073 - MOS [0, 5]
* DMOS indicates the difference in mean opinion scores (MOS) between the test image and its reference image.

The TID2013 dataset is an extension of the TID2008 dataset [43] and contains
3000 distorted images based on 25 reference images with 24 different distortion types
and five distortion levels. Image distortion categories include Additive Gaussian noise, Im-
pulse noise, Chromatic aberrations, and so on. The Mean Opinion Score (MOS) values [0, 9]
are employed. The higher the value, the greater the visual quality. Because the TID2013
dataset contains more types of distortion, it places more demands on the algorithm, and
many traditional methods cannot be used effectively. In Figure 8, we compare the attention
maps of the three different network architectures.

Figure 8. Distorted images in the synthetic dataset CSIQ and the corresponding reference images,
corresponding to the distortion types (a) White Noise (b) Gaussian Blur (c) Contrast stretching
(d) Pink noise (e) JPEG Compression (f) JPEG2000 Compression.

The Computational Perception and Image Quality Lab at Oklahoma State University
created the CSIQ dataset [40], which contains 30 raw images and 866 images distorted
by JPEG compression, JP2K compression, Gaussian blur, Gaussian white noise, Gaussian
pink noise, or contrast variation, with five or four levels of each distortion type. The
photos are 512 × 512 in size. The DMOS values acquired are in the [0, 1] range, with lower
values suggesting greater visual quality. We show a selection of images from the dataset
in Figure 9.
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Figure 9. (a–f) are the distorted images from the authentic dataset LIVE Challenge.

LIVE Challenge [41] contains 1162 images taken in a variety of natural environments,
with complex losses due to the level of photography and imaging equipment used to
capture them, typically a combination of overexposure or underexposure, blur, grain, or
compression, with MOS ranging from [0, 100], the higher the value the better. We show a
selection of images from the dataset in Figure 10.

Table 2. Performance comparison of the IQA methods on five standard IQA databases, i.e., LIVEC,
KonIQ, TID2013, LIVE, CSIQ. The top-performing method is highlighted in boldface.

Methods
LIVEC KonIQ TID2013 LIVE CSIQ

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

BRISQUE 0.629 0.608 0.681 0.665 0.694 0.604 0.935 0.939 0.829 0.746
NIQE 0.415 0.373 0.489 0.516 0.426 0.317 0.908 0.908 0.725 0.627

DIIVINE 0.595 0.576 0.479 0.434 0.672 0.583 0.881 0.879 0.836 0.784
HOSA 0.678 0.640 0.694 0.671 0.815 0.735 0.947 0.946 0.823 0.741

WaDIQaM 0.680 0.671 0.805 0.797 0.787 0.761 0.963 0.954 0.973 0.955
BIECON 0.613 0.595 0.651 0.618 0.762 0.717 0.962 0.961 0.823 0.815

SFA 0.833 0.812 0.872 0.856 0.873 0.861 0.895 0.883 0.818 0.796
PQR 0.882 0.857 0.884 0.880 0.798 0.739 0.971 0.965 0.901 0.873

DBCNN 0.869 0.851 0.884 0.875 - - 0.971 0.968 0.959 0.946
SHN 0.882 0.859 0.917 0.906 - - 0.966 0.962 0.942 0.923

RankIQA - * - - - 0.810 0.780 0.982 0.981 - -
ResNet-

ft 0.849 0.819 - - 0.756 0.712 0.954 0.950 0.905 0.876

TRIQ - - 0.922 0.910 - - - - - -
MUSIQ - - 0.928 0.916 - - - - - -

Ours 0.899 0.868 0.938 0.924 0.965 0.964 0.979 0.971 0.978 0.964

* indicates that no testing was undertaken on this dataset in the original.

The KonIQ-10k dataset consists of 10,073 images selected from the large public multi-
media database YFCC100m [44]. The sampled images cover as wide and uniform a quality
distribution as possible in terms of brightness, colour, contrast and sharpness, and the
types of distortion present in these images include noise, JPEG artifacts, blending, lens
motion blur, over-sharpening, and so on. The researchers conducted a large-scale crowd-
sourcing experiment based on the collected dataset, receiving 1.2 million assessments from
1467 observers utilizing statistical approaches such as taking the mean and deleting extreme
scores to determine the final MOS values. The photos were 1024 × 768 in size. MOS values
were in the [0, 5] range, with higher values indicating less distortion.
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Figure 10. Histogram representation of the data in Table 2.

4.2. Evaluation Metrics

In order to quantitatively compare the performance of IQA algorithms, researchers
often use the following three evaluation criteria.

(1) Spearman rank-order correlation coefficient (SROCC), SRCC is used to measure the
monotonicity of IQA algorithm predictions and is calculated as follows.

