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ABSTRACT In the context of autonomous driving, environmental perception within a 360-degree field
of view is extremely important. This can be achieved via the detection of three-dimensional (3D) objects
in the surrounding scene with the inputs acquired by sensors such as LiDAR or RGB camera. The 3D
perception generated is commonly represented as the bird’s-eye-view (BEV) of the sensor. RGB camera
has the advantages of low-cost and long-range acquisition. As the RGB images are two-dimensional (2D),
the BEV generated from 2D images suffers from low accuracy due to limitations such as lack of temporal
correlation. To address the problems, we propose a monocular 3D object detection method based on long
short-term feature fusion and motion feature distillation. Long short-term temporal features are extracted
with different feature map resolutions. Themotion features and depth information are combined and encoded
using an encoder based on the Transformer cross-correlation module, and further integrated into the BEV
space of fused long short-term temporal features. Subsequently, a decoder with motion feature distillation
is used to localize objects in 3D space. By combining BEV feature representations of different time steps,
and supplemented with embedded motion features and depth information, our proposed method significantly
improves the accuracy of monocular 3D object detection as demonstrated from experimental results obtained
on nuScenes dataset. Our proposed method outperforms state-of-the-art methods, in particular the previous
best art by 6.7% on mAP, and 8.3% on mATE.

INDEX TERMS 3D object detection, bird’s-eye-view (BEV), monocular depth estimation, motion feature,
knowledge distillation, autonomous driving.

I. INTRODUCTION
In applications such as autonomous driving [1], [2], [3],
robot navigation, and augmented reality, any environmental
changes within the 360-degree field of view can directly
affect the safety of the vehicle and the correctness of
self-driving decisions. Therefore, accurate three-dimensional
(3D) perception of the surrounding scene is important and
crucial. In order to achieve accurate 3D perception and
objects localization, previous methods use sensors such as
LiDAR or panoramic cameras to provide accurate distance
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measurements and algorithms adapted to the correspond-
ing sensors. However, the increasing demand of additional
sensors results in higher deployment costs and algorithm
complexity, greatly affecting the computational cost and gen-
eralization ability of downstream tasks such as 3D object
detection, object tracking, and 3D instance segmentation.
To solve these problems, low-cost and easy-to-deploymonoc-
ular 3D object detection has become a feasible solution and
research direction for panoramic scene perception.

Monocular 3D object detection, with only inputs of RGB
two-dimensional (2D) images, lacks additional sensors that
can provide accurate depth information. The ambiguity of
depth values makes the monocular 3D object detection an
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ill-posed problem. Therefore, using 2D images as the only
information source suffers from low accuracy in estimating
the distance of objects and predicting the 3D bounding boxes.
In recent years, some works [4], [5], [6], [7], [8], [9] have
used short-term neighboring image information, e.g., tem-
poral window, for detecting and locating 3D objects from
2D images of the scene. It is expected that utilizing a larger
temporal window can bring greater disparity in dynamic
circumstances. Accuracy of estimating object distance, and
subsequently the 3D object detection, will be improved.
However, due to high computational cost and concerns in
deploying the model, these works only exploit 2-3 frame
temporal window in the neighborhood to provide temporal
information support. The difficulties and the demand for
higher accuracy are still faced by the current research in
monocular 3D object detection.

Existing methods have tried different ways to aggregate
temporal features for locating objects in 3D space. Generally,
these methods adopt spatio-temporal stereo matching. The
algorithm is to process temporal information in a virtual
3D space and simultaneously consider image features cor-
responding to spatial hypothetical positions generated from
multiple time points. To quantify the quality of these meth-
ods in stereo depth estimation, Park et al. [10] proposed 3D
localization potential which is defined as the amplitude of the
change in the projected length of a source view caused by a
change in the depth of a reference view. A larger 3D localiza-
tion potential causes the corresponding pixel in the reference
view to be projected further in the source view, providing
source view features with greater differentiation for depth
estimation in the reference view. Therefore, depth estimation
values that are more strongly associated with source view
features can suppress incorrect depth estimation and result
in more accurate 3D spatial localization of objects. However,
if temporal window is small, 3D localization potential will
be low. This will lead to lower accuracy of 3D object local-
ization. Another factor is the resolution of the input image
feature map. Lower feature map resolution can also limit the
accuracy of depth estimation and affect the performance of
3D object detection.

Based on the above discussion, we first propose a
long-short fusion idea for monocular 3D object detection
based on an expanded temporal window. Different parameters
are selected to balance the feature map resolution and tempo-
ral window size via two designs: (i) improving the feature
map resolution of the input images in the temporal neighbor-
hood of the source view; and (ii) reducing the feature map
resolution of the images further away in the temporal domain.
As a result, our proposed method, with the use of a larger
temporal window, can exploit richer temporal features from
more reference views. With larger 3D localization potential,
accuracy of 3D object detection is improved.

