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Abstract: The resolution of remote sensing images has increased with the maturation of satellite
technology. Ship detection technology based on remote sensing images makes it possible to monitor a
large range and far sea area, which can greatly enrich the monitoring means of maritime departments.
In this paper, we conducted research on small target detection and resistance to complex background
interference. First, a ship dataset with four types of targets (aircraft carriers, warships, merchant
ships and submarines) is constructed, and experiments are conducted on the dataset using the object
detection algorithm YOLOv4. The Kmeans++ clustering algorithm is used for a priori frame selection,
and the migration learning method is used to enhance the detection effect of the YOLOv4. Second,
the model is improved to address the problems of missed detection of small ships and difficulty in
resisting background interference: the RFB_s (Receptive Field Block) with dilated convolution is
introduced instead of the SPP (Spatial Pyramid Pooling) to enlarge the receptive field and improve the
detection of small targets; the attention mechanism CBAM (Convolutional Block Attention Module) is
added to adjust the weights of different features to highlight salient features useful for ship detection
task, which improve the detection performance of small ships and improve the model’s ability to resist
complex background. Compared to YOLOv4, our proposed model achieved a large improvement in
mAP (mean Average Precision) from 77.66% to 91.40%.

Keywords: ship detection; convolutional neural networks; attention mechanism; small target; YOLOv4

1. Introduction

Surface ship detection is of great importance to countries with vast sea areas, both
in civil and military aspects. In the civilian aspect, ship detection can help rescue ships
in distress and improve search and rescue efficiency. In the military aspect, it can detect
the enemy’s port fleet deployment in time and improve maritime battlefield situational
awareness. Therefore, it is crucial to detect the ships in remote sensing images quickly
and accurately.

Traditional methods of detecting ships can be divided into four categories: methods
based on statistical features of grayscale information, methods based on visual saliency,
methods based on template matching and methods based on classification learning [1,2].
Satellite remote sensing technology is maturing, resulting in higher resolution of images and
the proliferation of data. There are disadvantages to traditional ship detection algorithms,
including low recognition accuracy, low efficiency, and susceptibility to interference from
the background, which make it difficult to meet the application requirements.

Convolutional neural networks are extensively applied in the domain of object de-
tection because of their powerful feature extraction ability, and a series of classical object
detection algorithms have emerged. They are usually classified into two categories: two-
stage object detection algorithms and one-stage object detection algorithms. The repre-
sentative two-stage target detection algorithms are R-CNN (Region-Convolutional Neural
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Network) [3], Fast R-CNN [4] and Faster R-CNN [5], and the representative one-stage target
detection algorithms are SSD (Single Shot Multi-Box Detector) [6] and the YOLO (You Only
Look Once) series of algorithms [7–10]. Among them, there are numerous applications for
the YOLO series of algorithms in many fields, such as disease detection in medicine [11]
and vehicle detection in traffic [12].

Recently, the ability to detect ships based on remote sensing images through CNN has
been greatly improved. However, because of the uniqueness of the remote sensing image,
detection remains a challenging task to address. On the one hand, ships often occupy
only a few or dozens of pixels in the remote sensing images, and it is hard to detect small
targets. On the other hand, the background of the image is complex, which easily causes
interference with detection.

In this paper, the detection framework used is YOLOv4, and its network structure
is optimized to enhance the detection performance of small targets and the resistance to
background interference. The experimental results illustrate that the detection effect of the
improved model has a significant improvement. The specific work is as follows.

• A visible remote sensing image ship dataset is constructed: it includes four types of
ship targets such as aircraft carriers, warships, merchant ships and submarines. With
the aim to address the problem of small target labeling sample scarcity, the remote
sensing images in the open source dataset are collected, and the small ship targets in
the images are labeled. Additionally, the dataset contains 1333 images.