SRCC = 1−
6∑i d2

i
I(I2 − 1)

(10)

where di denotes the difference between the subjective quality score ranking of the i-th
image and the objective quality score ranking, and I denotes the number of images in the
test set.

(2) The Pearson linear correlation coefficient (PLCC), PLCC is used to assess the accuracy
and degree of linear correlation of IQA model predictions.

PLCC =
∑i (qi − qm)(q̂i − q̂m)√

∑i (qi − qm)
2
√

∑i (q̂i − q̂m)
2

(11)

where qi and q̂i denote the MOS value and algorithm prediction score of the i-th image,
respectively, and qm q̂m denote the mean MOS value and the mean algorithm prediction
score of the test image samples, respectively.

(3) The root mean square error (RMSE), RMSE is used to assess the consistency of the IQA
model’s predictions. It is used to measure the absolute error between the algorithm’s
predicted score and the subjective evaluation score and is calculated as follows.

RMSE =

√√√√ 1
n

N

∑
i=1

(qi − q̂i)
2 (12)

4.3. Implementation Details

In the experiments, for each dataset, 80% of the images were randomly selected for
training and 20% for testing. The training is conducted using a SGD optimizer with a batch
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size of eight. We trained our models with an initial learning rate of 0.001, with a warm up
cosine learning rate decay scheduler. We adopted MSE loss for training:

Lreg =‖ model(IDist)− s ‖2 (13)

where model(IDist) denotes the output of the proposed Conv-Former, s denotes the ground-
truth normalized MOS or DMOS value. We implemented our proposed model Conv-
Former in Pytorch version 1.12.0 and python version 3.9, which was trained using a
single NVIDIA GeForce RTX 3090 GPU. The CUDA and CuDNN versions are 11.6 and
8.4.0 respectively.

4.4. Comparing with the State-of-The Art (SOTA)

We assessed the performance of our model with PLCC and SRCC. PLCC assesses the
linear correlation between ground truth and the predicted quality scores, whereas SRCC
describes the level of monotonic correlation.

We evaluated the effectiveness of Conv-Former on five benchmark datasets. For all
of our tests, we followed the above experimental setup. It can be shown in Table 2 that
Conv-Former outperforms or is competitive with 14 NR-IQA methods: BRISQUE, NIQE,
DIIVINE, HOSA, WaDIQaM, BIECON, SFA, PQR, DBCNN, SHN, RankIQA, ResNet-ft,
TRIQ and MUSIQ. We found that our method achieves the best PLCC/SRCC results in
comparison to other works. Especially on the moe complex dataset TID2013, our proposed
model achieved a solid improvement over previous work. Even though Conv-Former
achieves 0.965 on PLCC and 0.964 on SRCC, which means the metric is consistent with the
human perspective. The effective feature fusion by CNN and ViT and the proposed multi-
scale prediction module make our method substantially superior to other transformer-based
image quality assessment network; examples include TRIQ and MUSIQ. Although the
model achieved better results on more complex datasets, there was no major improvement
for datasets where most algorithms performed well, such as the LIVE dataset. In order to
visualise the advantages of Conv-Former, we present the data in Table 2 as a histogram
in Figure 11.

In order to evaluate the effectiveness of Conv-Former on different types of distorted
images, we also compare the PLCC/SRCC performances on five kinds (JP2K compression,
JPEG compression, additive white Gaussian noise, Gaussian blur, Simulated fast fading
Rayleigh channel) of distorted types in the LIVE dataset and six kinds (JPEG compression,
JP2K compression, Gaussian blur, Gaussian white noise, Gaussian pink noise, contrast
variation) of distorted types in the CSIQ dataset. Tables 3 and 4 show the results of different
IQA methods on different types of distorted images. In the tables, we find our method
achieves the best or most competitive performances on all different types of distorted
images than other IQA methods.

Table 3. Average PLCC and SRCC results of individual distortion types on the LIVE databases. The
top-performing method is highlighted in boldface.

Methods JPEG JPEG200 WN GB FF

PLCC

BRISQUE 0.971 0.940 0.989 0.965 0.894
HOSA 0.967 0.949 0.983 0.967 0.967

CORNIA 0.962 0.944 0.974 0.961 0.943
DBCNN 0.986 0.967 0.988 0.956 0.961

Ours 0.987 0.977 0.986 0.974 0.970

SRCC

BRISQUE 0.965 0.929 0.982 0.966 0.828
HOSA 0.954 0.935 0.975 0.954 0.954

CORNIA 0.947 0.924 0.958 0.951 0.921
DBCNN 0.972 0.955 0.980 0.935 0.930

Ours 0.974 0.960 0.971 0.965 0.965
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Table 4. Average PLCC and SRCC results of individual distortion types on the CSIQ databases. The
top performing method is highlighted in bold face.