When the motion pattern of the observation point tends
to be stable, a larger temporal window can provide reli-
able temporal features. However, in real-world scenarios,
motion pattern of the observation point may be randomly

disturbed due to changes of the surrounding environment,
thereby affecting the algorithm’s ability ofmodeling temporal
information. Therefore, we introduce motion estimation as an
auxiliary process which is utilized to extract motion features
for 3D object detection. However, motion estimation from
2D images is not a trivial task. Errors can cause feature
blurring and instability of the object detection model, lead-
ing to inaccurate 3D object localization. To solve the above
problems, we propose our monocular 3D object detection
method by combining the long-short fusion idea with motion
feature distillation. Unlike other methods that use binocular
vision or LiDAR input data for knowledge distillation, our
distillation process uses a unified teacher-student structure
which is trained with the motion state calculated from the
target depth ground truth as the input of the teacher model.
A unified model helps aligning feature space and response
to avoid potential errors between the teacher and student
models. Specifically, the motion feature distillation process
performs knowledge distillation on the intermediate features
and responses of the model, using Transformer to capture
the global motion feature correlation in the temporal domain.
The self-attention mechanism of the 3D motion feature per-
ception interacts and fuses the positional encoding based on
the ground truth motion value with the semantic features of
the input image. The teacher model can provide additional
regularization for the student model to reduce the impact of
motion estimation errors on 3D object localization. During
the model inference process, the student model can com-
pletely discard the positional encoding to avoid dependence
on ground truth motion information.

Our contributions are summarized as follows:

• We propose the long-short fusion idea for monocular
3D object detection method. It balances the demands
for larger temporal window and constraint on model
complexity. An expanded temporal window provides
higher feature map resolution of the temporal neighbor-
hood. Reducing the feature map resolution of the images
further away in the temporal domain helps to avoid the
large increment of the number of model parameters.
Therefore, performance of our proposed monocular 3D
object detection is enhanced with the utilization of rich
temporal features, while the model is still efficient by
avoiding significant increase of memory consumption.

• Motion features can be used formonocular depth estima-
tion. We propose the motion feature distillation method
to tackle the problem of temporal feature pollution
caused by random motion of the observation point. The
enhanced motion features help to improve the stability
of 3D object localization and the accuracy of depth
estimation. To the best of our knowledge, our proposed
monocular 3D object detection method is the first to uti-
lize knowledge distillation to provide improved motion
features for the depth estimation process.

• We propose the monocular 3D object detection with the
novel designs of long-short fusion and motion feature
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distillation. Experiments has been performed on the
nuScenes dataset. We evaluate quantitatively as well as
visualize the quality of 3D object detection in BEV
space. We also study the robustness of the proposed
model. In comparative analysis, we demonstrate that our
proposed method surpasses state-of-the-art methods by
6.7% or more on mAP, 6.9% or more on NDS, and also
on other evaluation metrics.

Our paper is structured as follows. The related studies are
reviewed in Section II. We focus on various monocular 3D
object detection models. In addition, previous works about
knowledge distillation are introduced. Section III describes
our proposed framework for 3D object detection.We evaluate
our framework and compare its performance with state-of-
the art methods. Section IV presents the experimental results
and comparative analysis. Finally, in Section V, we draw the
conclusion and outline future research directions.

II. RELATED WORK
RGB camera-based 3D object detection methods [11], [12],
[13] have been proposed for tasks such as robot naviga-
tion, autonomous driving, and path planning. These methods,
relying solely on information within the front view, are
insufficient to provide a complete 3D perception of the envi-
ronment. Therefore, utilizing 360-degree panoramic images
that can provide comprehensive environmental information
has gradually become a focus of attention in the field of 3D
perception. Typically, the 360-degree panoramic information
is composed of multiple non-overlapping RGB images. This
kind of implementation is lower in cost than other sensors and
has broad application prospects and high value.

A. MULTI-VIEW MONOCULAR 3D OBJECT DETECTION
In recent years, some works [4], [14], [15] have started to
focus on the research of multi-view monocular 3D object
detection tasks. Most monocular 3D object detection algo-
rithms operate in a 3D space centered on the observation
point. They map the multi-view RGB image features cover-
ing a 360-degree range through deep network to 3D space,
and understand the surrounding environment in this space.
To address the uncertainty of depth information for monoc-
ular sensors, some methods introduce neighboring frames
to provide temporal information to the model, and improve
depth estimation accuracy by using the disparity produced by
the temporal motion of the targets.

Monocular 3D object detection methods assisted by
multi-frame information focus on different ways of extract-
ing temporal information. However, these works generally
include the following core parts: 1) candidate regions selec-
tion for 3D localization; 2) feature extraction for candidate
regions; 3) selection of feature map resolution for sam-
pling; 4) multi-frame feature fusion method; 5) selection of
the number of neighboring frames in the temporal domain;
6) processing of temporal features when fusing candidate
regions; 7) training methods for specific tasks.