• An improved model based on the RFB_s (Receptive Field Block) module [13] and
CBAM (Convolutional Block Attention Module) module [14] is proposed: the RFB_s is
used instead of the SPP [15] to enlarge the receptive field and detect small ships more
effectively; an attention mechanism, CBAM, is introduced to highlight salient features
by adjusting the weights of different feature maps, aiming to address the problem
arising from the small ship and complex background interference. The mAP (Mean
Average Precision) of the proposed method is increased from 77.66% to 91.40%.

The organization of this paper is as follows: related work regarding ship detection
algorithms based on CNN is introduced in Section 2. Section 3 describes the YOLOv4
model, RFB_s and CBAM, and our improved method. In Section 4, we elaborate on
the dataset setup, experiment details and the ablation experiments. Finally, Section 5
draws conclusions.

2. Related Works

For the past few years, convolutional neural networks have also been continuously
applied in remote sensing image object detection, and the object detection algorithm based
on deep learning is a cutting-edge technology for ship detection.

To enhance the detection performance of multi-scale ships, features are usually fused.
Zhang et al. [16] achieved good detection results with a SAR ship detection network
constructed using an improved FPN, which consists of four unique FPNs to fuse features
to improve SAR ship detection performance. Qing et al. [17] used an improved FPN
(Feature Pyramid Network) and PANet (Path Aggregation Network) to fuse features from
the backbone network. The two modules can integrate feature maps of different layers,
combine context information on multiple scales and strengthen feature information.

To improve small target detection, two types of methods are commonly used. The first
method is to expand the number of small target samples by data enhancement. Chen et al. [18]
proposed a Gaussian hybrid Wasserstein GAN using gradient penalty to generate small
ship samples with sufficient information; the CNN was then trained on the original and
generated data to achieve accurate real-time detection of small ships. The improvement
of data enhancement on small target detection is limited. Another approach is to make
improvements to the network structure. Liu et al. [19] added recombination and routing
layers to the improved YOLOv2 network, bringing together shallow and deep feature maps
in forward propagation to improve the detection of small ships. To improve the detection
accuracy of small targets, Gao et al. [20] added a detection scale to the YOLOv3 network to
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enhance the sensitivity to small targets, and anchors to small targets were assigned at the
increased shallow feature scale. This approach increases the amount of computation and
decreases the speed of reasoning.

To address the problem of false and missed detection of ships because of cloud in-
terference, Guo et al. [21] proposed an offshore ship detection method based on scene
classification and saliency-tuned YOLO-Net. Firstly, the images were divided into four
categories. Secondly, targets were extracted from different images by the saliency detection
method. Finally, they designed the saliency-tuned YOLOv4 network to detect ships. This
method takes a lot of time to classify the samples.

Real-time ship detection has high requirements for accuracy. As an excellent represen-
tative algorithm of the YOLO series, YOLOv4 can detect targets at multiple scales and can
achieve a balance of accuracy and speed, which makes it a valuable research tool. In this
paper, YOLOv4 was used for detecting ships. To address the problem of detecting small
targets with poor accuracy and complex background interference, improvements were
made to the structure and detection accuracy.

3. Methods

Our proposed approach is implemented based on the YOLOv4 model with RFB_s
module and attention mechanism. In the following subsections, we describe the YOLOv4
algorithm, RFB_s and CBAM model and then introduce our proposed method.

3.1. YOLOv4 Model
3.1.1. Network Structure

As shown in Figure 1, the YOLOv4 network is comprised of backbone CSPDarknet53,
neck SPP and PANet [22] and a detection head. CSPDarknet53 is used to extract features,
which consist of a convolutional block as well as a series of residual structures. When
the size of an input image is 608 × 608 × 3, the sizes of three output feature layers are
76 × 76 × 256, 38 × 38 × 512 and 19 × 19 × 1024, respectively. SPP is used to increase the
receptive field and separate out the contextual information, which consists of three max-
pooling layers with kernel sizes of 5× 5, 9× 9 and 13× 13. The input feature map is pooled
three times, and the results are stacked with the input feature map to obtain the output
feature map. PANet is used for feature fusion which consists of a top-down pyramid and
a bottom-up pyramid. The top-down pyramid passes down the strong semantic features
from the upper layers to enhance the semantic information. The bottom-up pyramid
passes up the strong localization features from the lower layers to enhance the localization
information. The fused features contain both semantic and localization information. The
detection head is used to generate object bounding boxes and predict object classes.