Methods JPEG JPEG200 WN GB PN CC

PLCC

BRISQUE 0.828 0.887 0.742 0.891 0.496 0.835
HOSA 0.759 0.899 0.656 0.912 0.601 0.744

CORNIA 0.563 0.883 0.687 0.904 0.632 0.543
DBCNN 0.982 0.971 0.956 0.969 0.950 0.895
MEON 0.979 0.925 0.958 0.946 - -
Ours 0.966 0.987 0.951 0.976 0.982 0.947

SRCC

BRISQUE 0.806 0.840 0.723 0.820 0.378 0.804
HOSA 0.733 0.818 0.604 0.841 0.500 0.716

CORNIA 0.513 0.831 0.664 0.836 0.493 0.462
DBCNN 0.940 0.953 0.948 0.947 0.940 0.870
MEON 0.948 0.898 0.951 0.918 - -
Ours 0.969 0.980 0.975 0.945 0.965 0.924

Figure 11. Scatter plots of ground-truth mean opinion scores (MOS) against predicted scores of
(a–f) different IQA algorithms on CSIQ datasets. The red points denote the testing instances. The
blue line is the ideal linear relationship between MOS and the prediction score. The green line is the
curve fitted using the test instance. Higher correlation means better performance of the IQA method.
(a) BRISQUE; (b) NIQE; (c) DIIVINE; (d) HOSA; (e) CORNIA; (f) BIECON; (g) SFA; (h) WaDIQaM;
(i) ours.



Sensors 2023, 23, 427 16 of 21

To further investigate the effectiveness of the proposed Conv-Former, we demonstrate
the scatter plots between the MOS and the prediction scores and analyze the correlation.
Figures 12 and 13 show the scatter plots of different IQA methods on the CSIQ and LIVEC
datasets, respectively. The red points denote the testing instances. The blue line is the ideal
linear relationship between MOS and the prediction score. The green line is the curve fitted
using the test instance. All values are normalized in the range of −5 to 5 for a better view.
In the Figures 12 and 13, we can find that the results of Conv-Former are more in line with
the MOS. Compared with WaDIQaM and BIECON, our Conv-Former has fewer outliers
and performs more consistently with the MOS.

Figure 12. Scatter plots of ground-truth mean opinion scores (MOS) against predicted scores of
(a–f) different algorithms on LIVEC datasets. The red points denote the testing instances. The blue
line is the ideal linear relationship between MOS and the prediction score. The green line is the
curve fitted using the test instance. Higher correlation means better performance of the IQA method.
(a) BRISQUE; (b) NIQE; (c) DIIVINE; (d) HOSA; (e) CORNIA; (f) BIECON; (g) SFA; (h) WaDIQaM;
(i) ours.

To evaluate the generalization of our proposed Conv-Former, we conduct the cross
dataset evaluation on LIVE, CSIQ, TID2013, and LIVEC. We train the model on one train
dataset separately, then test it on the full set of the other three benchmark datasets. As
shown in Table 5, Conv-Former achieves good generalization ability.
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Figure 13. Comparison of attention maps for three different architectures of neural networks. All
attentions are normalized in the range 0 to 1. The red areas mean the higher attention values, and
the blue areas mean the lower attention values. The visual sensitive areas of our approach are more
distinguishable.
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Table 5. SRCC evaluations on cross database tests. The top-performing method is highlighted
in boldface.

Train Test
Methods

BRISQUE M3 FRIQUEE CORNIA HOSA DB-CNN Ours

LIVE
CSIQ 0.562 0.621 0.722 0.649 0.594 0.758 0.762

TID2013 0.358 0.344 0.461 0.360 0.361 0.524 0.563
LIVEC 0.337 0.226 0.411 0.443 0.463 0.567 0.572

CSIQ
LIVE 0.847 0.797 0.879 0.853 0.773 0.877 0.864

TID2013 0.454 0.328 0.463 0.312 0.329 0.540 0.572
LIVEC 0.131 0.183 0.264 0.393 0.291 0.452 0.463

TID2013
LIVE 0.790 0.873 0.755 0.846 0.846 0.891 0.894
CSIQ 0.590 0.605 0.635 0.672 0.612 0.807 0.853

LIVEC 0.254 0.112 0.181 0.293 0.319 0.457 0.524

LIVEC
LIVE 0.238 0.059 0.644 0.588 0.537 0.746 0.752
CSIQ 0.241 0.109 0.592 0.446 0.336 0.697 0.711

TID2013 0.280 0.058 0.424 0.403 0.399 0.424 0.417

4.5. Ablation Studies

In this section, to evaluate the efficiency of our proposed components, we analyze
the effectiveness of the proposed network by conducting ablation studies. With different
configuration and implementation strategies, we evaluate the effect of each of the four major
components: Multi-Scale transformer architecture (MS), Adaptive Position Embedding
(APE), Dual Path Pooling (DPP), and local information perception (LIP) module. We
conduct ablation experiments on the LIVEC, KonIQ, CSIQ, and TID2013 databases. The
results are shown in Table 6.