Early work in the field of multi-view monocular 3D object
detection began with MVSNet [5], which selects each spatial
point in the reference view as a candidate region. For these
spatial points, this method projects them onto each view to
obtain corresponding image features using 1/4 resolution and
bilinear sampling, and completes feature fusion. Then, 3D
convolution is used to extract features for candidate positions
in the scanning plane. The object detection process uses fused
temporal features to predict the probability of the existence of
targets in each candidate region. The probability distribution
of each pixel on depth obtained by temporal feature prediction
is used to weight and generate a single depth prediction for
each pixel, which is then supervised by L1 loss. MVSNet
is able to reconstruct 3D scene from single image with dif-
ferent conditions (input resolution, lightning condition, and
viewpoint). However, it is computationally expensive and can
be sensitive to noise and complex geometry. The candidate
positions in MaGNet [6] predict the spatial points within the
Gaussian confidence interval of the predicted depth, which
is similar to MVSNet, except that MaGNet uses dot product
instead of variance to aggregate temporal features and uses
2D CNN to process temporal features of candidate posi-
tions. MaGNet iteratively updates the Gaussian distribution
of depth using these processed features and aligns it with the
ground truth depth using L2 supervision.
Another type of work is the monocular 3D object detec-

tion method based on LSS [7], which projects the features
of panoramic RGB images onto a BEV grid through depth
information and camera parameters. Subsequently, a method
based on 2D object detection is used to extract the objects
to be detected in the BEV. The candidate positions of
BEVDet4D [4] are BEV grid units, and each unit samples
features by pooling spatial points located within each unit.
BEVDet4D aligns the previous BEV feature map with the
current one through the trend of the observation point’s
motion and stacks them together. In this way, each grid unit
can receive image features from multiple time steps. Subse-
quent methods, such as BEVDepth [8] and BEVStereo [9],
optimize the depth estimation and 3D localization accu-
racy of this method by introducing multiple timesteps image
information and MVSNet’s spatio-temporal depth estimation
module. LSS-based methods fuse multi-frame features at
low-resolution, but the number of timesteps used for temporal
fusion are limited. Thus, influence the performance of depth
inference.

With the rapid development of Transformer in the field of
computer vision, some methods have attempted to introduce
Transformer’s self-attention module to improve the model’s
ability to model global correlations. BEVFormer [14] uses
a query module with self-attention mechanism to aggregate
image features at different time steps on the BEV grid and
uses a Transformer decoder in the subsequent stage to obtain
the final 3D localization result from the aggregated query
feature vector. BEVFormer can store historical query feature
vectors during the inference process to continuously fuse
temporal features, but fusing more than four timesteps does
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not improve the model’s inference ability. Unlike other works
that directly aggregate image features onto the BEV grid,
PolarFormer [16] generates an intermediate Polar BEV rep-
resentation based on the polar coordinate system to store the
fused image features. This polar coordinate-based represen-
tation is closer to the imaging principle of the camera and is
more direct for representing objects in the far distance of the
image. PETRv2 [17] is different from the previous works in
that it does not aggregate the image features corresponding to
the candidate regions through projection or attention mech-
anism, but aggregates the temporal features by computing
the unconstrained cross-attention between the previous and
current image features. This work projects the image features
outward and uses 3D position encoding to represent these
features, and encourages the candidate location of the query
to attend to the image features at any time step related to
its space. Query-based methods cost more computational
resources when using self- or cross-attention mechanism,
thus limiting the potential of utilizing more temporal infor-
mation.

Inspired by the fusion manner of SOLOFusion [10],
we integratemotion analysis into the long and short-term tem-
poral aggregation. With the motion pattern of each objects,
our proposed model is able to enhance the temporal feature
of each object, and also communicate different motion fea-
tures from objects with different moving trend. Furthermore,
considering the noise and the random movement of the view-
point and inspired by knowledge distillation, we propose the
motion feature distillation to address the temporal pollution
problem and boost the temporal fusion performance.

B. KNOWLEDGE DISTILLATION
Knowledge Distillation (KD) was originally developed as
a technique for model compression tasks [18]. It works by
building a teacher network and a student network, allowing
the student network to learn from both the ground truth and
soft labels generated by the teacher network. The work [18]
shows that the student network can also be guided by the
intermediate layer features of the teacher network. Since
then, many methods have successfully applied knowledge
distillation techniques in various tasks, such as image clas-
sification [19], semantic segmentation [20], and depth esti-
mation [21].
In the field of 2D object detection, the work [19] first

used knowledge distillation by extracting features from the
intermediate layers, detection regression heads, and object
classification heads of the network. To solve the problem
of foreground-background imbalance, some works simulate
the detection regions of the student network from candi-
date regions or extract fine-grained features from foreground
object areas for knowledge distillation. In the task of 3D
object detection, LiGA-Stereo [22] guides the learning of a
visual-based monocular 3D object detection student network
using geometric features obtained from a LiDAR-based 3D
object detector to alleviate the impact of depth estimation

errors. Recently,MonoDistill [23] designed a teacher network
based on LiDAR signals to train a student monocular 3D
object detector with spatial clues. Yang et al. [24] proposed
an improved KD pipeline which differs from previous meth-
ods by using knowledge distillation techniques on a series of
intermediate features and network responses to transfer depth
information from a teacher network trained with ground truth
depth information to a student network. This method does not
require additional multi-view stereo or LiDAR data as input,
making it applicable to a wider range of scenarios.