3.1.2. Loss Function

There are three components to the loss of YOLOv4:

Loss = Lossreg + Losscon f + Losscls. (1)

Regression loss of the object bounding box: the regression loss of the predicted bound-
ing box is calculated using CIOU (Complete Intersection Over Union) [23]. As shown in
Figure 2, CIOU considers three geometric measures: overlap area, central point distance
and aspect ratio, which makes the bounding box regression more stable.

The formula for calculating CIOU is shown as follows:

CIOU = IOU − ρ2(b, bgt)

c2 − αv, (2)

where

IOU =
area(b ∩ bgt)

area(b ∪ bgt)
, (3)
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α =
v

(1− IOU) + v
, (4)

v =
4

π2 (arctan
wgt

hgt − arctan
w
h
)

2

, (5)

where b represents the predicted bounding box; wgt and hgt represent the width and height
of the ground truth, respectively; ρ2(b, bgt) represents the distance in Euclidean space
between the predicted bounding box’s center point and the ground truth’s center point; c
represents the diagonal distance of the smallest closed area that contains both the predicted
bounding box and the ground truth; α represents the weighting factor; v is used to consider
the similarity of aspect ratio; IOU represents the intersection ratio between the ground truth
and the predicted bounding box; 1-CIOU represents the regression loss of the predicted
bounding box.
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lossCIOU = 1− CIOU = 1− IOU +
ρ2(b, bgt)

c2 + αv, (6)

Lossreg = λcoord

K×K

∑
i=0

M

∑
j=0

Iobj
ij (2− wi × hi)lossCIOU , (7)

where λcoord represents the weighting factor of the positive sample. The input image is
segmented into K × K cells, and each cell generates M predicted bounding boxes. Iobj

ij = 1

when one object is in the jth prediction box in cell i, and on the contrary, Iobj
ij = 0 when there

is no target. wi and hi denote the width and height of the predicted bounding box, with
(2− wi × hi) representing the penalty term. The smaller the bounding box is, the greater
its weight becomes.

Confidence loss: confidence loss consists of two parts: the loss of confidence for
positive and negative samples, and the loss value is calculated using cross-entropy.

Losscon f = −
K×K
∑

i=0

M
∑

j=0
Iobj
ij [Ĉi log(Ci) + (1− Ĉi) log(1− Ci)]

−λnoobj
K×K
∑

i=0

M
∑

j=0
Inoobj
ij [Ĉi log(Ci) + (1− Ĉi) log(1− Ci)]

, (8)

where Ĉi represents the sample value of the confidence, Ci represents the value of the
predicted confidence and λnoobj represents the weighting factor of the negative sample.

Inoobj
ij = 1 when the jth prediction box in cell i has no object, and on the contrary, Inoobj

ij = 0
when there is an object.

Loss of predicted classes: this consists of classification loss of positive samples, and
the value is calculated using cross-entropy.

Losscls = −
K×K

∑
i=0

M

∑
j=0

Iobj
ij ∑

c∈classes
[ p̂i(c) log(pi(c)) + (1− p̂i(c)) log(1− pi(c))], (9)

where p̂i(c) represents the sample value of the class and pi(c) denotes the probability of an
object belonging to the cth category.

3.2. RFB Module

The RFB (Receptive Field Block) module is inspired by the structure of receptive fields
in human visual systems. It refers to the ideas of the Inception network [24] and adds
dilated convolution to Inception with the aim of enlarging the receptive field and extracting
multi-scale features, which makes convolutional neural networks learn deep features more
effectively. As shown in Figure 3, in the RFB structure, features are extracted using standard
convolutions as well as dilated convolutions on multi-scales. The standard convolution
simulates the receptive fields at different scales. The dilation convolution increases the
receptive field while keeping the feature map size unchanged.