Table 6. PLCC and SRCC results of ablation experiments on the LIVEC, KonIQ, CSIQ, and
TID2013 database.

Methods LIVEC KonIQ CSIQ TID2013
APE MS LIP DPP PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

× √ √ √ 0.871 0.856 0.922 0.913 0.972 0.953 0.958 0.945
√ × √ √ 0.893 0.866 0.925 0.916 0.973 0.960 0.959 0.950
√ √ × √ 0.881 0.860 0.928 0.921 0.970 0.961 0.955 0.948
√ √ √ × 0.890 0.862 0.933 0.923 0.975 0.963 0.963 0.960
√ √ × × 0.882 0.858 0.930 0.921 0.969 0.956 0.961 0.950
√ × √ × 0.894 0.859 0.924 0.914 0.972 0.961 0.960 0.952
√ × × √ 0.878 0.854 0.929 0.918 0.965 0.953 0.949 0.938
√ √ √ √ 0.899 0.868 0.938 0.924 0.978 0.964 0.965 0.964

“√” means that Conv-Former contains this component, “×” means that Conv-Former does not contain this component.

We first examine the effectiveness of our proposed Adaptive Position Embedding
module. From the results, we can see a significant improvement in SRCC and PLCC with
the use of positional coding. In KonIQ, the SRCC and PLCC increased by 2.8% and 2.2%,
respectively. As a result, this demonstrates the critical importance of Position Embedding
for our proposed Conv-Former. All subsequent ablation experiments were carried out with
the Position Embedding. Table 6 shows that the best performance can be achieved when all
three components are available. The table shows that the lack of any of the following three
components in our Conv-Former will negatively impact the objective performance metrics.

4.6. Analysis and Discussion

To further validate the proposed method’s effectiveness and analyze the internal
mechanism of the difference in the performance of the neural networks, in Figure 8, we
compare the attention maps of the three different network architectures.
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The proposed Conv-Former tends to focus on the regions that significantly impact the
quality assessment scores, as seen from the attention maps so that the obtained image qual-
ity assessment scores can be remarkably consistent with the subjective assessment results
of the human eye. For example, people tend to assess the quality of an image based on the
target when it is in a pure background, and some images are blurred to highlight the target,
so people tend to focus on the clear parts to assess the quality of the image. This aligns
with our intuition, resulting in superior results compared to other methods. Compared to
the traditional approach using CNN, the approach using the transformer tends to activate
more significant regions rather than local areas, implying enhanced long-range feature
dependency. Since the local information-aware module provides detailed local features,
the Conv-former can retain important detailed local features that are often corrupted by
the vision transformer. In addition, the target attention areas can be more complete in a
significant area context, meaning that Conv-former learns feature representations with
higher discriminative power.

On the other hand, humans perceive different image qualities in different ways when
the image’s content is different. Our proposed Conv-Former can identify the image content
well in the process of image quality evaluation and can try to understand the image before
predicting it, which is more in line with the laws of human perception of the objective world.

5. Conclusions

In this paper, we propose a novel network, combining convolution and Self-Attention
for an image quality assessment network (Conv-Former) for the no-reference image quality
assessment task. Our model can obtain global features through transformer and local
information perception (LIP). We evaluate the effectiveness of Conv-Former on five bench-
mark datasets, we found that our method achieves the best PLCC/SRCC results compared
to other works. Especially on the more complex dataset TID2013, our proposed model
achieved a solid improvement over previous work. Even though Conv-Former achieves
0.965 on PLCC and 0.964 on SRCC, which means the metric is consistent with the human
perspective. Experimental results showed that our proposed approach outperforms the
state-of-the-art (SOTA) methods on IQA databases, which has strong generalization ability
and provides prospects for the broader application of IQA tasks. Future work will focus on
developing more generic IQA models in which a single model can be adapted to diverse
image content and imaging devices. Our proposed model should have a sufficient dataset
so that the trained model can have a stronger generalization ability and obtain excellent
results on images where the model has not been trained. The size of the model is also a
key factor in its ability to be deployed in practical applications, and we will continue to
optimize the model in the future so that it has fewer parameters and runs faster.
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