This paper proposes a long short-term fusion BEV-based
monocular 3D object detection method with an expanded
temporal window to improve the performance of monocular
3D object detection. Unlike the aforementioned works, this
paper also proposes a motion feature distillation method that
uses the relative motion trend between the target in the scene
and the observation point to compensate for the temporal
feature pollution caused by irregular motion patterns and
improves the spatial localization accuracy and stability of the
BEV-based monocular 3D object detection model.

III. METHODOLOGY
Our proposed method attempts to enlarge the temporal win-
dow and extract image features from varying feature map
resolution at different time steps. Meanwhile, to alleviate the
temporal feature disturbance caused by the randomness of the
observer’s self-motion, a network training technique based on
motion feature distillation is proposed to improve the stability
of the network model regarding temporal features and the
accuracy of BEV 3D localization.

A. LONG-SHORT SPATIO-TEMPORAL FUSION
The core of the proposed method for monocular 3D object
detection based on long-short spatio-temporal fusion is to
balance the resolution of feature maps and the performance
impact of temporal feature fusion with an expanded temporal
window for 3D object localization in a 360-degree environ-
ment. The overall method, as shown in Fig. 1, consists of
two parts: 1) long-term low-resolution feature fusion based
on LSS; 2) short-term high-resolution feature fusion based
on MVSNet.

1) LONG-TERM LOW-RESOLUTION FEATURE MAP FUSION
To introduce a larger temporal window while reducing net-
work computational burden, the image feature map resolution
corresponding to time steps with larger time intervals will be
compressed to 1/16 size. These compressed feature maps are
then used to generate dense point cloud information together
with the corresponding depth prediction results, which are
then voxelized into BEV features. By introducing more time
frames in the temporal domain and increasing the time inter-
val with the source view, the potential degradation of 3D
localization caused by low image resolution can be addressed.
Specifically, 16 historical frames starting from the source
view of the current frame are aligned to the current time
node. All time nodes, together with the feature map of the
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FIGURE 1. Overview of long short-term monocular 3D object detection.

current frame, are stacked, and then foreground object 3D
localization is performed on this stacked feature vector.

2) SHORT-TERM HIGH-RESOLUTION FEATURE MAP FUSION
For the information of adjacent frames in the temporal
domain, this method uses short-term high-resolution feature
maps for compensation. On top of the above-mentioned long-
range temporal matching fusion network, a depth matching
model based on the MVSNet network structure is added for
adjacent frames. For the temporal feature map of the current
frame, this method selects a high-resolution (1/4 of original
image resolution) top view feature to generate and performs
stereo matching with the image feature of the previous frame.
In the subsequent localization process, the monocular depth
estimation module and the 3D spatial localization module
interact with each other through cross-attention mechanism.

The MVSNet model estimates the depth value of a can-
didate region through 3D convolution. Estimating depth and
3D localization in the entire virtual 3D space requires a large
amount of computational resources. For depth estimation in
MVSNet, there is no prior knowledge, and a 128-dimensional
discrete vector is required to cover the entire depth interval.
This method is inspired by the balance between exploitation
and exploration commonly seen in reinforcement learning,
and the advantages of depth estimation and 3D localization
to complement each other. Depth estimation provides prior
knowledge to reduce the dimensionality of the feature space

and lighten the computational cost of the model. If monocular
depth estimation can be used as prior knowledge, the Top-k
possible depth values of the candidate region are roughly esti-
mated first, thereby reducing the dimensionality of the depth
vector to k and reducing memory usage. This method first
selects k monocular depth estimation values with higher con-
fidence, reduces the weight of depth confidence in adjacent
depth intervals, and forces the model to lower the probability
of depth values near the Gaussian distribution of higher confi-
dence depth values. This process is repeated for each pixel to
produce a set of k candidate depths, and the subsequentMVS-
Net 3D localization process is performed on these points.
This method can cover multi-modal depth distributions and
reduce computational costs. Short-term high-resolution 3D
localization module and long-term low-resolution 3D local-
ization module complement each other and optimize the final
3D object detection results.

B. MULTI-FRAME IMAGE MOTION FEATURE DISTILLATION
When incorporating multiple frames of image information,
if the motion state of the observation point is disturbed,
the position of the target in the sampled multiple frames of
images will undergo random changes, which affects the depth
estimation of the target by the above network. At the same
time, during the normal motion process of the observation
point, there is no regularity in the changes of direction and
speed. Directly learning from multiple frames of images is
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difficult to accurately capture the temporal changes in fea-
tures. To solve the problem of difficult model training due to
the motion of the observation point, this method introduces
knowledge distillation technology, and uses the motion state
variation obtained from 3D annotation information of the
foreground target in multiple frames of images to train a
teacher network. The motion features are then distilled and
transferred to the student network. The student network has
the ability to compensate for motion features during infer-
ence, thereby improving the accuracy and stability of the
network in determining the depth of the target.