In an effort to reduce parameters and non-linear layers, RFB_s replaces the 5 × 5
convolutional layer with two stacked 3 × 3 convolutional layers. Then, it uses one 1
× 3 plus one 3 × 1 convolutional layer to replace the 3 × 3 convolutional layer for the
same reason. As shown in Figure 4, the RFB_s structure has a four-branch structure
consisting of four convolutional kernels with kernel sizes of 1 × 1, 1 × 3, 3 × 1 and 5
× 5. Dilated convolutions with different rates are introduced in each of its branches to
extend the receptive field. The input features from the previous layer are first passed
through the four-branch structure; then the output features are fused and passed through
the 1 × 1 convolutional layer, and the result is fused with the input features by a shortcut
so that the original information can be retained; eventually, the result is provided by the
activation function.
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3.3. Attentional Mechanisms

The attention mechanism simulates the human visual mechanism aiming to strengthen
important features and suppress unnecessary features while reducing time, cost and com-
putational complexity. The object detection algorithm based on the visual attention mech-
anism uses the attention model to strengthen the difference between the object and the
background, and then the object is detected by analyzing the obtained salient feature map.
Because CBAM is a lightweight attention module, it can be incorporated with any CNN
structure with a negligible increase in computational effort. Additionally, it can be trained
end-to-end with CNNs. As shown in Figure 5, given the input feature, CBAM sequentially
derives the attention mapping along the channel dimension and spatial dimension and
then multiplies the attention mapping with the input feature to perform adaptive feature
refinement and increase the weights of the features representing the object. That means,
given an input feature map: F ∈ RC×H×W, the channel attention submodule infers a 1D
channel attention map: Mc ∈ RC×1×1 and then the spatial attention submodule infers a 2D
spatial attention map: MS ∈ R1×H×W. The overall process can be summarized as follows:

F′ = F⊗Mc, (10)

F′′ = F′ ⊗Ms, (11)

where ⊗ represents element-wise multiplication and the attention values are broadcasted
correspondingly: channel attention values are broadcasted along the spatial dimension,
and spatial attention values are broadcasted along the channel dimension. F′ represents
the feature map enhanced by channel attention, and F” represents the output feature map.
Convolutional neural networks, with an added attention mechanism, can extract the spatial
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meaning and channel meaning of the feature map, which helps to strengthen the features
of the object, suppress unnecessary details and improve the representation capability of
CNN [25].
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3.4. Improved Network Model

When CNN performs ship detection, the region containing ships in the remote sensing
image is used as the effective region that plays a dominant role. However, due to the large
variety of ship sizes in the image, small ships are easily confused with noise, resulting
in their features not being effectively extracted. In contrast to SPP’s max-pooling, RFB
introduces dilated convolution and residual connection, which can enhance the receptive
field of the effective region and retain small ships in the feature map.

The YOLOv4 network begins forward propagation after inputting the image: the
backbone performs an extensive number of convolution operations on the input image
to extract multi-scale feature maps, and then the neck fuses the extracted feature maps.
This means that the fused feature combines the features extracted from each channel and
location equally. However, the feature maps for each channel and location can actually be
seen as a response to specific semantic information. The detection of the target is facilitated
if the features representing the target are provided with appropriate weights. The attention
mechanism captures the global and local relationships in the input image and thus focuses
on finding the key information about the target. Therefore, we introduce CBAM in the
YOLOv4 network to improve the original structure. The channel attention sub-module of
CBAM establishes interdependencies between channels and enhances the representation
of specific semantic information. The spatial attention sub-module acquires the weights
of local features to improve the localization of candidate regions, which can enhance the
useful features representing the target and resist background interference at the same time.