The tokens for teacher and student model are designed
as the fused intermediate feature maps with motion, depth
and image information. The overall process of motion feature
distillation is shown in Fig. 2. Firstly, the feature vectors{
I k

}
k∈(1,...,n) and

{
T k

}
k∈(1,...,n) are obtained from the back-

bone network (convolutional neural network or Transformer)
for the student and teacher networks at different levels of
the intermediate feature layers, where n is the number of
intermediate feature layers. Additionally, DGT is the ground
truth depth information, and MFx,y,zGT is the motion field of
the foreground target. When applying knowledge distillation
technique to detection tasks, the issue of imbalanced infor-
mation between foreground and background regions needs
to be considered. Therefore, this method introduces a binary
maskM based on the 2D bounding boxBBoxk to integrate the
features of these two types of regions. The specific integration
method is as follows:

M k
=

{
M k
i,j |M

k
i,j = I

[
(i, j) ∈ BBoxk

]}
(1)

where i, j vary over the height and width of the feature map.
If the featuremap is foreground at i, j, thenM k

i,j is 1, otherwise
M k
i,j is 0.
Someworks attempted to balance the use of depth-encoded

positions with 3D embeddings and discretized grid coordi-
nates. Thanks to knowledge distillation, our proposedmethod
introduces semantic and motion features through a 3D posi-
tional encoding with depth and motion trends guided by the
ground truth values of motion features. This method gen-
erates the 3D positional encoding (PE) under the guidance
of DGT and MFx,y,zGT and incorporates PE into the feature
self-attention computation of the student network. Firstly,
a multi-layer perceptron (MLP) and bilinear interpolation are
used on DGT and MFx,y,zGT to produce encoded depth features
ID and motion features IMF , which have the same number of
channels and match the size of the feature maps generated
by the backbone network. Then, a cross-attention module
is used to compute the cross-correlation map between the
depth information and motion features, and they are fused
into a unified depth-motion feature IDM . Next, the argmax
value of IDM along the channel dimension is computed to
obtain the mapping of depth position index, represented as
Parg. Then, the 3D embedding vector Iemb is generated using
this index and the corresponding PE. Finally, Iemb is flattened
after passing through theMLP to produce semantic query and

key vectors with fused encoding of 3D position and motion
features. The computation as mentioned above is as follows:

Iemb = Ppe
(
Parg (MLP (IMF ) )

)
(2)

To reduce computational burden, we use convolutional
layers with kernel size 1 to build our MLP. Then, the query
and key vectors interact through self-attention mechanism
to generate the semantic feature I k3d incorporating depth and
motion information. The distillation loss for the intermediate
feature training process is as follows:

Linter =

∑n

k=1
αi∥M k (I k3d − T k )∥2

+ βi∥(1 −M k )(I k3d − T k )∥2 (3)

where αi and βi are hyperparameters for foreground and
background balance in the feature encoding part. The above is
the part that introduces motion features in the teacher network
training process.

After the motion feature encoding is completed, a decoder
with knowledge distillation technique is needed to obtain
the final network output in the subsequent process. For the
3D object detector based on encoder-decoder Transformer
structure, the target feature vectors in the intermediate layers
of the student and teacher network decoders are defined as
{I kd }k∈(1,...,m) and {T kd }k∈(1,...,m), respectively, where m is the
number of Transformer self-attention modules in the encoder.
In order to balance foreground and background information,
the Hungarian algorithm [25] is adopted to match the teacher
network output with ground truth annotations, and then a
foreground query maskMf is generated for each target query
vector of the feature layers. Similar to the above feature
interaction method, this method utilizes cross-attention mod-
ules to guide the updated student network feature vectors
I kupdate from the teacher network output. The overall interac-
tion method is similar to the cross-attention module in the
Transformer. The feature distillation part interacts teacher and
student intermediate feature maps with a strategy like cross-
attention mechanism, which is supervised by minimizing the
Euclidean distance between teacher and student intermedi-
ate features. The loss function for this part is calculated as
follows:

Ldistill =

∑m

k=1
αd∥Mf (I kt − T kd )∥

2

+ βd∥(1 −Mf )(I kt − T kd )∥
2 (4)

where αd and βd are hyperparameters used for foreground
and background balancing in the output decoding part. Fea-
ture maps with different resolution are fed into transformer
blocks to calculate an attention map within the spatio-
temporal domain. The well-trained transformer blocks have
the ability to focus on the foreground, and thus the influence
of the redundant background information is minimized.
The overall motion feature encoding and output decod-

ing parts are trained end-to-end with four task-driven loss
functions jointly supervised. These four loss functions are
classification loss Lcls, 3D bounding box regression loss Lreg,
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FIGURE 2. Overview of motion feature distillation.

depth loss Ld , and motion loss LM . If the model adopts the
results provided by the pre-trained depth estimation method,
the depth loss will be set to zero during training. The overall
loss function used for supervised training is as follows:

Ltotal = Lcls + Lreg + Ld + LM+αLinter + βLdistill (5)

where α and β are hyperparameters that control the balance
of losses. Therefore, our proposedmethod is able to introduce
fused depth and motion features in the feature encoding
process, and utilize knowledge distillation techniques in the
decoding process to give the decoder the ability to recognize
and process the fused features. As a result, adaptability of
our proposed model to the motion states of the observation
points is improved. Accuracy and stability of 3D localization
are enhanced.

IV. EXPERIMENTS AND DISCUSSIONS
A. IMPLEMENTATION DETAILS
Our proposed method was implemented using the program-
ming language of Python. All the experiments were con-
ducted on a PCwith Nvidia A100 40GGPU and Intel I9 CPU,
using PyTorch library version 1.8.1 with CUDA 11.3. The
feature fusion part of our proposedmethod adopts BEVDepth
as the baseline model and uses image features extracted from
ResNet50 (pre-trained on the ImageNet dataset) as input. For
the selection of the long-term and short-term spatio-temporal
windows, the original image resolution is 1600×900. A time
step of T = 16 was used for long-term fusion, while a step
of T = 2 was used for short-term fusion. The previous BEV
feature maps were saved during training and inference, and
these historical feature maps were used in subsequent time
steps to maintain high efficiency in the long-term fusion pro-

cess. For the matching channels of short-term high-resolution
image features, their feature dimensions were reduced to 64.

We evaluated our method on nuScenes dataset [26] which
is a large-scale outdoor dataset focused on autonomous driv-
ing scenarios. It has diverse annotations to support all sorts
of tasks. Each of the 40,157 annotated samples contains six
monocular camera images with 360-degree field of view
and a 32-beam LiDAR scan. Each camera has fixed setting
of 12 Hz capture frequency and 2 Hz annotation rate.

The training method of multi-frame image motion feature
distillation uses αi = 1.0,βi = 0.1 for loss balancing at
the feature encoding level and αd = 1.0,βd = 1.0 as
foreground and background balance hyperparameters in the
decoder. AdamW optimizer was used for training with an
initial learning rate of 0.0002 and a decay weight of 0.0001.
The learning rate is decayed by 0.05 at each epoch, and the
model is trained on the nuScenes dataset [26] with a batch
size of 1 for 50 epochs.

The quantitative analysis was performed on the test set
of the nuScenes dataset and compared with current state-of-
the-art monocular 3D object detection methods in multiple
metrics introduced in [26]. The ablation experiments were
performed on the validation set of the nuScenes dataset to
comprehensively analyze and validate the different compo-
nents and parameters of the proposed method.

B. QUANTITATIVE RESULTS
Comparative analysis is carried out between the proposed
monocular 3D object detection method and state-of-the-art
methods on the nuScenes test set. Our algorithm is thoroughly
trained on the complete data of the nuScenes training and
validation sets. The complete results are shown in Table 1.
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TABLE 1. Comparison of our proposed method with state-of-art methods on nuScenes test set.

The best results are highlighted in red, the second best results
are highlighted in blue, and similarly for the following tables.
The experimental results show that under relatively simple
training settings and hardware requirements, our proposed
method outperforms the current state-of-the-art BEV-based
monocular 3D object detection algorithms in terms of 3D
object detection performance indicators [26]. Compared with
the current best-performing algorithm BEVStereo [9], our
method can improve mAP by 6.7% and mean Average Trans-
lation Error (mATE) by 8.3%. This indicates that introduc-
ing more temporal information can effectively improve 3D
localization accuracy. Low-resolution feature maps can pro-
vide stronger temporal information support while reducing
computational complexity for temporal information further
away in time. Similarly, after introducing the motion fea-
ture distillation method, the model’s representation ability of
temporal information becomes more intuitive, and the pre-
diction of target motion in the scene becomes more accurate,
as reflected in a significant improvement in mean Average
Velocity Error (mAVE) by approximately 35.2%. With the
introduction of long-term features from a larger temporal
window, the motion distillation method can obtain richer
motion information andmodel themovement of objects in 3D
space more accurately. Therefore, the long short-term feature
fusion and motion feature distillation proposed in this paper
complement each other, and the combination of the two can
effectively improve the performance of the monocular 3D
object detection algorithm.

C. ABLATION STUDY
In order to analyze the impact of the long short-term feature
fusion and motion feature distillation proposed in this paper
on the overall performance of monocular 3D object detection,
this section compares the proposed method with a baseline
algorithm that does not use these two components. At the
same time, detailed experimental verification and analysis
of the parameter selection within each component were also
conducted to demonstrate the effectiveness of each parameter.