In order to address the problems of complex background interference and poor detec-
tion of small targets in remote sensing images with high resolution, an improved YOLOv4
ship detection model based on the RFB_s module and CBAM module is proposed. The
RFB_s module is introduced to enhance the receptive domain and improve the detection
effect of small ships; the CBAM module is introduced to adaptively adjust the weights of
different feature layers to effectively capture the information of small ships while improving
the ability of the model to resist complex background interference. Figure 6 illustrates
the structure of our improved model. RFB_s is used instead of the SPP structure; two
CBAM modules are added between the backbone part and the neck, and the feature map
extracted from the backbone network undergoes a convolution operation to reduce the
number of channels with the purpose of reducing the number of introduced parameters.
Then, the feature map is enhanced by the CBAM module for feature fusion. Similarly,
a CBAM module is added between the RFB_s module and the neck, and the feature maps
are enhanced and passed into the neck PANet for feature fusion.
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4. Experiments and Results

To demonstrate the effectiveness of the proposed method, firstly, we constructed the
ship dataset and clustered the dataset using the Kmeans++ clustering algorithm. Then,
we trained our improved model and compared it with the state-of-the-art model. Finally,
we designed ablation experiments to verify the accuracy of the improvement.

4.1. Data Sets and Evaluation Metrics

In this paper, we collected remote sensing images containing ships in the open source
dataset to construct the dataset. We screened specific types of training samples from
the HRSC2016 (High-Resolution Ship Collection 2016) dataset [26] and preferred images
containing small targets in different complex backgrounds to evaluate the optimization
degree of the improved network. The original dataset did not annotate the small ship
targets in the images; we re-annotated them and annotated the ship targets of all scales in
the images, which expanded the number of small ship samples and helped to improve their
detection effects. We labeled the ships into four categories, such as merchant ship, aircraft
carrier, warship and submarine, with a total of 1333 labeled images, and we divided them
into three sets: training, validation and test, in a ratio of 8:1:1. The constructed dataset can
provide training data for training the convolutional neural network for coarse recognition
of ship targets. Detailed information regarding the dataset can be found in Table 1.

The common evaluation indexes of ship detection are: Precision P (Precision), R (Re-
call), Average Precision (AP) and Mean Average Precision (mAP). P indicates the ratio of
the number of correctly identified positive samples to the total number of predicted positive
samples; R refers to the ratio of the number of correctly identified positive samples to the
number of all positive samples. As shown in Figure 7, in the PR (precision-recall) curve,
the vertical axis is precision, and the horizontal axis is recall. The higher the precision
and recall of the model indicate its better performance and, correspondingly, the larger
the area under the PR curve. The mAP is a composite measure of the average accuracy of
the detected objects. When detecting multiple classes of objects, the mAP is obtained by
averaging the AP for each class.
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Table 1. Dataset details.

Statistic Items Value

Number of images 1333
Resolution (m) 0.4~2

Number of training set images 1067
Number of validation set images 133

Number of test set images 133

Number of targets count

Aircraft Carrier 163
Merchant ship 2285

Warcraft 2106
Submarine 415

Total 4969

P =
TP

TP + FP
, (12)

R =
TP

TP + FN
, (13)

AP =
∫ 1

0
P(R)dR, (14)

mAP =
∑ AP

m
, (15)

where TP means a real positive sample, TN means a real negative sample, FP is a false
positive sample and FN is a false negative sample. m represents the number of categories
of objects in the dataset.
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4.2. Kmeans++ Initial Anchor Frame Clustering

The Kmeans clustering algorithm first initializes K cluster centers before formal clus-
tering. As a result, cluster center initialization heavily influences convergence. If multiple
cluster centers are initialized in the same cluster, then the results will be incorrect. The
Kmeans++ clustering algorithm improves the way of initializing cluster centers: K cluster
centers are selected one by one, and the farther the sample point is from other cluster
centers, the higher the probability that it will be selected as the next cluster center. This is
conducted as follows.

1. The first cluster center c1 is selected at random from the dataset.
2. Calculate the shortest distance between each sample and the currently existing cluster

center, denoted by D(x); then, calculate the probability P(x) of each sample point being
selected as the next cluster center. Finally, select the sample point corresponding to
the maximum probability value as the next cluster center ci. Where
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P(x) =
D(x)2

∑
x∈X

D(x)2 . (16)

3. Until K clusters are selected, repeat Step 2.

The data set was clustered using the Kmeans++ clustering algorithm to obtain a priori
frames suitable for the ships assigned to the three detection scales of YOLOv4.