1) EFFECTIVENESS OF LONG-SHORT SPATIO-TEMPORAL
FUSION
The baseline model for the ablation experiments in this
section is the BEVDepth model [8] without temporal infor-
mation fusion. BEVDepth consists of the following parts:

i) depth estimation network: using encoded camera intrin-
sic and extrinsic parameters and a set of monocular images
with non-overlapping viewpoints as input, outputting the
depth value of each pixel in each image. The intrinsic
and extrinsic parameters of the camera are provided by
the dataset, including the camera’s focal length, principal
point, distortion coefficients, position, direction, and rotation
matrix;

ii) depth correction network: using the output of the
depth estimation network and the depth values obtained
through annotated 3D object localization projections as input,
outputting the corrected depth value. The purpose of the
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TABLE 2. Effectiveness of different temporal windows on monocular 3D object detection.

correction process is to reduce the errors introduced by the
projection transformation and avoid additional burden on the
subsequent 3D localization;

iii) rapid view transformation: using the corrected depth
value and the camera intrinsic parameters as input, projecting
the image feature from the camera view to BEV. To handle
feature maps of different sizes and resolutions, this transfor-
mation aligns the features to the BEV space through rapid
interpolation algorithms;

iv) multi-frame fusion module: using multi-frame histori-
cal BEV features as input, learning the correlation between
different time frames through self-attention modules, and
outputting the fused multi-frame enhanced BEV feature;

v) 3D object detection head: using the fused BEV feature
as input, an additional regression branch is added to predict
the height of the center point of the 3D bounding box in the
BEV space, and finally outputting the 3D bounding box and
confidence.

2) IMPACT OF TEMPORAL WINDOW SELECTION
Our proposed method replaces the fourth part of the
above-mentioned baseline model with a long short-term
spatio-temporal fusion strategy to improve the integration
performance of temporal information. The baseline algorithm
for experimental comparison is the BEVDepth model [8]
without the fourth part. The ablation experiment compares
the improvement of the overall model detection performance
after adding low-resolution image features with longer tem-
poral window, and the results are shown in Table 2. As can
be seen from the table, although fusing a single time step
can significantly reduce the speed prediction index mAVE
by 60.7%, and increasing the NDS by 23.2%. The 3D spa-
tial localization indicators mAP and mATE only have small
improvements of 4.0% and 2.0%, respectively.With the selec-

tion of longer temporal windows in the experiment, more
BEV features of multiple time steps are fused into the volume
used for spatial localization BEV loss calculation, and the
two metrics mAP and mATE representing spatial localization
are improved by 20.7% and 10.8%, respectively between 1-
and 16-time steps. This phenomenon indicates that compared
with using a single time step to provide temporal information
support, using BEV features of multiple time steps in a larger
temporal window can significantly improve the potential for
localization. However, the overall performance improvement
reaches saturation when expanding the temporal window to
16-time steps, because the visible area of the scene beyond
16-time steps overlaps very little in the temporal domain, and
the performance of object 3D localization cannot be further
improved by computing disparities.

3) IMPACT OF DEPTH HYPOTHESIS SAMPLING METHODS
In Table 3, different depth hypothesis sampling methods were
selected to compare their effects on optimizing short-term
high-resolution temporal feature fusion, and to demonstrate
the effectiveness of our proposed Top-k depth sampling
method. The experiment starts with the baseline algorithm
that uses a single frame, and without using depth hypothesis
sampling method. The feature dimension in depth space is
at least 112 for each corresponding pixel. Such computation
will increase the running time by six times and significantly
increase the usage of GPU memory. If 28 uniform sampling
methods are used, the localization performance of the model
is enhanced, but it will cause a 2.4 times speed reduction
and an increase in GPU memory. When the depth sampling
number is 7, the running speed of the algorithm can be
improved, but the model’s detection performance decreases.
The Top-k sampling method selected in our proposed method
outperforms the uniform sampling method with 28 sampling
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TABLE 3. Effectiveness of different depth hypothesis sampling methods.

TABLE 4. Effectiveness of short-term high-resolution and long-term low-resolution features.

points in mATE, which indicates that selecting depth sam-
pling points guided by monocular depth estimation prior can
effectively improve the accuracy of 3D spatial localization.

4) IMPACT OF SHORT-TERM HIGH-RESOLUTION TEMPORAL
FEATURE AND LONG-TERM LOW-RESOLUTION FEATURE
Table 4 shows a comparison of the 3D detection met-
rics and computational efficiency of the baseline algorithm
with and without the addition of long-term low-resolution
temporal features and short-term high-resolution temporal
features. After adding short-term high-resolution temporal
features, the computational speed decreased from 17.2 FPS to
11.9 FPS without any additional GPU memory consumption,
while mATE is significantly improved by 9.9%. In com-
parison, the addition of long-term low-resolution temporal
features significantly improves mAP by 27.5% with a small
impact on computational speed (FPS is only decreased by
1.6). It is worth noting that the addition of only short-term
high-resolution features decreases mATE by 9.9%, while the
addition of long-term low-resolution features decreases it by
12.3%. This result indicates that both modules have a sim-
ilar potential to enhance 3D localization capability. Finally,
fusing both modules further improves the performance of all
metrics, with an overall increase in NDS by 42.6%, demon-
strating the complementary role of the two modules in 3D
object detection.

5) EFFECTIVENESS OF MOTION FEATURE DISTILLATION
This section presents an ablation study on the effective-
ness of the motion feature distillation method. Table 5
evaluates the effectiveness of the feature-level knowl-
edge distillation in the motion feature distillation method,
as well as the cross-attention distillation on the joint
3D PE and output decoder with motion features. Each
component of the motion feature distillation method
in Table 5 was tested on the nuScenes validation
set.

Firstly, the teacher network trained with depth ground truth
can accurately locate 3D objects, which is a prerequisite
for the effectiveness of knowledge distillation. With only
feature-level knowledge distillation (F), the teacher model’s
learned feature representation can be partially transferred to
the student model, and adding the joint 3D PE with depth and
motion features can further improve various metrics of 3D
object detection. Among them, the mAVE is improved most
significantly by 27.8%, while other metrics are improved by
around 2-4%.

Secondly, after adding only the knowledge distillation
module of the output decoder (O), the performance improve-
ment effect is more significant than using only feature-level
motion distillation. This may be because the main gener-
ation module for 3D object localization comes from the
decoder, which can transfer the feature combination learned
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TABLE 5. Effectiveness of motion feature distillation.

FIGURE 3. Visual results obtained by our proposed method on nuScenes validation set.

by the teacher model for localization to the student model
after knowledge distillation. This is more effective for 3D
localization with existing features. In addition, adding the
cross-attention module (CA) can further improve overall per-
formance. Finally, after adding all modules to the overall

motion feature distillation method, the monocular 3D object
detector can introduce motion features to enhance the accu-
racy of spatial depth judgment and better recombine fused
features, thus obtaining superior 3D spatial localization capa-
bilities.
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TABLE 6. Comparison of efficiency and performance of our proposed method with state-of-art method.

6) EFFICIENCY IMPROVEMENT
Table 6 shows a comparison between our proposed method
and another state-of-art monocular 3D object detection
algorithm BEVStereo [9] in terms of both efficiency and
performance. With the best setting, our proposed method can
operate at the inference speed of 11.2 fps. The experimental
results demonstrate that our method achieves better results on
multiple metrics of 3D object detection while significantly
improving the algorithm’s efficiency. Compared to existing
approaches that only fuse short-range high-resolution tempo-
ral features, our proposed model is simpler, more effective,
and outperforms them in terms of performance.

D. QUALITATIVE RESULTS
Fig. 3 shows visual results obtained by our proposed method
on the nuScenes validation set. The yellow 3D bounding
boxes represent vehicles, while the blue ones represent pedes-
trians. The arrows at the center of each bounding box indicate
the motion direction of the corresponding object. As can be
seen from the figure, the proposed long short-term fusion
method and motion feature distillation method achieve pre-
cise 3D localization of objects in the scene and accurate
prediction of their 3D motion trends. Moreover, thanks to the
introduction of temporal information andmotion features, our
proposed method is effective in detecting objects with certain
occlusion. Therefore, introducing a larger temporal window
is more effective for monocular 3D object localization. With
the enhancement of more complex temporal information, the
motion feature distillation method can capture more detailed
temporal features of the object. In the case of occlusion, it can
use motion features to infer the position of the object, further
improving the accuracy of 3D object detection algorithm.

V. CONCLUSION AND FUTURE WORK
This paper proposes a monocular 3D object detection method
based on long short-term feature fusion and motion feature
distillation to better utilize the temporal disparity provided
by the temporal information for more accurate spatial local-
ization. The proposed method enhances the performance
of monocular 3D object detection by first expanding the
temporal window and using temporal features between mul-
tiple frames. Specifically, the proposed method improves the
resolution of temporal neighboring feature maps to capture
more detailed information, and reduces the resolution of
feature maps for images far in time to reduce computational

complexity and noise interference. A larger temporal win-
dow enables extraction of richer and more stable temporal
features. To address the problem of temporal feature contam-
ination caused by random motion of the observation point,
we propose the motion feature distillation approach that uses
motion features as a supervisory signal to assist in panoramic
3D depth estimation and improve the stability of 3D object
localization. Experimental results show that the proposed
method effectively uses temporal information to improve the
accuracy and stability of monocular 3D object detection in
panoramic environments. Our proposed method achieves a
6.7% improvement in mAP, 6.9% improvement in NDS, and
8.3% improvement in mATE on the nuScenes test set as
compared to previous best art. Moreover, our method also
achieves 35.2% improvement in predicting target velocities
in the scene.

The domain transferability of 3D detection algorithms in
autonomous driving environments is crucial for the safety
of autonomous vehicles. Currently, vision-based 3D object
detection methods show significant performance degradation
on test data with large environmental changes. This is because
vision-based 3D object detection relies heavily on the intra-
and extra-parameters set by the image sensor dataset. The
richness of the dataset can also affect the model’s judgment
of imaging conditions in different environments. Therefore,
how to improve the model’s generalization ability and reduce
the deceptive influence of training data on the model’s per-
formance are the future research directions to enhance the
applicability of vision-based 3D object detection algorithms.
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