4.3. Pre-Training

Convolutional neural network models are complex with a large number of parameters
and require a large amount of labeled data for training. The size of our constructed dataset
was much smaller than the dataset with millions of images. Therefore, we borrowed the
idea of migration learning to train a neural network using other large image datasets and
trained a new model based on the parameters of the trained model. The YOLOv4 model
was pre-trained using the ImageNet dataset [27], and since the backbone network of the
improved model was the same as the YOLOv4 model, the parameters of the backbone
part of the pre-trained model were used as initialization parameters instead of random
initialization for training, which effectively improved the model convergence speed.

4.4. Experimental Environment Configuration and Result

The training environment is shown in Table 2, and the network training parameters
are shown in Table 3.

Table 2. Training environment configuration.

Platform Configuration Item Configuration Value

Hardware Platform

CPU Inter Xeon(R) Bronze 3104 CPU @
1.70 GHz × 6

Memory 32 GB
GPU Quadro RTX 8000

Graphics Memory 48G
Software
Platform

Operating System Ubuntu 18.04.6 LTS
Deep Learning Framework Pytorch

Table 3. Training parameter setting.

Parameter Value

Epoch 300
Batch size 12

Max learning rate 0.01
Min learning rate 0.0001

Optimizer adam
Learning rate decline mode cos

Input image size 800 × 800
Data enhancement method mosaic

The model was trained by feeding the training and validation sets into the network,
and all images were trained for a total of 300 epochs. In each epoch, the network received
12 images per batch, and the image size was uniformly adjusted to 800 × 800. The loss
values on the training and validation sets were calculated for each epoch, and the loss
curves of the training process were plotted according to the loss values. As shown in
Figure 8, the loss values on both the training and validation sets gradually decreased and
leveled off in the first 210 epochs of model training; after 210 epochs, the loss value on the
training set decreased from 0.05 to 0.02, but the loss value on the validation set increased
slightly, indicating that the model was overfitting. We saved the model with the lowest
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loss value on the validation set in the 200–210 epoch, and the loss curves of the model on
both the training and validation set leveled off at this time, which proved that the model
had converged.
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In order to prove the superiority of our method, we compared it to the highest version
of YOLO: YOLOv7 [28]. Table 4 shows the results of the experiment. The mAP of the
YOLOv7 improved by 13.43%. The mAP of our method increased by 13.74%. The accuracy
of our model reached the same level as the state-of-the-art model with a slight improvement.
Additionally, the detection speed did not decrease significantly. There were a large number
of small ships in the labeled merchant ships, and the AP of merchant ships of YOLOv7
improved by 11.78%. The AP of merchant ships of our model improved by 12.43%, which
demonstrated that our model detects small ships better.

Table 4. Comparison of the accuracy and speed of different modes.

Method APAircraft carrier (%) APSubmarine (%) APMerchant (%) APWarship (%) mAP (%) FPS (Frames Per Second)

YOLOv4 93.59 86.02 73.50 57.55 77.66 22.33
YOLOv7 92.92 96.57 85.28 89.57 91.09 25.28

Ours 91.33 96.44 85.93 91.88 91.40 20.34

4.5. Detection Effect of the Improved Model
4.5.1. Detection Effect of Small Targets

As shown in Figure 9, there are multi-scale ships in the image, and when the YOLOv4
model performs detection, the small ships are not detected, or not all of them can be
detected (the first column of Figure 9). When the improved model detects, all the small
ships are detected (the second column of Figure 9). When the YOLOv7 model detects, the
detection effect of small ships is improved compared with the YOLOv4 model (the first
and third rows of the third column of Figure 9), but there are still small ships missed (the
second and fourth rows of the third column of Figure 9). Based on our tests, our method
outperforms all other methods when it comes to detecting small ships.

4.5.2. Effect of Resisting Background Interference

As shown in the first column of Figure 10, the original model incorrectly detects the
island as the target in the image; when there are background interferences such as snow,
clouds and harbor ground in the image, it will interfere with the detection results, and the
target cannot be detected. As shown in the second column of Figure 10, the improved model
has no misdetection and detects the targets correctly, which indicates that our improved
model can resist background interference. As shown in the third column of Figure 10,
YOLOv7’s ability to resist complex background interference has been improved compared
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with YOLOv4 (the first and second rows), but there are still missed detections (the third and
fourth rows). According to the results, our method proves to be more effective at reducing
background interference than all the other approaches compared.
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4.6. Ablation Experiments

We conducted a series of ablation experiments on our dataset. As shown in Table 5,
we considered the influence of different combinations of four factors, backbone parameter,
Kmeans++, CBAM and RFB_s, on the experimental results. We used the mAP and AP of
each ship class as evaluation criteria to verify the effectiveness of our model.

Table 5. Comparison of ablation experiment.

Model YOLOv4 YOLOv4-Kmeans++
(Baseline) YOLOv4-CBAM YOLOv4-RFB_s Ours

Backbone-Parameter -
√ √ √ √

Kmeans++ -
√ √ √ √

CBAM - -
√

-
√

RFB_s - - -
√ √

mAP (%) 77.66 85.47 87.47 88.59 91.40
APAircraft carrier (%) 93.59 87.68 84.37 86.30 91.33

APSubmarine (%) 86.02 89.03 91.15 92.19 96.44
APMerchant (%) 73.50 80.65 84.61 84.18 85.93
APWarship (%) 57.55 84.51 89.74 91.70 91.88

FPS 22.33 21.97 20.92 21.17 20.34
√

means the module or trick in the first column is used in the corresponding model.

It can be seen that, with YOLOv4 as the benchmark experiment, the YOLOv4-Kmeans++
model improves the mAP of the model by 7.81% through using pre-trained backbone pa-
rameters instead of random initialization and the Kmeans++ algorithm to select better
initial anchors. Based on this, the YOLOv4-CBAM model adds the CBAM module to
adaptively adjust different feature layer weights, the mAP of the model improves by 9.81%
and the AP of merchant ships improves by 11.11%. As a result of a large number of small
ships in the labeled merchant ships, CBAM can be validated as effective at improving the
detection of small targets. The mAP of the YOLOv4-RFB_s model increased by 10.93%,
and the AP of the merchant ship increased by 10.68%, indicating that the RFB_s module
can also improve the small target detection effect. The mAP of the improved model with
the introduction of CBAM and RFB increased by 13.74%, and the AP of the merchant
ship increased by 12.43%, proving that the improved model improved the small target
detection effect.

As can be seen from Figure 11, the original model does not detect the small ships
and the ship at the edge of the image (Figure 11a). The model with the CBAM module
detects the ship at the edge, and some of the small ships are missed by the original model,
but it still does not detect small ships completely (Figure 11b). The model with the RFB_s
module detects the ship at the edge, and small ships are missed by the original model but
miss small ships disturbed by the background (Figure 11c). The improved model correctly
detects all ships (Figure 11d).
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5. Conclusions

In this paper, we proposed an improved model. Firstly, we used the RFB_s structure
instead of the SPP structure to enhance the receptive field and enhance the detection
performance on small ships. Secondly, we introduced the CBAM module, which adaptively
adjusts the weights of different feature maps before feature fusion to effectively highlight
salient features of objects and detect small ships more effectively while improving the
model’s resistance to background interference. The mAP of the improved model was
increased from 77.66% to 91.40%. The experimental results showed that the improved
model can accurately detect small ships and effectively resist background interference.
Additionally, the problem of wrong and missed detection was greatly addressed.

Although the detection effect of the method proposed in this paper was significantly
improved, this paper only classifies the ships into four categories for coarse identification,
and there is room for further improvement in detection accuracy. In future work, on
the one hand, the dataset will be expanded, focusing on images containing small ships
and images with complex backgrounds, and the ships will be divided into fine-grained
categories. On the other hand, the training ship detection model for fine recognition will be
explored, and the ability of the model to resist complex background interference will be
further improved.
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